用于诊断废气催化器的方法、诊断装置以及具有这种诊断装置的汽车

申请号 CN201380060310.6 申请日 2013-11-21 公开(公告)号 CN104813002B 公开(公告)日 2017-07-07
申请人 大众汽车有限公司; 发明人 B.维尔德滕; M.库拉塞弗斯基;
摘要 本 发明 涉及一种用于诊断布置在 内燃机 (12)的排气设备(20)中的废气催化器(28)的方法,所述废气催化器用于催化地转化内燃机(12)的至少一种废气成分,所述内燃机具有废气再循环装置,通过所述废气再循环装置在废气催化器(14)的下游 抽取 废气的支流并且将其输入内燃机(12)的燃烧空气中,所述方法包括以下措施:在废气成分方面确定内燃机(12)的当前未处理 排放量 (NOx_roh),测量处于废气催化器(28)上游的废气中的废气成分(NOx_mes)的当前浓度,并且根据内燃机(12)的建模的未处理排放量(NOx_roh)和测得的废气成分(NOx_mes)的浓度在废气成分的转化方面确定废气催化器(28)的诊断值。本发明还涉及一种设置用于实施所述方法的诊断装置以及一种具有所述诊断装置的 汽车 。
权利要求

1.一种用于诊断布置在内燃机(12)的排气设备(20)中的废气催化器(28)的方法,所述废气催化器用于催化地转化内燃机(12)的至少一种废气成分,所述内燃机具有废气再循环装置,通过所述废气再循环装置在废气催化器的下游抽取废气支流并且将所述废气支流输入内燃机(12)的燃烧空气中,所述方法包括以下措施:
-在废气成分方面确定内燃机(12)的当前未处理排放量NOx_roh,
-测量处于废气催化器(28)上游的废气中的废气成分的当前浓度,并且
-根据内燃机(12)的建模的未处理排放量NOx_roh和测得的废气成分的浓度NOx_mes在废气成分的转化方面确定废气催化器(28)的诊断值。
2.按权利要求1所述的方法,其中,根据建模的未处理排放量NOx_roh和测得的浓度NOx_mes的比例关系确定废气催化器(28)的效率(η)作为诊断值。
3.按权利要求2所述的方法,其中,按照以下方程确定效率(η),其中α_AGR表示废气再循环率:

4.按前述权利要求之一所述的方法,其中,将针对废气催化器(28)确定的诊断值与额定值(η_soll)或阈值(η_sw)进行比较,并且在与额定值(η_soll)存在最小偏差或者超过阈值(η_sw)时确定并且输出废气催化器(28)的缺陷
5.按权利要求4所述的方法,其中,根据内燃机(12)的当前运行点将额定值(η_soll)或阈值(η_sw)建模。
6.按权利要求5所述的方法,其中,根据内燃机(12)的当前运行点通过应用特性场将额定值(η_soll)或阈值(η_sw)建模。
7.按权利要求1所述的方法,其中,根据内燃机(12)的当前运行点将内燃机(12)的未处理排放量NOx_roh建模。
8.按权利要求7所述的方法,其中,根据内燃机(12)的当前运行点通过应用特性场将内燃机(12)的未处理排放量NOx_roh建模。
9.一种用于诊断布置在内燃机(12)的排气设备(20)中的废气催化器的诊断装置(48),所述废气催化器用于催化地转化内燃机(12)的至少一种废气成分,其中,所述诊断装置(48)设置用于实施按权利要求1至8之一所述的方法。
10.一种汽车(10),具有内燃机(12)、连接在所述内燃机上的排气设备(20)、布置在所述排气设备(20)中的用于催化地转化内燃机(12)的至少一种废气成分的废气催化器、布置在废气催化器上游的用于测量废气中的废气成分的当前浓度的废气传感器、用于在废气催化器的下游抽取废气支流并且将所抽取的废气支流输入内燃机(12)的燃烧空气中的废气再循环装置,以及按权利要求9所述的诊断装置(48)。
11.按权利要求10所述的汽车(10),其中,所述废气催化器是用于还原氮化物的催化器。
12.按权利要求11所述的汽车(10),其中,所述废气催化器是SCR催化器。
13.按权利要求10或11所述的汽车(10),其中,废气成分包含氮氧化物NOx并且所述废气传感器(46)是NOx传感器。

说明书全文

用于诊断废气催化器的方法、诊断装置以及具有这种诊断装

置的汽车

技术领域

[0001] 本发明涉及一种用于诊断布置在内燃机的排气设备中的废气催化器的方法,所述废气催化器用于催化地转化内燃机的至少一种废气成分,本发明还涉及一种用于实施所述方法的诊断装置以及一种具有这种诊断装置的汽车。在前一种特殊的实施形式中,废气催化器指的是按照选择性催化还原的原理工作的用于还原氮化物NOx的催化器。

背景技术

[0002] 连续地或者暂时地通过稀燃的空气燃料混合物运行的内燃机产生氮氧化物NOx(主要是NO2和NO),这使得需要采取降低NOx的措施。为了减少废气中的NOx未处理排放量发动机式的措施是废气再循环,其中,一部分内燃机废气被回引至其燃烧空气中,由此降低燃烧温度并且因此降低NOx的产生(NOx未处理排放量)。然而,废气再循环通常不足以维持法律规定的NOx极限值,因此附加地需要主动的废气再处理,其通过将NOx催化还原为氮气N2来降低NOx的最终排放。已知的NOx废气再处理规定使用NOx存储催化器,其在稀燃的运行中(在λ>1时)以硝酸盐的形式存储氮氧化物,并且所存储的氮氧化物在具有较浓废气环境(λ<1)的较短间隔内脱附并且借助存在于较浓废气中的还原剂还原为氮气N2。
[0003] 作为其它用于转化可稀燃运行的内燃机的废气内的氮氧化物的方法,已知使用按照选择性催化还原(SCR:selective catalytic reduction)的原理工作的催化器系统。这些系统包括至少一个SCR催化器,其借助输入废气中的还原剂、通常是NH3选择性地将废气中的氮氧化物转化为氮气和。在此,可以从液态的氨溶液中计量地向废气流中加入氨或者从前体化合物(例如形式为水溶液或固体粒形式的尿素)中通过热解和水解的方式得到。用于在交通工具中存储氨的新方法是NH3存储材料,其根据温度可逆地连接氨。与此相关地尤其已知金属氨合物存储器,例如MgCl2、CaCl2和SrCl2,它们以复杂化合物的形式存储氨,以便例如作为MgCl2(NH3)、CaCl2(NH3)或SrCl2(NH3)存在。通过输入热又可以从这些化合物中释放出氨。
[0004] 此外已知,通过车载诊断系统(OBD)持续地控制废气催化器、如SCR催化器或NOx存储催化器的功能性。为此通常应用连接在催化器之后的、用于相应的废气成分的废气传感器(NOx-Sensors)的信号,以便在废气催化器下游测量该废气成分的浓度。此外,确定催化器上游的废气成分浓度,即发动机的未处理排放量。这可以通过借助另一布置在催化器上游的废气传感器测量浓度实现。然而,未处理排放量的确定经常通过在应用保存的特性场的情况下建模而实现,所述特性场与内燃机的当前运行点有关地描绘成分的浓度。废气催化器在转化成分方面的效率η例如由以下方程得出,其中,c_end是在催化器之后测得的废气成分浓度(或含量)并且c_roh是内燃机在该成分方面的未处理排放量:
[0005]
[0006] 因此,效率可以是0至1之间的值。理想地运行的催化器实现完全的催化转化(c_end=0),并且因此效率η为1,而对于完全未激活的催化器η=0(c_end=c_roh)。
[0007] DE 10 2010 042 442 A1描述了一种具有SCR催化器以及低压废气再循环装置的排气设备,借助其在(低压侧的)废气涡轮增压器的涡轮以及SCR催化器的下游抽取废气支流并且在(低压侧的)废气涡轮增压器压缩机上游输入内燃机的燃耗空气中。在废气再循环管路中布置有NOx传感器,其测量氮氧化物的浓度,以便基于这样确定的NOx浓度控制内燃机,尤其是废气再循环率或空气燃料比。废气再循环管路还通过旁路与内燃机的空气管路相连,所述旁路在压缩机下游、即在其高压侧通入空气管路。为了确定用于其校准的NOx传感器补偿值,打开旁路并且由此使废气再循环管路中的流动方向倒转,从而为NOx传感器加载新鲜空气。在此并没有描述对SCR催化器的诊断。

发明内容

[0008] 本发明所要解决的技术问题在于,提供一种用于在废气成分的转化效率方面诊断废气催化器的方法,其出色特征在于改进的精度。所述方法例如应适用于诊断SCR催化器。此外应提供一种适用于实施所述方法的诊断装置以及一种相应的汽车。
[0009] 该技术问题通过用于诊断布置在内燃机的排气设备中的废气催化器的方法、诊断装置以及汽车解决。在按照本发明的用于诊断布置在内燃机的排气设备中的废气催化器的方法中,所述废气催化器用于催化地转化内燃机的至少一种废气成分,所述内燃机具有废气再循环装置,通过所述废气再循环装置在废气催化器的下游抽取废气支流并且将所述废气支流输入内燃机的燃烧空气中,所述方法包括以下措施:在废气成分方面确定内燃机的当前未处理排放量NOx_roh,测量处于废气催化器上游的废气中的废气成分的当前浓度,并且根据内燃机的建模的未处理排放量NOx_roh和测得的废气成分的浓度NOx_mes在废气成分的转化方面确定废气催化器的诊断值。在按照本发明的用于诊断布置在内燃机的排气设备中的废气催化器的诊断装置中,所述废气催化器用于催化地转化内燃机的至少一种废气成分,其中,所述诊断装置设置用于实施按照本发明的方法。按照本发明的汽车具有内燃机、连接在所述内燃机上的排气设备、布置在所述排气设备中的用于催化地转化内燃机的至少一种废气成分的废气催化器、布置在废气催化器上游的用于测量废气中的废气成分的当前浓度的废气传感器、用于在废气催化器的下游抽取废气支流并且将所抽取的废气支流输入内燃机的燃烧空气中的废气再循环装置,以及按照本发明的诊断装置。
[0010] 本发明在此涉及一种具有废气再循环装置的内燃机,通过所述废气再循环装置在废气催化器的下游抽取废气支流并且将所述废气支流输入内燃机的燃烧空气中。按照本发明的方法包括以下措施:
[0011] -在废气成分方面确定内燃机的当前未处理排放量,
[0012] -测量处于废气催化器上游的废气中的废气成分的当前浓度,并且
[0013] -根据内燃机的建模(求出)的未处理排放量和在废气中测得的浓度在废气成分的转化方面确定废气催化器的诊断值。
[0014] 因此,与传统的方法不同,并不是在待诊断的废气催化器的下游,而是在待诊断的废气催化器的上游确定废气成分的当前浓度。在此,本发明利用这种情况,即由于废气再循环使得在废气催化器之前测得的废气也受到废气催化器的活性的影响。其转化率越低,处于废气催化器上游的测量位置上的废气成分的浓度就越高。因为测量废气成分所需的废气传感器由于其相对于连接在催化器之后的传感器比较靠近发动机的布置而在发动机冷启动之后明显更早地达到其运行能并且因此更早地被释放,所以进行废气催化器诊断的频率相对于传统的方案明显提高。由此实现了更高的催化器诊断的可靠性和精度。此外,通过按照本发明的方式也可以识别出损坏的催化器,其只呈现催化器系统的部分成分。
[0015] 对废气成分的浓度的测量优选在排气设备的靠近发动机的位置上进行。所述位置理解为连接在排气设备的(车)底部位置之前的位置。废气成分浓度的测量点尤其与内燃机的气缸出口距离最大120cm,优选最大100cm并且特别优选最大80cm。通过将测量所需的传感器布置在发动机附近,能够在发动机冷启动之后特别早地实现其可使用性并且由此特别频繁地进行催化器诊断。
[0016] 在所述方法的优选设计方案中,根据建模的未处理排放量和测得的浓度的比例关系确定废气催化器的效率作为诊断值。特别优选的是,按照以下方程确定效率η,其中NOx_mes表示在催化器之前测得的废气成分浓度,NOx_roh表示废气成分的未处理排放量并且α_AGR表示废气再循环率,即再循环的废气在内燃机的燃烧空气中的份额:
[0017]
[0018] 所述方程考虑到了,布置在废气催化器上游的传感器测量废气成分的发动机侧的未处理排放量的总和以及没有通过废气催化器转化的并且通过AGR(废气再循环装置)回引的份额。
[0019] 按照一种有利的设计方案,将针对废气催化器确定的诊断值,例如效率η与相应的额定值进行比较,所述额定值尤其确定用于新的并且整体完好的废气催化器。如果在此超过了与额定值的预设最小偏差,则确定并且输出废气催化器的缺陷。作为备选,诊断值可以与相应的阈值进行比较,并且在超过阈值时(根据阈值的类型向上或向下)确定并且输出废气催化器的缺陷。缺陷输出分别优选地在内燃机的发动机控制装置上实现和/或作为用于驾驶员的光学和/或声学的缺陷报告实现。在优选的实施形式中,根据内燃机的运行点,尤其是发动机负载和发动机转速预先确定阈值和/或额定值。为此可以应用保存的相应特性场。
[0020] 内燃机的当前未处理排放量优选同样根据内燃机的当前运行点建模求出,其中,在此优选也可以应用特性场。这种特性场与运行点、尤其是发动机负载和发动机转速有关地显示内燃机的建模的未处理排放量。
[0021] 本发明还涉及一种用于诊断布置在内燃机的排气设备中的废气催化器的诊断装置,所述废气催化器用于催化地转化内燃机的至少一种废气成分,其中,所述诊断装置设置用于实施按照本发明的方法。所述诊断装置尤其包括计算机可读的用于实施所述方法的算法以及必要时包括所需的以计算机可读的形式保存的特性曲线和特性场。诊断装置可以是具有相应的信号线路的独立装置或者集成在发动机控制装置内。
[0022] 本发明还涉及一种汽车,其具有内燃机、连接在所述内燃机上的排气设备、布置在所述排气设备中的用于催化地转化内燃机的至少一种废气成分的废气催化器、布置在废气催化器上游的用于测量废气中的废气成分的当前浓度的废气传感器、用于在废气催化器的下游抽取废气支流并且将所抽取的废气支流输入内燃机的燃烧空气中的废气再循环装置,以及设置用于实施所述方法的诊断装置。
[0023] 待诊断的废气催化器优选是指用于还原氮氧化物的催化器,尤其是指按照选择性催化还原(SCR)的原理工作的催化器。相应地,废气成分包含氮氧化物NOx,其中,废气传感器是设置用于测量氮氧化物的传感器,尤其是NOx传感器。然而作为备选,也可以使用用于NOx测量的Lambda(λ)探头,其具有相应的横向灵敏度并且提供与NOx浓度相关的相应输出信号
[0024] 计量加入的还原剂优选是指氨NH3或者氨的前体化合物,其中,在此尤其考虑尿素。尿素可以以固体尿素粒的形式使用,但优选尤其以水溶性尿素溶液的形式使用。计量加入的尿素通过热解和水解的方式发生反应并且释放NH3。原则上在本发明的范围内,氨也可以通过NH3存储材料贮存,所述NH3存储材料根据温度可逆地连接或释放氨。相应的金属氨合物存储器已经在本文开头进行了阐述。
[0025] 同样可行的是,将按照本发明的方法应用在其它废气催化器上,例如NOx存储器催化器、三通催化器或者氧化催化器。
[0026] 按照本发明的另一优选实施形式,废气再处理装置还具有氧化催化器。所述氧化催化器优选布置在待诊断的SCR催化器的上游。由此能够增大废气的NO2/NO比例,从而实现连接在之后的SCR催化器的改善的NOx转化效率。只要氧化催化器连接在还原剂计量装置之后,所述氧化催化器还能够使输入废气中的还原剂在进入SCR催化器之前更好地均匀化。
[0027] 内燃机是指连续地或者至少暂时地稀燃运行的内燃机,尤其是柴油发动机。然而原则上按照本发明的废气再处理装置也能够有利地用于暂时地稀燃运行的汽油发动机,尤其是能够分层燃料喷射的汽油发动机附图说明
[0028] 以下根据附图在实施例中进一步阐述本发明。在附图中:
[0029] 图1示出按照本发明的一种有利的设计方案的排气设备的示意图并且[0030] 图2示出用于按照本发明的一种有利的设计方案对SCR催化器进行诊断的流程图

具体实施方式

[0031] 以下以SCR催化器为例显示本发明。然而应理解的是,本发明同样也可以用于其它废气催化器。
[0032] 在图1中示出整体用10表示的汽车,所述汽车由至少暂时地稀燃运行的内燃机12,尤其是柴油发动机作为牵引力来源进行驱动。内燃机12在此例如具有四个气缸,其中,不同于四个的任意气缸数量均是可行的。
[0033] 内燃机12通过空气管路14以及连接在空气管路14上的空气歧管16供应燃烧空气,所述空气歧管16将所抽吸的空气输入气缸。从环境空气中抽吸的燃烧空气通过空气过滤器18清除空气中所含颗粒成分。
[0034] 汽车10还具有按照本发明的在整体上用20表示的排气设备,所述排气设备用于对内燃机12的废气进行催化再处理。排气设备20包括排气歧管22,所述排气歧管将内燃机12的气缸的单独气缸出口与排气通道24相连。所述排气通道24具有靠近发动机的区段(在此示出)以及未示出的车底板区段,所述车底板区段终结于排气管中。排气通道24含有用于废气再处理的不同部件。
[0035] 在所示的例子中,废气首先到达氧化催化器26。所述氧化催化器26具有带催化涂层的催化器基底,所述催化涂层催化废气成分的氧化。所述催化涂层尤其适用于将未燃烧的氢化合物HC和一氧化碳CO转化为CO2和H2O。此外,氧化催化器26的催化涂层设计用于将NO和N2O氧化为NO2,以便增大NO2/NO比。氧化催化器26的催化涂层作为催化成分尤其包含铂族金属Pt、Pd、Rh、Ru、Os或Ir中的至少一个元素或者它们的组合,尤其是Pt和/或Pd。催化涂层还包含中间层,所述中间层包括具有较大比表面积的多孔陶瓷矩阵,例如以沸石为基础,其与催化成分掺在一起。氧化催化器26的基底可以是金属基底或者陶瓷载体,尤其具有带多个连续的平行流动通道的类似于蜂巢的结构。适当的陶瓷材料包括氧化、堇青石、莫来石和金刚砂。适当的金属基底例如由不锈合金制成。
[0036] 在氧化催化器26的下游,还在排气通道24中布置有另一废气催化器,在此是SCR催化器28。所述SCR催化器28与氧化催化器26一样包括以金属或陶瓷为基础(优选以陶瓷为基础)的催化器基底。适当的陶瓷或金属材料与结合氧化催化器所阐述的一致。基底的平行且连续的流动通道的内壁具有SCR催化涂层,所述催化涂层在选择性地消耗还原剂的情况下使氮氧化物还原为氮气。所述涂层又包括由具有较大比表面积的多孔陶瓷矩阵构成的中间层(例如基于酸铝的沸石)和分布在其上的催化物质。适当的SCR催化物质尤其包括非稀有金属,如Fe、Cu、Va、Cr、Mo、W以及它们的组合。这些金属在沸石上析出和/或沸石金属通过离子交换部分地由相应的非稀有金属代替。SCR催化器28优选布置在靠近发动机的位置上。气缸出口以及SCR催化器28的入流端侧之间的距离(废气运行路径)尤其最大为120cm。
[0037] 排气设备20还具有还原剂计量装置30,通过所述还原剂计量装置将还原剂或其前体化合物计量地加入废气中。例如,还原剂借助喷嘴在SCR催化器28上游加入废气流中。还原剂通常是指氨NH3,其以前体化合物的形式、尤其以尿素的形式计量加入。尿素优选以水溶液的形式从未示出的贮存器中输送并且计量加入。在设置在计量装置30之后的混合器32中,尿素与热废气混合并且以热解和水解的方式分解为NH3和CO2。NH3存储在SCR催化器28的涂层中并且在该处被消耗用于还原氮氧化物。通过计量装置30计量加入还原剂的过程通常通过在此未示出的控制装置进行,所述控制装置根据发动机12的运行点、尤其根据废气的NOx当前浓度控制所述装置30。
[0038] 汽车10还包括废气涡轮增压器,其具有布置在排气通道24中的涡轮34,所述涡轮34例如通过轴与布置在空气管路14中的压缩机36相连。涡轮34从废气中抽取动能,通过所述动能驱动压缩机36并且压缩所抽吸的燃烧空气。通常在压缩机36之后连接有在此未示出的增压空气冷却器,所述增压空气冷却器从燃烧空气中抽取通过压缩产生的热。
[0039] 汽车10还具有低压废气再循环装置(ND-AGR)。所述低压废气再循环装置具有废气再循环管路40,其在SCR催化器28的下游在涡轮34的低压侧从排气通道24中抽取废气支流并且供应到压缩机36的低压侧上的空气管路14中。布置在AGR管路40中的AGR冷却器42使回引的热废气冷却。通过同样布置在AGR管路40中的AGR(废气再循环阀)44控制AGR率(废气再循环率),也就是回引的废气在内燃机12的燃烧空气中的份额。通常根据内燃机12的运行点控制AGR阀44,其中,可以无级地在完全关闭的位置(AGR率为零,AGR完全处于未激活或去激活状态)与完全打开的位置之间控制阀44。
[0040] 如所有废气催化器一样,SCR催化器28也经历由于老化而造成的催化活性变差。出于此原因,需要持续地诊断SCR催化器28,以便确定其催化活性的不能接受的减退。按照本发明,对SCR催化器28的诊断借助布置在其上游的NOx传感器46进行。所述传感器46优选布置在还原剂计量装置30的上游并且特别优选布置在氧化催化器26的上游。通过将NOx传感器46布置得特别靠近发动机,它能够在发动机12冷启动后迅速地到达其可运行的状态。NOx传感器46的输出信号NOx_mes作为输入信号输入诊断装置48中。此外,诊断装置48得到关于内燃机12的尤其形式为发动机负载L和发动机转速n的当前运行点和当前的废气再循环率α_AGR的信息。诊断装置根据这些和必要时根据其它参量按照按本发明的方法对SCR催化器28进行诊断,所述方法在以下根据图2进一步阐述。
[0041] 图2示例性地以流程图的形式示出按照本发明的用于诊断SCR催化器的方法的流程,通过诊断装置48以规则的间隔实施所述方法。
[0042] 所述方法在步骤S1中启动并且进行至问询S2,其中问询NOx传感器46是否激活(亦即是否能有效工作)。如果例如在冷启动后没有发生这种情况,则不能进行诊断并且所述方法返回至开始。另一方面如果NOx传感器46激活,也就是释放了其输出信号,则所述方法过渡至第二问询S3,其检验废气再循环装置38是否激活,也就是AGR阀44是否至少部分打开。如果废气再循环装置未激活,则不能进行诊断并且所述方法返回至其开始。而如果废气再循环装置激活,也就是S3中的问询得到肯定答案,则实施对SCR催化器28的诊断。
[0043] 为此目的,在步骤S4中通过诊断装置48读入NOx传感器46的输出信号并且根据所述传感器信号确定废气的氮氧化物的当前浓度NOx_mes。为此目的通常使用保存的传感器特性曲线,其与传感器信号(例如传感器电压)有关地描绘NOx浓度。应理解的是,术语“浓度”理解为废气中的废气成分的与单位无关的含量数据。
[0044] 接着在步骤S5中通过诊断装置48读入不同的输入参量。所述输入参量尤其包括例如根据驾驶员对加速踏板的操纵确定的发动机负载L、发动机转速n以及当前的废气再循环率α_AGR。根据发动机负载L和转速n对内燃机当前的NOx未处理排放量NOx_roh进行建模。这可以借助数学模型以计算方式进行,或者可以通过应用保存的特性曲线或特性场进行。在此尤其使用与L和n有关地描绘NOx未处理排放量NOx_roh的特性场。这种特性场的确定例如在发动机测试台上已知并且不在此进一步阐述。
[0045] 接着在步骤S7中确定SCR催化器28在其NOx转化方面的诊断值。在此尤其计算效率η,为此确定内燃机12的建模的未处理排放量NOx_roh与测得的NOx浓度NOx_mes的比例关系。所述效率η例如可以按照以下方程确定:
[0046]
[0047] 接着在步骤S8中将所确定的效率η与效率阈值η_sw进行比较。优选由诊断装置48根据发动机运行点(L,n)预先确定所述阈值η_sw。只要当前确定的效率大于或等于η_sw并且问询因此得到否定答案,则存在完好的SCR催化器28并且所述方法返回到初始点。在此,必要时可以将当前的诊断值η保存为文档。然而如果步骤S8中的问询得到肯定答案,也就是效率η降至低于阈值,则在步骤S9中确定催化器28的缺陷。所述缺陷可以作为声学的或者视觉的信号为汽车驾驶员显示和/或传输至发动机控制装置,在发动机控制装置中可以在下一个维护时间读出所述信号。
[0048] 附图标记清单
[0049] 10 汽车
[0050] 12 内燃机
[0051] 14 空气管路
[0052] 16 空气歧管
[0053] 18 空气过滤器
[0054] 20 排气设备
[0055] 22 排气歧管
[0056] 24 排气通道
[0057] 26 氧化催化器
[0058] 28 废气催化器/SCR(选择性还原)催化器
[0059] 30 还原剂计量装置
[0060] 32 混合器
[0061] 34 涡轮机
[0062] 36 压缩机
[0063] 38 低压废气再循环装置
[0064] 40 废气再循环管路
[0065] 42 废气再循环冷却器
[0066] 44 废气再循环阀
[0067] 46 NOx传感器
[0068] 48 诊断装置
[0069] α_AGR 废气再循环率(废气在燃烧空气中的比例)
[0070] L 发动机负载
[0071] n 发动机转速
[0072] NOx_mes 在废气催化器之前的废气中测得的废气成分的浓度
[0073] NOx_roh 内燃机的废气成分的建模的未处理排放量
QQ群二维码
意见反馈