用于制造压缩机的电磁离合器的连接器的方法

申请号 CN200810176312.2 申请日 2008-11-14 公开(公告)号 CN101435471B 公开(公告)日 2011-04-20
申请人 汉拏空调株式会社; 发明人 郑硕济; 吴成泽; 朴大龙; 申和烨;
摘要 本 发明 涉及一种用于制造 压缩机 的电磁 离合器 的连接器的方法。所述方法包括以下步骤:将构造突波吸收 电路 的至少一个放电装置(60)或者剩余 磁场 去除装置(70)的引线(62或者72)的引线端布置在安装于连接器(30)的 端子 (50)上,所述连接器30构造励磁线圈组件并在其一侧形成有结合槽(56);使至少一个槽电桥(57)发生塑性 变形 以将所述引线(62或者72)固定到所述结合槽(56)中;在端子(50)固定到所述至少一个放电装置(60)或者剩余磁场去除装置(70)的组件上的状态下,通过注塑制造所述连接器(30)。
权利要求

1.一种用于制造压缩机的电磁离合器的连接器的方法,其中,电磁离合器包括励磁线圈组件,通过设置在励磁线圈组件一侧的连接器向励磁线圈组件供应外部电,以通过缠绕在励磁线圈组件中的线圈产生有吸引的磁通量,所述方法包括以下步骤:
将构造突波吸收电路的至少一个放电装置的引线的引线端或者剩余磁场去除装置的引线的引线端布置于结合槽中,该结合槽形成在设置在连接器中的端子的一侧;
使至少一个槽电桥发生塑性变形以将所述引线端固定到所述结合槽中;
在端子固定到所述至少一个放电装置或者剩余磁场去除装置的组件上的状态下通过注塑制造所述连接器,
其中,在连接器的外表面上形成至少一个注射凹槽,以防止突波吸收电路在注塑期间波动

说明书全文

用于制造压缩机的电磁离合器的连接器的方法

技术领域

[0001] 本发明涉及一种压缩机的电磁离合器,更具体地讲,涉及一种用于制造设置在压缩机的电磁离合器中的励磁线圈组件的连接器的方法。

背景技术

[0002] 通常,压缩机的电磁离合器是这样一种电子装置,其中,当向缠绕的线圈供电时,通过缠绕的线圈的电磁感应形成磁场,产生的磁使压缩机的驱动轴上的轮盘被朝着皮带轮的摩擦表面吸引,并被牢固地连接到皮带轮的摩擦表面上,从而通过引擎而旋转的皮带轮的驱动力被传递到压缩机的驱动轴的轮盘上。
[0003] 也就是说,压缩机的电磁离合器根据电源是否被施加给线圈通过调节压缩机的功率(power)来控制空调的制冷系统的操作。
[0004] 图1是示出用于压缩机的传统的电磁离合器的线圈组件的分解透视图,图2是示出用于压缩机的传统的电磁离合器的连接器的主要部分的平面图。
[0005] 根据附图,用于压缩机的电磁离合器包括皮带轮(未示出),皮带轮通过驱动皮带(未示出)连接到引擎的曲轴,并且皮带轮在其侧部具有摩擦表面。
[0006] 此外,用于压缩机的电磁离合器设置有励磁线圈组件1,从而所述励磁线圈组件1被包含在皮带轮中,并被壳体(未示出)支撑,并且所述励磁线圈组件1还通过被供电而产生有吸引力的磁通量(attracting magnetic flux)。由励磁线圈组件1产生的有吸引力的磁通量使得盘(未示出)被结合到皮带轮的摩擦表面上,从而将引擎的功率传递给压缩机的驱动轴。
[0007] 电磁线圈按照环形形状被缠绕在主体2内,所述主体2限定励磁线圈组件1的框架。 突起3设置在主体2的一侧,连接器安装件5结合到突起3的上表面上。 端子插入凹槽7形成在连接器安装件5上,并且所述端子插入凹槽7是连接器10的端子15(将在稍后进行描述)插入到其中的部分。
[0008] 连接器10结合到主体2。 连接器10通过端子15从外部接收电,并将其传输到主体2,从而使励磁线圈组件1形成磁场。
[0009] 壳体11限定连接器10的外表和框架。 壳体11由绝缘材料(例如合成树脂)制成。 用于与对应件结合的结合部分13形成在壳体11的一侧,将被结合并电连接到连接器安装件5的端子15设置在壳体11的另一侧。
[0010] 同时,如图2所示,电子部件(例如,二极管D和电阻器R)安装在壳体11内。二极管D和电阻器R形成连接器10中的突波吸收电路(surgeabsorbing circuit),并电连接到端子15.
[0011] 将描述连接器10的制造过程。首先,注塑端子15,使得端子15可与壳体11一体地形成。 也就是说,在将端子15插入到模具组件中的同时注塑壳体11,使得壳体11被制造为被固定到端子15上。
[0012] 在这种状态下,二极管D和电阻R插入到壳体11中。 同时,二极管D和电阻R被装配成连接到端子15的一端。 接着,将热固树脂(例如,环树脂E)注入到壳体11中,以固定二极管D和电阻R。
[0013] 也就是说,在将端子15插入到壳体11中进行注塑之后,二极管D和电阻R被装配在壳体11中。
[0014] 然而,由于在装配二极管D和电阻R的工艺中还需要另外注射环氧树脂E的工艺,所以存在使连接器10的制造成本以及工艺数量增加的问题。
[0015] 具体地讲,如果使用环氧树脂E使二极管D和电阻R固定,则使环氧树脂E固化需要时间,因此,存在使连接器10的整体制造时间延长的问题。
[0016] 另外,第1998-318290号日本特开专利公开披露了突波吸收装置容纳在电磁离合器的连接器中。 然而,在电源的连接器结合到离合器的连接器之前,突波吸收装置或者在突波吸收装置和端子之间的结合部分暴露在外部,这会(导致例如)由于杂质的介入而使端子和突波吸收装置之间的不良连接的问题。

发明内容

[0017] 构思本发明以解决现有技术中的上述问题。 本发明的目的在于允许构造突波吸收电路的电子部件以及连接到所述电子部件的端子通过注塑装配在连接器中。
[0018] 本发明提供一种用于制造励磁线圈组件的连接器的方法,其中,通过设置在励磁线圈组件一侧的连接器向励磁线圈组件供应外部电,以通过缠绕在励磁线圈组件中的线圈产生有吸引力的磁通量,所述方法包括以下步骤:将构造突波吸收电路的至少一个放电装置的引线的引线端或者剩余磁场去除装置的引线的引线端布置于在设置在连接器的端子的一侧形成的结合槽中;使至少一个槽电桥发生塑性变形以将所述引线端固定到所述结合槽中;在端子固定到所述至少一个放电装置或者剩余磁场去除装置的组件上的状态下通过注塑制造所述连接器。
[0019] 在连接器的外表面上可形成至少一个注射凹槽,以防止突波吸收电路在注塑期间波动

附图说明

[0020] 通过下面结合附图对优选的实施例进行的描述,本发明的特点和优点将会变得清楚,其中:
[0021] 图1是示出压缩机的传统的电磁离合器的励磁线圈组件的分解透视图;
[0022] 图2是示出压缩机的传统的电磁离合器的连接器的主要部分的平面图;
[0023] 图3是示出根据依据本发明的用于制造压缩机的电磁离合器的连接器的方法制造的连接器的透视图;
[0024] 图4是示出图3的连接器的内部的开式透视图(opened-up perspectiveview);
[0025] 图5是示出安装在根据本发明的实施例的连接器中的电子部件的引线被布置在端子的结合槽(coupling slot)中的透视图;
[0026] 图6是示出端子的槽电桥(slot bridge)塑性变形以固定图5的电子部件的引线的透视图;
[0027] 图7是按顺序示出根据本发明的实施例制造压缩机的电磁离合器的连接器的过程的流程图

具体实施方式

[0028] 以下将参照附图详细描述根据本发明的用于制造压缩机的电磁离合器的连接器的方法的优选实施例。
[0029] 图3是示出根据依据本发明的用于制造压缩机的电磁离合器的连接器的方法制造的连接器的透视图,图4是示出图3的连接器的内部的开式透视图,图5和图6是分别示出安装在根据本发明的实施例的连接器中的电子部件的引线被布置在端子的结合槽中以及端子的槽电桥塑性变形以固定电子部件的引线的透视图。 以下,励磁线圈组件的主体和其它组件涉及现有技术,下面的解释将集中在连接器的制造方法上。
[0030] 根据附图,通过壳体31限定连接器30的外表和框架。 使用绝缘材料(例如合成树脂)通过注塑制成壳体31。
[0031] 注射凹槽35凹入地形成在壳体31的外表面上。注射凹槽35用于防止在壳体31的注射工艺期间(稍后将解释)装配在壳体31中的电子部件60和70波动。 更具体地讲,注射模具设置有用于形成注射凹槽35的芯(未示出),从而可通过所述芯使电子部件60和70的位置固定。 注射凹槽35最好布置在多个电子部件60和70之间。
[0032] 同时,虽然图3仅示出了一个注射凹槽35,但是本发明不限于此。可在壳体31的上表面和下表面上形成多个注射凹槽。也就是说,对于数量和位置,注射凹槽35可与电子部件60和70对应地形成。 当然,在壳体31中也可不形成注射凹槽35.[0033] 固定突起37设置在壳体31的一侧上。 固定突起37将连接器30固定到励磁线圈组件1的主体2上。 为此,如图所示,固定突起37成对地设置在壳体31的后端。
[0034] 如图5所示,端子50设置在壳体31的内部。 端子50将外部电传输给缠绕在励磁线圈组件1上的线圈上,并且端子50由具有良好导电性能的金属材料制成。 端子50与连接到外部电源的相对连接器(未示出)的端子接触,并与所述相对连接器电连接,从而将外部电传输给励磁线圈组件1。为此,端子50应该被安装成使得端子50的至少一部分暴露在壳体31的外部。 在该实施例中,端子50成对地设置在壳体31中。
[0035] 端子50的框架由板形主体51限定,并且主体51的两端52和55分别连接到相对连接器(未示出)和励磁线圈组件1的连接安装件5。
[0036] 同时,端子50的主体51形成有结合槽56。 通过局部切割主体51形成结合槽56,结合槽56是电子部件60的引线62或者电子部件70的引线72(稍后将描述)所结合到的部分。 在该实施例中,结合槽56形成为穿过主体51的一部分,但是不限于此。 也就是说,主体51的对应于结合槽56的一侧的那部分可被切割,从而结合槽56的一端与外部连通。
[0037] 槽电桥57设置在结合槽56的一侧。 在通过切割形成结合槽56的同时,形成槽电桥57,并且槽电桥57设置成跨过结合槽56。 也就是说,在结合槽56和槽电桥57之间形成预定空间,使得电子部件60的引线62或者电子部件70的引线72可以从所述空间穿过。
[0038] 同时,可设置多个结合槽56和槽电桥57。也就是说,虽然在该实施例中仅设置了一个结合槽56和一个槽电桥57,但是本发明不限于此。 更具体地讲,在端子50的主体51中沿着电子部件60的引线62或者电子部件70的引线72被布置的方向可形成多个结合槽56和槽电桥57。 在这种情况下,电子部件60的引线62或者电子部件70的引线72被固定到多个结合槽56,从而端子50可以更加稳定地结合到电子部件60或者70上。
[0039] 可选地,槽电桥57可以成对地设置以在端子的主体51中彼此面对,电子部件60的引线62或者电子部件70的引线72可被弯曲,同时,电子部件60的引线62或者电子部件70的引线72插入到所述一对槽电桥57中,所述槽电桥57彼此接近,从而使得引线62或者72在槽电桥57之间被压紧。
[0040] 电子部件60和70电连接到端子50。 电子部件60和70用于构造连接器30的突波吸收电路,并且电子部件60和70包括放电装置60和剩余磁场去除装置(remaining magnetic field removing device)70。 在该实施例中,放电装置60和剩余磁场去除装置70分别包括二极管60和电阻70,但是本发明不限于此。此外,突波吸收电路可仅包括二极管60。 二极管60和电阻70电连接到成对设置的端子50。
[0041] 如图5和图6所示,二极管60设置有引线62。引线62电连接到端子50中的一个,并且引线62形成为在一侧延伸。 更具体地讲,引线62的引线端65通过端子50的槽电桥57被固定到结合槽56,从而二极管60电连接到端子50。
[0042] 象二极管60一样,电阻70也设置有引线72。 引线72电连接到端子50中的另一个,并且引线72形成为在一侧延伸。 更具体地讲,引线72的引线端75通过端子50的槽电桥57被固定到结合槽56,从而电阻70电连接到端子50。
[0043] 同时,端子50与电子部件60或者70之间的结合不限于结合槽56和槽电桥57的构造。 例如,电子部件60的引线62或者电子部件70的引线72可穿过结合孔(未示出),通过对端子50的一部分钻孔而形成所述结合孔,接着,电子部件60的引线62或者电子部件70的引线72可被弯曲,使得端子50电连接到电子部件60或者70。
[0044] 可选地,电子部件60的引线62或者电子部件70的引线72也可通过焊接或者绝缘胶带固定到端子50。
[0045] 以下,将描述根据本发明的用于制造压缩机的电磁离合器的连接器的方法。
[0046] 首先,在注塑壳体31之前,端子50与用于构造成突波吸收电路的电子部件60和70结合。 也就是说,端子50电连接到突波吸收电路。
[0047] 更具体地讲,电子部件60的引线62和电子部件70的引线72分别被布置到端子50的结合槽56上。 在图5中示出了这种构造。 在形成多个结合槽56的情况下,引线
62和72的每个被布置成穿过多个结合槽56(S100)。
[0048] 在这种情况下,端子50的槽电桥57被朝着引线62或者72压迫以发生塑性变形。 同时,可使用压装模进行使槽电桥57变形的工艺。 如果槽电桥57如上所述被压迫并发生塑性变形,则引线62或者72被压紧在槽电桥57和结合槽56之间,从而被牢固地固定(S110)。 图6示出了这种情况。
[0049] 如上所述,也可通过焊接等将引线62和72固定到端子50。
[0050] 接着,端子50与二极管60和电阻70的组件被定位于注射模具中,接着,通过注塑制成壳体31。更具体地讲,端子50与构造成突波吸收电路的电子部分60和70的组件被定位于用于形成壳体31的模具组件的腔室中,接着,熔融的树脂被注射到所述模具组件中,以制成连接器30(S120)。
[0051] 同时,由于注射凹槽35形成在壳体31中,所以在树脂被注射到所述腔室中并在所述腔室中流动的同时,二极管60和电阻70可被固定在壳体31中的准确的位置。
[0052] 在这种情况下,端子50以及二极管60和电阻70的组件与壳体31一起被固定,从而被一体地装配。因此,不需要为了将二极管60和电阻70固定在壳体31中而注射热固树脂的单独的工艺。
[0053] 此外,在通过注塑制造连接器30的工艺中,端子50与电子部件60和70之间的结合部分自然被挡住,从而可防止杂质进入端子50与电子部件60和70之间。
[0054] 最后,如上所述制造的连接器30连接到设置在励磁线圈组件1的主体2中的连接器安装件5。 也就是说,端子50的引线端插入到形成在连接器安装件5中的端子插入凹槽7中,从而连接器30电连接到励磁线圈组件1的主体2(S130)。
[0055] 本发明的范围不限于上面所描述和举例说明的实施例,而是由权利要求所限定。 本领域技术人员应该理解,在权利要求所限定的本发明的范围内可进行各种修改和改变。
[0056] 在本发明中,通过注塑将突波吸收电路装配在连接器中,所述连接器构造压缩机的电磁离合器。 因此,不需要为了将突波吸收电路固定在连接器中而注射热固树脂的单独的工艺,从而减少了用于装配连接器的工艺的数量,并且也降低了制造成本。
[0057] 此外,在制造连接器的过程中,不需要用于固化热固树脂所需要的时间,从而缩短了用于制造连接器所需要的时间。
[0058] 此外,由于在注塑期间自然挡住了安装在连接器中的突波吸收电路和端子之间的空间,从而防止杂质进入,也就可以期望获得提高的连接器的操作可靠性。
QQ群二维码
意见反馈