制备铂基或铂铑合金复合材料的方法

申请号 CN201380076057.3 申请日 2013-09-06 公开(公告)号 CN105814218B 公开(公告)日 2017-07-07
申请人 “以V.N.古利朵娃命名的克拉斯诺亚尔斯克有色金属厂”股份公司; 发明人 瓦列里·尼古拉耶维奇·叶菲莫夫; 欧嘉·尼古拉耶芙娜·格尔娃亚; 叶夫根尼·亚历山大洛维奇·巴甫洛夫; 帕维尔·亚历山大洛维奇·科瑞克夫; 谢尔盖·伊万诺维奇·叶利钦; 安德烈·阿纳托尔耶维奇·顾西钦斯基;
摘要 本 发明 涉及贵金属 冶金 领域,更特别地涉及弥散 氧 化物颗粒强化的铂或铂铑 合金 的制备。此种 复合材料 广泛应用于制备在严苛的高温环境中使用的玻璃熔融设备以及 套管 组件。所要求的技术方案打算解决的问题在于,缩短粉末的长时氧化 退火 的操作持续时间,该粉末由电物理分散掺杂有锆的合金所制备,还在于提高半成品的脱气 水 平,该半成品通过压紧粉末来制备,并随后用于制备玻璃熔融设备和套管组件。该技术效果实现的原因在于,掺杂锆添加物的铂或铂铑合金的电物理分散在蒸馏水环境中完成,用包含按体积计为20‑50%氧气的含氧气体混合物在该蒸馏水环境中鼓泡,还在于在 真空 中在 温度 为1200‑1600℃下 烧结 坯 块 2‑4小时,该坯块通过压缩粉末来制备。所要求的技术方案的本质在于,比起标准方法,当同时用包含按体积计为20%至50%氧气的含氧气体混合物在蒸馏水环境中鼓泡时,铂基含锆合金在这种蒸馏水环境中的电物理分散伴有更彻底的锆氧化,因此当在真空中在温度为1200‑1600℃下烧结由粉末制备的坯块2‑4小时时,能够 解吸 被吸收的气体,并将其从复合材料中去除,从而简化接下来的氧化退火过程,并缩短其持续时间减少能耗。所提供 实施例 为关于制备用锆氧化物稳定的90‑10铂铑(PtRh)合金基复合材料。
权利要求

1.一种用于制备铂基或铂铑合金复合材料的方法,所述方法包括熔化掺杂有锆添加物的铂或铂铑合金,通过电物理分散方法将所得合金研磨成超细粉,退火所述超细粉,通过粉末冶金方法压紧成密实材料,热变形处理,其特征在于,所述电物理分散在蒸馏环境中进行,同时用含按体积计为20至50%氧气的含氧气体混合物在该蒸馏水环境中鼓泡,坯真空中、在1200-1600℃的温度烧结2-4小时。

说明书全文

制备铂基或铂铑合金复合材料的方法

[0001] 本发明涉及贵金属冶金领域,更特别地涉及用弥散化物颗粒强化的铂或铂铑合金的制备。此种复合材料广泛应用于制备在严苛的高温环境中使用的玻璃熔融设备(GMA)
以及套管组件(BA)。
[0002] 近年来在许多国家,玻璃纤维玄武岩纤维的制造快速增长。这使得对它们(GMA和BA)的生产设备的需求也在增加,在大多数情况下,这些生产设备由铂或铂铑合金制成。
就这些生产所涉及的GMA和BA的花费以及数目而言,延长GMA和BA的使用寿命极其重要。
[0003] GMA和BA的使用寿命取决于许多因素,包括其制备材料对侵蚀性熔融玻璃的化学惰性、耐热性和高温蠕变。
[0004] 已知几种用于硬化铂及其合金的方法:1)难熔氧化物弥散颗粒的内含物;2)金属中纤维结构的形成;3)掺杂具有高熔点元素的小添加物[И.Ф.Беляев,В.М.Карболи
н,П.Н.Прокопьев и др./Платина повышенной прочности и ее свойства при высоких температурах./Сб.трудов Ин-та физики металлов УНЦ АН СССР.Благородные металлы и их применение.Вып.28,Свердловск,-1971,360с.,с.272-277](И.Ф.Беляев,В.М.Карболин,П.Н.Прокопьев等/高强度铂及其高温性能/金属物理学院著作集,前苏联科学院。贵金属及其应用。第28版,斯维
尔德洛夫斯克,-1971,360p.,pp.272-277)。
[0005] 获得最广泛实际应用的硬化铂及其合金的方法为:在一定量的性金属(被称为“基质”)中形成另外的稳定相,该另外的稳定相为均匀分布的难熔氧化物弥散相。
[0006] 当前行业平包括以下技术方案,该技术方案可获得弥散稳定的铂或铂铑合金,其具有增强的耐热性和热稳定性。用于制备铂基或铂铑合金基复合材料的已知方法包括熔
化掺杂锆添加物的铂或铂铑合金,通过电物理分散方法将所得合金研磨成细粉,粉末氧化
退火,通过粉末冶金方法将其加工成密实材料,以及变形热处理[РытвинЕ.И.,Тыко
чинский Д.С.,Ястребов В.А./Дисперсноупрочненные платина и ее сплавы.Производство,свойства,применение.-М.,2001,148с.(см.стр.47-63)](РытвинЕ.И.,Тыкочинский Д.С.,Ястребов В.А./弥散强化铂及其合金。制备、性能、应用。-M.,2001,148p.(参见pp.47-63)。
[0007] 这个方法在其物理技术本质上是最接近于本申请所要求的方法,其可作为最接近的现有技术
[0008] 现有技术方法可制备这种弥散稳定的铂或铂铑合金的复合材料,该材料在许多国内和外国公司中用于GMA和BA的制造。在氧化退火后,通过压制成坯烧结坯块、使用制备
轧制产品的锻件对其进行锻造,进行粉末的压实
[0009] 现有技术方法的缺点包括需要由电物理分散方法获得粉末的长时氧化退火,其是由在电物理分散阶段,粉末氧化过程的极不完全性所导致的。已确定的是,溶于铂基合金的
锆掺杂物在电物理分散下,最多40%被氧化为锆氧化物。剩余部分的锆在所得粉末的氧化
退火过程中进行进一步的慢氧化,该慢氧化在约1000℃的温度下持续20至150小时,这样增
加了该过程的成本。在粉末颗粒中锆的缓慢氧化过程源于在铂基硬质合金的晶内边界上氧
运送的扩散限制。通过将气相氧气的压增至0.021-21MPa的范围,来加剧固体粉末的氧化
退火过程的努力并不成功。[РытвинЕ.И.,Тыкочинский Д.С.,Ястребов В.
А./Дисперсноупрочненные платина и ее сплавы.Производство,свойства,применение.-М.,2001,148с.(см.стр.52-63)](Рытвин Е.И.,Тыкочинский Д.С.,Ястребов В.А./弥散强化铂及其合金。制备、性能、应用。-M.,2001,148p.(参见
pp.52-63)。
[0010] 标准方法的另一个缺点是,制备的铂基或铂铑合金基复合材料的不充分脱气水平可能对由该复合材料制造的GMA和BA的质量有不利的影响。原因在于,在长时的氧化退火过
程中,超细粉的展开面吸附大量的气体。通过压块、烧结和锻造将粉末压成密实材料的后续
加工,不总是能够对所得材料进行深度脱气,这导致气孔的形成,并对由该材料制造的物品
的质量,尤其是焊接的质量有不利的影响。
[0011] 由本申请所要求的技术方案所解决的任务是改进一种方法,该方法能够消除指出的缺点或减少它们所表现的负面影响。
[0012] 该技术效果的获得是由于:在用于制备铂基或铂铑合金基复合材料的现有技术方法中,合金的电物理分散在蒸馏水环境中完成,同时用含按体积计为20%至50%氧气的含
氧气体混合物在该蒸馏水环境中鼓泡,并且将通过压实得到的坯块在真空中、在1200-1600
℃的温度下烧结2至4小时。
[0013] 所要求的技术方案的本质在于:比起标准方法,当同时用包含按体积计为20%至50%氧气的含氧气体混合物在蒸馏水环境中鼓泡时,铂基含锆合金在这种蒸馏水环境中的
电物理分散伴有更彻底的锆氧化。这是由于分散的时候,可能形成氧气深入合金的液态微
滴中的加速传输。因此,当用含氧气体混合物在水中鼓泡时,在合金在水中的电物理分散阶
段,锆氧化的分数由40%增加至50%-65%,这简化了接下来的氧化退火工艺,减少了该氧
化退火过程的持续时间以及能耗。气体混合物的氧气含量下限(按体积计20%)接近于空气
中的氧气含量,以最小的花费加剧了熔化物微滴中的锆氧化过程。超出气体混合物的氧气
含量上限(50%)是不合理的,因为微滴在水环境中极快速固化,不会导致氧化的锆分数变
大,还伴随有更高险的无用氧气消耗。
[0014] 在所要求的方法中,通过在真空中在1200至1600℃的温度下进行坯块的烧结2至4小时,消除了现有技术方法的与制备的复合材料不充分脱气水平有关的第二个缺点。在所
述条件下,坯块的真空处理不仅能够提供材料颗粒所需的烧结度,还具有被吸收气体的解
吸性能,并从复合材料中去除该被吸收气体。
[0015] 所要求的方法的应用实施例描述了90-10铂铑(PtRh)合金基复合材料的制备,该复合材料由锆氧化物稳定。
[0016] 应用实施例
[0017] 复合材料制备的第一步是制备掺杂有金属锆(0.3%)的90-10铂铑(PtRh)合金。为了减少锆在熔融过程中的不可控损失,该程序分两步进行:1)制备锆中间合金(master 
alloy);2)制备90-10-0.3PtRhZr合金。
[0018] 1.制备铂锆中间合金
[0019] 将估算量的铂和锆装入由锆氧化物制成的真空感应装置熔炼坩埚中,该真空感应装置为可从REL-TEK获得的UIPV-63-10-0,01型真空感应装置。精炼的铂做成粉末和铸块
(Pt含量不低于99.95%),粉末重量为4501.1g,铸块重量为832.9g;锆做成铸块(Zr含量不
低于99.0%),该铸块为尺寸小于8mm的块状,重166.0g。负载物装入坩埚中;铂粉末混合锆
块装在底部,铂铸块装在顶部。
[0020] 该装置用盖封闭,炉腔被抽空至剩余压力为100Pa,然后充满惰性氩气。该负载物在氩气环境中熔化。在负载物完全熔化后,熔化物的温度达到1950℃,然后将其倒入巨大的
模具中。
[0021] 冷却后,中间合金铸块从条形模具中脱出(重5436.7g或负荷的98.85%)。测试所得铸块,分析样品。化学分析表明,所得中间合金含有2.9%的锆,剩余的为铂。
[0022] 所得中间合金铸块切割为若干部分,并用于制备掺杂锆的铂铑合金的第二步。
[0023] 2.制备90-10-0.3PtRhZr合金
[0024] 将下列原料装入真空感应装置的熔炼坩埚:之前获得的中间合金,估算量569.0g;精炼的铂,其分别为重量为780.0g的粉末和3601.0g的铸块(Pt含量不低于99.95%);精炼
的铑,其为重量为550.0g的粉末(Rh含量不低于99.95%)。
[0025] 将负载物装入坩埚:中间合金铸块装至底部,铂和铑的混合粉末装至顶部,铂铸块置于粉末之上。
[0026] 装置抽空至剩余压力为100Pa,然后充满惰性氩气。该负载物在氩气气氛中熔化。在各组分熔化完成之后,所得熔化物保持5分钟,然后在1950℃的熔化温度下将其倒入巨大
的铜模具中。
[0027] 冷却后,将重量为5497.3g的合金铸块(或负荷的99.95%)从模具中脱出。
[0028] 在机械清洁表面后,测试所得铸块,对样品进行化学分析。样品的化学分析表明,所得工业合金含有:89.7%的铂;9.99%的铑;0.29%的锆;0.009%钯、铱和金(总计):
0.01%的、铅、锑和锌(总计)。
[0029] 通过在蒸馏水环境中的电物理分散,同时用含氧气体混合物在蒸馏水环境中鼓泡,将制备的90-10-0.3PtRhZr合金磨碎成超细粉。为此,通过熔化所得的合金铸块首先锻
造成具有15mm×15mm方形截面的棒。后者在辊轧机上分若干步(包括中间退火)轧成1,75mm
×1,75mm的部分,并用自动压力机PS-1切成粒块。该颗粒装入该装置的反应器,通过脉冲放
电分散贵金属。在蒸馏水环境中进行合金粒块的电物理分散,同时用含按体积计为30%氧
气的含氧气体混合物在蒸馏水环境中鼓泡。使用隔膜向反应器鼓泡该气体混合物,该隔
膜泵能够以40-50l/min的速率泵送气体混合物并提供高达7巴的压力。供气的流速通过转
子流量计控制。电力从脉冲电源(1000次脉冲/秒的180A电流)供应至反应器。
[0030] 制备的合金细粉在干燥后形成片状,并用纳博热机(Nabertherm)LVT9熔炉,在温度为1000℃的空气中氧化退火16小时。实验发现,锆细粉在这种情况下几乎完全氧化。
[0031] 由氧化退火所得的材料通过粉末冶金方法进一步加工:使用PST200S型液压机,在冲压模具中用80吨的力压片15至20秒;在真空中以1450℃的温度烧结坯块3小时。使用真空
感应炉烧结,不仅能够获得充分强烧结的复合材料,还将原坯块中包含的气体深度脱气。在
真空中烧结后,复合材料烧结的坯块在热变形处理后进行锻造,用于GMA或BA的制造。
QQ群二维码
意见反馈