利用多组分金属燃料催化剂和轻度催化的柴油机化催化剂的降低排放的燃烧

申请号 CN200680008704.7 申请日 2006-01-19 公开(公告)号 CN101160455B 公开(公告)日 2013-03-27
申请人 克林迪塞尔技术公司; 发明人 詹姆斯·M·瓦伦丁; 巴里·N·斯普拉格;
摘要 改进的柴油机运行系统,采用了轻度柴油机 氧 化催化剂(DOC),优选地在 燃料 中使用含铂的燃料携带的催化剂(FBC)。该DOC至少部分由金属加载量为约3~15克每立方英尺的贵金属催化剂例如铂族金属轻度催化,由此使废气中NO2的形成最小化。优选的燃料携带的催化剂 水 平是低的,例如0.05~0.5ppm的铂以及3~8ppm的铈和/或 铁 ,由此提供有效的 发动机 输出排放降低,且不会将过量的金属催化剂或NO2排放到大气中。
权利要求

1.一种用于降低柴油机中微粒排放、同时还控制以废气总氮的化物的百分比计的NO2排放的方法,其包括:以燃料中2~15ppm的总金属浓度将包含铂以及铈和/或的燃料携带的催化剂加到柴油机燃料中;以及将燃烧产生的废气从具有其上有贵金属催化剂的基体的柴油机氧化催化剂中通过,所述催化剂以小于15克每立方英尺基体的量存在于所述基体上。
3
2.根据权利要求1的方法,其中所述柴油机氧化催化剂具有小于10g/ft 的催化剂金属加载量。
3.根据权利要求1的方法,其中所述燃料包含在该燃料中提供0.05~0.5ppm铂的可溶于燃料的铂化合物。
3
4.根据权利要求1的方法,其中所述柴油机氧化催化剂具有3~5g/ft 的量的催化剂金属。
5.一种柴油机排放控制系统,其采用:
包含铂以及铈和/或铁的燃料携带的催化剂,该燃料携带的催化剂以燃料中2~15ppm的总金属浓度加入到柴油机燃料中;和
排放后处理设备,该排放后处理设备包含其上有贵金属催化剂的基体的柴油机氧化催化剂,所述催化剂以小于15克每立方英尺基体的量存在于所述基体上。
6.根据权利要求5的柴油机排放控制系统,其中所述柴油机氧化催化剂具有小于10g/
3
ft 的催化剂金属加载量。
7.根据权利要求5的柴油机排放控制系统,其中所述燃料包含在该燃料中提供0.05~
0.5ppm铂的可溶于燃料的铂化合物。
8.根据权利要求5的柴油机排放控制系统,其中所述柴油机氧化催化剂具有3~5g/
3
ft 的量的催化剂金属。

说明书全文

利用多组分金属燃料催化剂和轻度催化的柴油机化催化

剂的降低排放的燃烧

背景技术

[0001] 本发明涉及一种用于降低不完全燃烧产生的类型的污染物例如微粒、未燃烧的和一氧化的排放,同时避免提高NO2的生成的新方法。
[0002] 柴油机相对于奥托型发动机具有许多重要的优点。其中有燃料经济性、容易维修和长寿命。但是,从排放的度来看,相对于它们的火花点火对应物,它们存在更严重的问题。排放问题涉及微粒物质(PM)、氮的氧化物(NOx)、未燃烧的烃(HC)和一氧化碳(CO)。术语NOx用于描述氮的氧化物的各种化学物质,尤其包括一氧化氮(NO)和二氧化氮(NO2)。
NO受到了关注,因为据信其在阳光和烃的存在下经过一系列反应而经历了被称为光化学烟雾形成的过程,且其是酸雨的主要贡献者。另一方面,NO2具有作为氧化剂的高潜且是强部刺激物。微粒(PM)也与呼吸问题相关。当进行发动机运行改进以降低柴油机中的微粒和未燃烧的烃时,NOx的排放趋于增加。
[0003] 已提出采用后处理设备,如柴油机微粒过滤器(DPF)和柴油机氧化催化剂(DOC),来降低来自柴油机的微粒以及气态的烃和一氧化碳的排放。这些设备在较老的发动机中承受着极大的压力并且在较新的发动机中需要有功效的改进。所有情形中,它们都是昂贵的,这主要是由于有效性所需要使用的贵金属的成本。期望降低DOC设备的成本和/或改进它们的功效。
[0004] 本领域已意识到,NO2作为强氧化剂在燃烧柴油机微粒中起着有益的作用。Cooper等人在美国专利US4,902,487中通过使用在未催化的DPF上游的重度催化的DOC而实施了这样的反应。重度催化的DOC将废气中存在的NO转化为NO2,该NO2氧化了碳微粒以帮助过滤器再生。作为该专利实施例2中的第一种成分,采用了常规陶瓷整体料负载的催化剂,含3 3
有大约80g/ftPt。所报道的铂的通常加载量为DOC体积的30~90g/ft。最近,该设备的制造商已介绍了采用重度催化的DPF来帮助低温再生的系统。目前报道的总的贵金属加载
3
量为90~120g/ft。该途径的结果是,大量的过量NO2排出该系统。NO2是强肺部刺激物且已由MSHA限制了废气中的浓度并且CARB建议浓度上限为废气氮的氧化物的20%。但是,尽管存在铂成本高和NO2排放的相关问题,在这类系统中,本领域发现必须采用高的铂加载量以实现令人满意的再生。
[0005] 已采取另一商业措施来改进Cooper型烟灰过滤器的再生,并且产生高NO2排放以及通过使用铈或燃料添加剂来帮助DPF再生。参见Blanchard等人的美国专利US6,767,526,其采用DOC与DPF或者单独的DPF,具有固定的铂加载量,所述铂加载量是未被具体规定的、足以将NO氧化为NO2的浓度。其并未解决与Cooper系统相关的铂高成本或者NO2排放的不利影响。
[0006] 另一商业测试过的系统采用在新的丝网过滤器上游的DOC,但是需要在废气中形成高NO2的重度催化的DOC以使未催化的丝网过滤器再生。参见,例如,EP1350933。
[0007] 在美国专利US 6,023,928中,Peter-Hoblyn和Valentine描述了具有DOC或DPF的铂FBC,和/或,具有催化的或未催化的DPF的Pt/Ce,但是并未描述使铂加载量最小化或NO2的降低。具有高铂加载量的常规DOC可以将硫转化为硫酸盐物质,增加了微粒并且也增加了NO2。并不认为催化的DOC是有效的,其仅能够提供20~25%的PM降低。
[0008] 需要一种系统,其提供了良好的PM降低,同时使NO2的产生和排放最小化。

发明内容

[0009] 本发明的目的是提供一种系统,其通过催化废气处理提供了良好的PM降低,同时使NO2的排放最小化。
[0010] 本发明的另一目的是提供一种系统,其可以通过降低对铂催化剂的需求同时保持NO2作为DOC中烟灰氧化的助剂的明显益处,来降低系统成本。
[0011] 这些和其它目的通过提供了改进的柴油机废气处理系统的本发明而得以实现。在主要的方面中,本发明提供了一种用于降低来自柴油机中的微粒排放同时也控制以废气总氮的氧化物的百分比计的NO2排放的方法,其包括:将包含铂以及铈和/或铁的燃料携带的催化剂以燃料中2~15ppm的总金属浓度加到柴油机燃料中;以及将燃烧产生的废气从具有其上有贵金属催化剂的基体的柴油机氧化催化剂中通过,所述催化剂以小于15克每立方英尺基体的量存在于所述基体上。

具体实施方式

[0012] 如上所述,本发明提供了用于柴油机运行的改进系统,且优选地采用FBC和包括,例如,常规的或者其它结构的轻度催化的柴油机氧化催化剂DOC的排放后处理设备。术语FBC表示燃料携带的催化剂(fuel bornecatalyst),其通常为可溶于燃料的或者悬浮于燃料的组合物,其具有燃料在柴油机中燃烧期间以活性形式释放到燃烧室中的金属组分。术语DOC和FBC都将在下面更详细地解释并且,如上述引用文献所证明的那样也是本领域公知的。
[0013] 本发明采用排放后处理设备,其包括可以是单独的DOC或者与DPF一起的催化剂基体,该催化剂基体用贵金属例如铂族金属轻度催化。催化剂加载量小于本领域认为的将3
NO转化为用作烟灰氧化剂的NO2所需的量,优选的金属加载量小于15g/ft,例如1~15g/
3 3 3
ft,铂族金属加载量期望地小于10g/ft,且最优选为3~5g/ft。这些低催化剂加载量有助于燃烧烟灰,而不会形成很多NO2使得过量NO2的排放成为环境问题。适宜用于催化DOC的贵金属为上述Cooper等人的专利中所示那些,且尤其包括铂族金属。
[0014] 在本发明的一种实施方式中,轻度催化的DOC含有小于15克每立方英尺(g/ft3),3 3 3
例如1~15g/ft 的铂族金属加载量,期望地小于10g/ft,且优选为3~5g/ft,与0.015~
0.5ppm Pt和0.5~8ppm Ce和/或铁的铂和铈FBC一起使用。对于部分处理或操作循环可以采用更高和更低的平的添加剂。下面提供了对FBC组合物的进一步讨论。
[0015] 本发明的改进系统显著降低了PM,例如优选实施方式中为30~50%,例如,当与超低硫柴油机燃料一起使用时,并且不会将NO2增加到基准之上,而且已表现出保持低NO2排放的能力,例如达到低于总氮的氧化物物质的20%,同时也使铂族金属的使用最小化。
[0016] 适用于本发明的柴油机燃料为通常包括化石燃料的那些,如任何常见的包括馏出物燃料的来自石油的燃料。该柴油机燃料可以是上述现有专利申请中公开的任何制剂,这些专利申请的全部内容引入本文作为参考。燃料可以是选自馏出物燃料的一种或燃料共混物,所述馏出物燃料包括柴油机燃料,例如,No.1柴油机燃料、No.2柴油机燃料,喷气燃料,例如Jet A,或者沸点和粘度与No.1柴油机燃料类似的那些,超低硫柴油机燃料(ULSD)和来自生物的燃料,如包含“基于单烷基酯的含氧燃料”的那些,即脂肪酸酯,优选衍生自甘油三酸酯的脂肪酸例如大豆油菜籽油和/或脂的甲基酯。
[0017] JetA和No.1柴油被认为对于本发明的应用来说是等效的,但是被不同的美国材料实验协会(American Society For Testing and Materials)(ASTM)规格覆盖。所述柴油机燃料被ASTM D 975,″柴油机燃料油的标准规格(Standard Specification for Diesel Fuel Oils)″覆盖。Jet A具有ASTM D 1655,″航空涡轮燃料的标准规格(Standard Specification for Aviation Turbine Fuels)″的规定。术语超低硫柴油(ULSD)含义为硫的水平不高于0.0015重量%(15ppm)的No.1或No.2柴油机燃料,并且在某些管辖区下需要低的芳烃含量,例如小于10体积%。
[0018] 本发明的方法采用了可溶于燃料的、多金属催化剂,即FBC,优选地包含可溶于燃料的铂和、铈或铁中的一种、或铈与铁二者。铈和/或铁通常以0.5~20ppm的浓度使用,且铂为0.0005~2ppm,其中,铈和/或铁的优选水平为5~10ppm,例如7.5ppm,且铂以0.0005~0.5ppm的水平使用,例如小于0.15ppm。在某些实施方式中,处理方式可以要求在最初或者在规定的间隔下或者需要时采用更高的催化剂浓度,但是并非过去所必须的全部处理都要求采用。对于通常的运行,优选的铈和/或铁水平为2~10ppm的铈和/或铁,例如3~8ppm,且铂的使用水平为0.05~0.5ppm,例如0.1~0.5ppm,例如0.15ppm。在这些水平下进行的以下试验在利用轻度催化的DOC的排放方面显示了令人吃惊的结果。
[0019] 铈和/或铁FBC优选的浓度为1~15ppm铈和/或铁w/v燃料,例如4~15ppm。对于FBC,铈和/或铁与铂的优选比例为100∶1~3∶1,例如,更通常地为75∶1~
10∶1。列举采用0.15ppm铂与7.5ppm铈和/或铁的制剂。
[0020] 低水平催化剂(总计约3~15ppm)、优选低于12ppm且更优选低于8ppm的优点是,降低金属氧化物排放中产生的超细颗粒。欧洲VERT计划下公布的数据显示,在20ppm、或100ppm铈的高FBC剂量率下,超细颗粒的数目的增加显著高于基准。但是,对于以0.5/7.5或0.25/4 ppm使用的双金属,不存在超细颗粒数目的显著增加。已发现,在低水平的FBC下,不存在单独的超细氧化物颗粒峰并且金属氧化物包含在整个粒径分布中的烟灰中。本发明规定的低剂量率的进一步的优点是,对整个发动机的排放都降低了金属灰分的分布。
对于符合1998 US排放标准的发动机,微粒排放限制在100000微克/力-小时(0.1克/马力-小时)。燃料中以30ppm使用的铈FBC代表了发动机的金属催化剂输入载荷为6000微克/马力-小时的金属或者大致6%的未处理的发动机排放。由此,本发明中使用的作为双金属或三金属FBC的小于8ppm且优选4ppm的低水平催化剂,例如,仅贡献了800~1600微克/马力-小时的催化剂载荷给发动机,或者基准烟灰排放的0.8~1.6%。这样具有金属灰分排放降低的优点,且降低了FBC对总微粒物质排放的贡献或者金属灰分对下游排放控制设备的负荷。
[0021] 该燃料可以含有清洁剂(例如50~300ppm),润滑添加剂(例如,25~约500ppm),其它添加剂,和适宜的可溶于燃料的催化剂金属组合物,例如0.1~2ppm可溶于燃料的铂族金属组合物,例如铂COD或乙酰丙铂和/或2~20ppm可溶于燃料的铈或铁组合物,例如作为可溶性化合物或悬液的铈,辛酸铈,二茂铁,油酸铁,辛酸铁等。无需对其它处理设备的特殊需求,将所定义的燃料燃烧,但是它们可以尤其用于对柴油机更高水平的控制。
[0022] 具 体 的 铈化 合 物 之 中 为:乙 酰 丙酮 铈 III,环 烷酸 铈 III(cerium IIInapthenate),以及辛酸铈、油酸铈和其它皂类如硬脂酸盐、新癸酸盐、和其它C6~C24链烷酸等。许多铈化合物为满足式:Ce(OOCR)3的三价化合物,其中R=烃,优选为C2~C22,且包括脂肪族的、脂环族的、芳基和烷芳基。优选地,将铈作为羟基油酸铈丙酸盐络合物(40重量%的铈)、或者辛酸铈(12重量%的铈)提供。优选的水平为朝向该范围下限。
[0023] 具体的铁化合物有:二茂铁,含铁的和亚铁的乙酰丙酮化物,铁皂类如辛酸盐和硬脂酸盐(通常,可作为Fe(III)化合物商购获得),环烷酸铁(ironnapthenate),树脂酸铁和其它C6~C24链烷酸,五羰基铁Fe(CO)5等。
[0024] 任何的铂族金属组合物,例如描述于Bowers等人的美国专利US4,891,050、Epperly等人的美国专利US5,034,020、和Peter-Hoblyn等人的US5,266,083中的1,5-环辛二烯铂联苯(铂COD)可以用作铂源。其它适宜的铂族金属催化剂组合物包括可商购获得的或者容易合成的铂族金属乙酰丙酮化物,包括取代的(例如,烷基、芳基、烷芳基取代的)和未取代的乙酰丙酮化物,铂族金属二亚苄基丙酮化物,和四胺铂金属络合物的脂肪酸皂,例如四胺油酸铂。
[0025] 本发明可以采用单独的DOC,或者其可以与其它设备一起使用,包括DPF,微粒反应器、部分过滤器或NOx吸附剂也可以使用,且受益于本发明的降低的发动机外排放。参见下面的实施例,对于发动机输出结果和具有催化的DOC设备的FBC的益处,降低了NO2和微粒排放。虽然不期望受理论限制,后处理设备以及发动机输出排放获得了预料不到的良好结果,这点可能是因为铂并非以足以产生过量NO2的量存在,并且在低水平铈和/或铁的存在下仍产生一些NO2,其足以促进微粒中碳的氧化。NO2为强的肺刺激物,且可以通过传统使用的重催化的后处理设备如DOC、DPF或其组合而大量产生。由于低的铂浓度而且铈和/或铁以低的但是足够的量存在而带来的有限的NO2生成的最终结果为,产生了远大于预期的微粒(以及不完全氧化产生的其它物质)降低,并且同时控制了产生和释放的NO2的量。不同于现有技术,本发明已发现,高NO2生成率并非是必须的,并且实质上已发现了提供对人类刺激更少的排放的途径。
[0026] 提供下列实施例以进一步解释和阐述本发明,并且所述实施例不应以任何方式作为限定。除非另外指出,所有份数和百分比为按重量计。
[0027] 实施例1
[0028] 本实施例报道了在发动机测功仪上进行重复热瞬态试验循环操作的1990 International DT 4667.6L柴油发动机的试验。排放结果为三次试验的平均值并且以克/马力-小时为单位测量。在具有>300ppm硫的未处理的No.2柴油机燃料上的试验,产生了0.253克/马力-小时的基准微粒排放和1.1克/马力-小时的NO2或者废气中18%的总氮的氧化物。在No.2D燃料中以0.15ppm Pt和7.5ppm Ce的剂量率使用双金属FBC,PM降低了15%达到0.215克/马力-小时,同时NO2降低到总氮的氧化物排放的12%。
[0029] 安装具有3g/ft3贵金属加载量的轻度催化的陶瓷DOC,在未处理的No.2D燃料上运行,产生0.196克/马力-小时的PM排放或者相对于基准23%的降低。由于不可获得试验设备,所以未测量NO2。使用具有轻度催化的DOC的FBC处理的No.2D,将PM排放降低到0.178克/马力-小时,即30%的降低,同时进一步将NO2排放降低到总氮的氧化物排放的
8%。
[0030] 使用相同DOC,且发动机在FBC处理的ULSD(<15ppm S)上运行,PM降低34%达到0.168克/马力-小时,同时NO2排放为总NOx的8%。这些结果表明了FBC增强轻度催化的DOC的总体PM降低功效的能力,甚至是在No.2D燃料上,在所述No.2D燃料中,使用传统重度催化的设备可导致硫物质转化为硫酸盐微粒排放且增加NO2的排放。
[0031] 与轻度催化的DOC一起使用FBC的另一预料不到的好处是,NO2排放相对于基准降低。NO2排放通常在传统重度催化的设备的情况下增加,但是使用本发明中所述的FBC/DOC组合降低了超过50%。
[0032] 1990 International DT 4667.6升发动机的排放结果(克/马力-小时)[0033]燃料/设备 HC CO NOx NO NO2 PM
基准No.2D 0.3 1.4 6.1 5.0 1.1 0.253
基准No.2 D+FBC(0.15/7.5) 0.3 1.3 6.0 5.3 0.7 0.215
基准No.2 D+DOC(无FBC) 0.2 0.7 6.0 ND ND 0.196
基准No.2 D+DOC+FBC(0.15/7.5) 0.2 0.7 6.0 5.5 0.5 0.178
ULSD+FBC+DOC(0.15/7.5) 0.2 0.5 5.3* 4.9 0.4** 0.168
[0034] * 两次测试
[0035] ** 单次测试
[0036] 实施例2
[0037] 该实施例给出了对于FBC/DOC组合在认证为满足1991关于NOx和PM的排放标准的1990 Cummins 8.3升6 CTA,275马力中等重型发动机上单次冷的和三次热的FTP瞬态试验循环的试验结果。首先将发动机在未处理的No.2D燃料(>300ppm的硫)上运行,未安装废气后处理DOC。由0.190克/马力-小时下的平均复合物确定微粒的排放。
[0038] 将燃料转换为FBC处理的市售ULSD(<15ppm)且在发动机排气装置中安装预处理的(degreened)DOC-1。将发动机运行16小时并测试排放。平均微粒排放降低超过53%达到0.089克/马力-小时。总NO2也从0.9克/马力-小时到0.4克/马力-小时,降低了超过50%。
[0039] 该DOC为9.5”直径×6”L 400cpsi陶瓷基体,Corning,Inc.制造,且用0.3g/ft3的New Mexico的Clean Air Systems,Inc.的贵金属将其催化。将其安装在具有常规入口和出口圆锥体的不锈罐中。该FBC为以0.5ppm/7.5ppm的剂量率使用的铂/铈双金属。
[0040] 利用FBC处理的ULSD,也试验了已在FBC处理的ULSD上在商业领域操作了1000小时的相同领域老化的DOC-2。平均颗粒排放降低了超过48%达到0.098克/马力-小时,且NO2排放维持在总氮的氧化物的1 3%,代表了0.6克/马力-小时的水平。
[0041] 另一 测 试 中,在 以0.15ppm/7.5ppm FBC处 理 的No.2D上,测 试 了 在 以0.15ppm/7.5ppm FBC处理的No.2D上在商业领域操作了1100小时的相同DOC-3。总PM降低为0.113克/马力-小时的水平,同时总NO2从0.9克/马力-小时降低到0.5克/马力-小时,代表了总氮的氧化物排放的10%,相对地对于在No.2D燃料上的基准NO2排放为19%。
[0042] 这些数据支持了通过具有轻度催化的DOC低水平FBC实现了高水平的微粒降低,同时证实了,即使在使用了FBC处理的燃料的商业服务之后也可以将PM性能维持在高水平。FBC和DOC的组合也存在预料不到的NO2降低,相对于趋于增加NO2排放的重度催化的设备这是个优点。
[0043] 1990(1991认证的)Cummins 8.3L发动机中的排放(平均复合物排放,克/马力-小时)
[0044]燃料/设备 HC CO NOx NO2 %NO2 PM
基准No.2D 0.39 0.78 4.8 0.9 19% 0.190
DOC-1(预处理的)+FBC+ULSD 0.16 0.28 4.5 0.4 9% 0.089
DOC-2(老化的)+FBC+ULSD 0.24 0.36 4.7 0.6 13% 0.098
DOC-3(老化的)+FBC+No.2D 0.29 0.66 4.8 0.5 10% 0.113
[0045] 实施例3
[0046] 本实施例报道了进一步证实结合了轻度催化的DOC的ULSD中低水平FBC益处的试验。在本实施例中,在1995 Navistar DT466,7.6升发动机在单次冷试验循环和三次热试验循环内进行试验。计算三次复合排放结果的平均值且以克/马力-小时报道。未处理的No.2D燃料(>300ppm S)上的基准排放结果显示,平均PM排放为0.106克/马力-小时,且NO2排放为1.1克/马力-小时,代表了总NOx排放的23%。
[0047] 使用以0.15/7.5ppm双金属FBC处理的ULSD(<15ppm S),PM降低了31%达到0.073克/马力-小时,且NO2降低到0.8克/马力-小时或者总NOx排放的19%。对于FBC/ULSD组合也观察到HC、CO和NOx方面的降低。
[0048] 另一试验中,将实施例2中预处理的轻度催化的DOC-1安装在排气装置中,且将发动机在FBC处理的ULSD上运行。总PM排放降低了45%达到0.058克/马力-小时,同时NO2降低到0.6克/马力-小时,代表了总NOx排放的14%。也观察到在HC、CO和NOx方面的进一步降低。
[0049] 1995 Navistar DT 466 7.6L发动机中的排放(克/马力-小时)
[0050]燃料/设备 HC CO NOx NO2 %NO2 PM
基准No.2D 0.3 1.3 4.8 1.1 23% 0.106
ULSD+FBC 0.2 1.0 4.3 0.8 19% 0.073
ULSD+FBC+DOC 0.1 0.5 4.2 0.6 14% 0.058
QQ群二维码
意见反馈