具有多孔钨结构底层的热障涂层系统

申请号 CN201380009125.4 申请日 2013-02-12 公开(公告)号 CN104487612B 公开(公告)日 2017-01-18
申请人 西门子公司; 发明人 大卫·B·艾伦; 阿南德·A·库尔卡尼;
摘要 一种用于基底(22)的保护涂层(20)中的层的系统,包括至少外热障层(32)和减少外层的剥落的钨 青 铜 结构陶瓷 底层(30)。用于底层的材料的范围包括Ba6-3mRe8+2mTi18O54形式的陶瓷,其中0 氧 化钇稳定的氧化锆(YSZ)或与YSZ相比具有较低热导率的陶瓷。为了附加的 热膨胀 兼容性,在一些实施方案中提供分段YSZ层(26)。
权利要求

1.一种热障涂层,包括:
结构陶瓷材料的底层;以及
在所述底层上的热障材料层,
其中所述底层包括以下组中至少之一:1)底层材料Ba6-3mRE8+2mTi18O54,其中,0<m<
1.5,并且RE表示任何稀土元素或其混合物;以及2)底层材料BaNd2Ti4O12,所述底层材料BaNd2Ti4O12具有使所述底层材料BaNd2Ti4O12的热导率减少的稀土掺杂剂,并且其中,所述热障材料包括7mol.%至9mol.%的化钇稳定的氧化锆或具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷,
其中所述底层的孔隙率为25%至35%,并且所述热障材料层的孔隙率为25%至35%。
2.根据权利要求1所述的热障涂层,还包括基底上的接合涂层以及所述接合涂层上的分段层,其中,所述底层设置在所述分段层上。
3.根据权利要求1所述的热障涂层,其中所述具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷的热障材料包括25mol%至65mol%的锆酸镱、25mol%至65mol%的锆酸钆或
25mol%至65mol%的铪酸钆。
4.根据权利要求1所述的热障涂层,还包括基底上的接合涂层,以及在所述接合涂层上的致密度大于95%的氧化钇稳定的氧化锆的分段层,其中所述底层设置在所述分段层上。
5.根据权利要求1所述的热障涂层,包括以下次序的层:
在基底上的接合涂层;
在所述接合涂层上的含氧化钇稳定的氧化锆的分段层;
在所述分段层上的多孔氧化钇稳定的氧化锆的第三层;以及
在所述第三层上的所述底层。
6.根据权利要求5所述的热障涂层,其中所述具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷的热障材料包括25mol%至65mol%的锆酸镱、25mol%至65mol%的锆酸钆或
25mol%至65mol%的铪酸钆。
7.根据权利要求1所述的热障涂层,包括以下次序的层;
在基底上的接合涂层;
在所述接合涂层上的含氧化钇稳定的氧化锆的分段层;以及
在所述分段层上的所述底层。
8.根据权利要求7所述的热障涂层,其中所述具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷的热障材料包括25mol%至65mol%的锆酸镱、25mol%至65mol%的锆酸钆或
25mol%至65mol%的铪酸钆。
9.根据权利要求1所述的热障涂层,包括以下次序的层;
在基底上的接合涂层;
在所述接合涂层上的孔隙率为8%至15%的氧化钇稳定的氧化锆的第三层;以及在所述第三层上的所述底层。
10.根据权利要求9所述的热障涂层,其中所述具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷的热障材料包括25mol%至65mol%的锆酸镱、25mol%至65mol%锆酸钆或
25mol%至65mol%的铪酸钆。
11.根据权利要求1所述的热障涂层,包括以下次序的层:
在基底上的接合涂层;
在所述接合涂层上的所述底层。
12.根据权利要求11所述的热障涂层,其中所述具有比所述氧化钇稳定的氧化锆低的热导率的陶瓷的热障材料包括25mol%至65mol%的锆酸镱、25mol%至65mol%的锆酸钆或
25mol%至65mol%的铪酸钆。
13.一种热障涂层,包括:
钨青铜结构陶瓷材料的底层;以及
在所述底层上的热障材料层,
其中所述底层包括Ba(Nd1.2Sm0.4Gd0.4)Ti4O12。

说明书全文

具有多孔钨结构底层的热障涂层系统

技术领域

[0001] 本发明涉及热障涂层,特别是涉及用于燃气涡轮机部件的剥落减少的可磨耗(abradable)热障涂层。

背景技术

[0002] 燃气涡轮发动机涡轮机部分包括用作外环的固定部件和用于减少经过涡轮机叶尖的级间气体泄漏的密封表面。在工业燃气涡轮机(IGT)中这些固定部件称为“环段”,并且在航空发动机中其被称为“叶片外部空气密封件”或BOAS。热工作气体路径中的航空和IGT部件两者都涂有称为接合涂层的抗化金属层以及一层或更多层热绝缘陶瓷涂层。此外,最外陶瓷层有意以低致密度(多孔)进行喷涂以使其能够作为已知为可磨耗涂层的间隙控制涂层(clearance control coating)。当金属涡轮机叶片与多孔可磨耗涂层发生摩擦时,叶片将在不损坏叶片的情况下穿过涂层,从而使叶尖和环段之间的间隙更紧密以使涡轮级之间的热气体泄漏最小化。这对功率输出和燃料效率两者都具有有益效果,因此可磨耗涂层对于发动机设计非常重要。
[0003] 可磨耗涂层通常比其他类型的热障涂层喷涂得厚得多,原因是可磨耗涂层的厚度需要使得叶尖以期望的量切入涂层中。随着涂层厚度的增加,启动和关闭发动机期间在涂层中的热应变也增加。这会导致可磨耗涂层的剥落,以及间隙控制(发动机功率和效率)和热保护(金属环段使用寿命)两者的损失。附图说明
[0004] 在下面的描述中基于附图对本发明进行说明,所述附图示出:
[0005] 图1示出了说明图5中的示例性实施方案1、5和9的涂层系统分层。
[0006] 图2示出了说明图5中的示例性实施方案2和6的涂层系统分层。
[0007] 图3示出了说明图5中的示例性实施方案3和7的涂层系统分层。
[0008] 图4示出了说明图5中的示例性实施方案4和8的涂层系统分层。
[0009] 图5示出本发明的示例性实施方案的列表。
[0010] 图6示出现有技术涂层和本发明涂层系统之间的比较性测试结果。
[0011] 发明详细说明
[0012] 本发明提供了一种用于热气体路径涡轮机部件的层系统,包括与现有技术的可磨耗涂层相比提供了改进的涂层性能的用于可磨耗热障层的底层。在本文中为了元件的清楚起见,术语“热障涂层”(TBC)是指包括所有层的整个涂层;而“热障层”(TBL)是指涂层的最外层;“热障材料”(TBM)是指TBL的材料。
[0013] 在专利申请公开US 2009/0258247 A1中,本发明人描述了一系列有益于最外可磨耗层的钨青铜结构陶瓷材料,原因是这些材料是可磨耗的并且在高达1400℃时具有相稳定性和抗烧结性,从而在燃气涡轮机操作温度时抵抗致密化。本发明人现已发现这些材料可以有利地用作传统或先进的可磨耗TBL下面的底层,传统的可磨耗TBL是7mol.%至9mol.%的氧化钇稳定的氧化锆(在本文中为YSZ),而先进的可磨耗TBL是烧绿石体系例如25mol%至65mol%的铪酸钆(在本文中为GHO)、25mol%至65mol%的锆酸钆(在本文中为GZO)和/或25mol%至65mol%的锆酸镱(在本文中为YBZO)。用于底层的材料的范围包括Ba6-3mRe8+
2mTi18O54形式的陶瓷,其中0掺杂剂的BaNd2Ti4O12(在本文中为BNT),以及Ba(Nd1.2Sm0.4Gd0.4)Ti4O12。通常这些材料在本文中称为“B3”,并且通常认为是钨青铜结构陶瓷。这些底层材料不仅通过提供机械顺从性减少了TBL的剥落,而且其也呈现出其本身固有的可磨耗性使得其当被叶尖穿透或者由于上覆的TBL磨损而露出时用作可磨耗材料。因而,在与现有技术涂层相比的情况下,整个厚度的TBL和底层提供了增强的可磨耗性。
[0014] 本发明的各种层可通过热喷涂或其他已知的技术施加。层中的多孔结构可以通过易烧失(fugitive)的引入物和/或空心陶瓷球或其他方式来产生。B3层可以施加在用作燃气涡轮机环段上的间隙控制涂层的最外多孔可磨耗TBL下面。作为增加作为整体的层的涂层系统的寿命的一种方式,B3的底层特性给外层可磨耗TBL提供了可以独立于B3本身的可磨耗性而工作的优异的剥落寿命。B3层可以在不同实施方案中具有至少5%,或5%至35%,或25%至35%的孔隙率以增加隔热和与相邻多孔层的热膨胀兼容性。
[0015] 图1至图5示出并列出本发明的示例性实施方案。为了基底22和上层28至32之间的附加的热膨胀兼容性(compliance),在一些实施方案中提供分段层26。本文中的“分段层”是指如下层:该层被深度为分段层的至少50%的凹槽或裂缝分成多个段,从而限定了最大尺寸不大于分段层的深度的5倍的段。
[0016] 图1示出了说明图5中的示例性实施方案1、5和9的热障涂层系统20中的分层,该分层包括基底22;接合涂层24例如MCrAlY,其中M是指Co、Ni或者CoNi;分段YSZ层26;多孔YSZ层28;多孔B3层30;以及最后的多孔热障层32例如YSZ、YBZO、GZO或GHO。
[0017] 图2示出了说明图5中的示例性实施方案2和6的热障涂层20的分层,该分层包括基底22;接合涂层24例如MCrAlY;分段YSZ层26;多孔B3层30;以及最后的多孔热障层32例如YSZ、YBZO、GZO或GHO。
[0018] 图3示出了说明图5中的示例性实施方案3和7的热障涂层20的分层,该分层包括基底22;接合涂层24例如MCrAlY;多孔YSZ层28;多孔B3层30;以及最后的多孔热障层32例如YSZ、YBZO、GZO或GHO。
[0019] 图4示出了说明图5中的示例性实施方案4和8的热障涂层的分层,该分层包括基底22;接合涂层24例如MCrAlY;多孔B3层30;以及最后的多孔热障层32例如YSZ、YBZO、GZO或GHO。
[0020] 本发明的具体实施方案可以为了具体设计和环境中的特定益处而选择和设计。例如,与YBZO TBL、GZO TBL或GHO TBL相比,8YSZ TBL具有较低的可磨耗性。但8YSZ TBL便宜很多,因而对于老式、成熟框架的工业燃气涡轮机可以是优选的。与8YSZ TBL相比,YBZO TBL非常昂贵并且还具有较小的抗腐蚀性,所以YBZO TBL对于可磨耗性是最重要标准并且成本和抗侵蚀性不太重要的应用可以是优选的选择。
[0021] 顶部可磨耗涂层(TBL)的选择也高度依赖在该位置处的发动机状态。例如,如图1所示的具有底层B3和分段层的先进的烧绿石可磨耗TBL对在顶部可磨耗的TBL中期望高温稳定性和抗烧结性的1排和2排的环段可能是关键的,并且在1排和2排的环段处分段底层26在TBC-接合涂层界面处提供了增加的抗裂纹扩展性。
[0022] 如图1中的更高层数的另一个优点是其使层间兼容性最大化。这在具有较小间隙变化和/或者期望较大的总涂层厚度的涡轮机区域或者设计中可以是优选的。分段层26可以在陶瓷材料本身方面具有大于95%的致密度(不包括分段的凹槽或裂纹),导致避免在TBC-接合层界面处出现裂缝的非常高的抗断裂性,从而增强了TBC抗剥落性。
[0023] 如图4中的较低的层数使得在总涂层厚度内具有较厚的可磨耗TBL32和/或较厚的底层B3。这在具有更大的间隙变化和/或必须限制总涂层厚度的涡轮机设计中可以是优选的。
[0024] 图6比较了三种涂层在燃气涡轮操作温度的范围上的一系列热循环测试期间测试的剥落寿命。剥落数据针对如下3个系统:
[0025] 曲线36=接合涂层+分段8YSZ+多孔8YSZ TBL
[0026] 曲线38=接合涂层+多孔8YSZ+多孔YBZO TBL
[0027] 曲线40=接合涂层+多孔8YSZ TBL+多孔B3TBL
[0028] 使用HVOF CoNiCrAlY接合涂层将所有三种涂层喷涂到Hast-X键(button)上。多孔BNT B3涂层得到上面的曲线40。多孔BNT B3涂层呈现出与8YSZ(迹线36)和YBZO(迹线38)相比在第一温度42下长100%的剥落寿命以及在第二温度44下长50%的剥落寿命。剥落寿命的这种增加可以在某些条件下使涂层寿命加倍,从而增加了保养周期并降低了成本。换句话说,其能够使发动机中的操作温度增加30℃至50℃以增加发动机效率。因此,本文中所描述的B3层作为其他可磨耗涂层系统的底层是有益的。
[0029] 由于B3材料和TBL之间的强粘附性以及由于热循环期间B3材料的物理兼容性和涂层系统20中的机械应,B3底层30为可磨耗TBL32提供了抗剥落性。该兼容性减少了否则将由于基底和TBC之间的不同的热膨胀以及由于对TBL的磨损和粒子碰撞而存在于TBL30和TBC20中的应力。本文中的B3材料抵挡由于通过高操作温度和热循环引起的烧结的致密化。因而,B3底层30在比8YSZ更大的温度范围上保留了其兼容性、应力减少和可磨耗性的特性,使其成为与传统的8YSZ相比用于底层的更好选择。并且,如本申请先前提到的,与相似致密度的8YSZ TBL相比,钨青铜材料具有更高的先天可磨耗性,若叶片完全穿透外YBZO TBL、GZO TBL或GHO TBL层,则8YSZ TBL具有降低叶片磨损的优点(参照专利申请公开US 2009/
0258247 A1)。结合钨青铜(B3)材料的优异的抗剥落性,将其确定为用于可磨耗TBL系统的底层的有利选择。
[0030] 虽然在本文中已经示出且描述了本发明的各种实施方案,但将明显的是,这样的实施方案仅通过实施例的方式提供。在未脱离本文中的发明的情况下,可以做出许多变型、变化和替换。因此,想要说的是,本发明仅通过所附权利要求的精神和范围进行限制。
QQ群二维码
意见反馈