首页 / 国际专利分类库 / 化学;冶金 / 生物化学;啤酒;烈性酒;果汁酒;醋;微生物学;酶学;突变或遗传工程 / / 作用于配对供体的与分子氧结合或还原的氧化还原酶(1.14) / 시금치 유래의 CYP85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체

시금치 유래의 CYP85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체

申请号 KR1020130146068 申请日 2013-11-28 公开(公告)号 KR1020150061840A 公开(公告)日 2015-06-05
申请人 제주대학교 산학협력단; 发明人 류기중; 이동선; 부경환; 김영천;
摘要 본발명은시금치() 유래 CYP85(cytochrome P450, 85 family) 단백질코딩유전자를포함하는재조합벡터를식물세포에형질전환하여야생형식물에비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이증진된형질전환식물체의제조방법, 상기방법에의해제조된야생형식물에비해 20-히드록시엑디손함량이증진된형질전환식물체및 이의종자, 상기시금치유래 CYP85 단백질을코딩하는유전자를유효성분으로포함하는, 식물체의 20-히드록시엑디손함량증진용조성물, 시금치유래 CYP85 단백질코딩유전자를포함하는재조합벡터를식물세포에형질전환하여내충성이증가된형질전환식물체의제조방법, 상기방법에의해제조된내충성이증가된형질전환식물체및 이의종자및 상기시금치유래 CYP85 단백질을코딩하는유전자를유효성분으로포함하는, 식물체의내충성을증가시키는조성물에관한것이다.
权利要求
  • 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및
    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체의 제조 방법.
  • 제1항에 있어서, 상기 CYP85 단백질은 서열번호 2의 아미노산 서열로 이루어진 것을 특징으로 하는 형질전환 식물체의 제조 방법.
  • 제1항의 방법에 의해 제조된 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체.
  • 제3항에 따른 식물체의 종자.
  • 서열번호 2의 아미노산 서열로 이루어진 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량 증진용 조성물.
  • 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 CYP85 유전자를 과발현하는 단계를 포함하는 야생형 식물에 비해 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량을 증진시키는 방법.
  • 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및
    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 내충성이 증가된 형질전환 식물체의 제조 방법.
  • 제7항의 방법에 의해 제조된 내충성이 증가된 형질전환 식물체.
  • 제8항에 따른 식물체의 종자.
  • 서열번호 2의 아미노산 서열로 이루어진 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 내충성 증가용 조성물.
  • 说明书全文

    시금치 유래의 CYP85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체{Method for producing transgenic plant with increased content of 20-hydroxyecdysone using CYP85 gene from Spinacia oleracea and the plant thereof}

    본 발명은 시금치 유래의 CYP85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체에 관한 것으로, 더욱 상세하게는 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하여 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 야생형 식물에 비해 20-히드록시엑디손 함량이 증진된 형질전환 식물체 및 이의 종자, 상기 시금치 유래 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 20-히드록시엑디손 함량 증진용 조성물, 시금치 유래 CYP85 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하여 내충성이 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 내충성이 증가된 형질전환 식물체 및 이의 종자 및 상기 시금치 유래 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 내충성을 증가시키는 조성물에 관한 것이다.

    엑디스테로이드(ecdysteroids)는 곤충의 탈피를 조절하는 스테로이드성 호르몬으로, 1954년 Butenanadt와 Karlson에 의해 처음 알려졌다. 그 후, 1966년 NaKanishi와 Koreeda에 의해 식물에서 처음으로 엑디스테로이드가 발견되었다. 엑디스테로이드는 2,3,14-트리하이드록시-△-7-케토스테로이드의 1 군으로서, 공지의 엑디스테론(ecdysterons) 또는 엑디손(ecdysones) 등을 포함하는 폴리히드록실화 스테로이드류에 속하는 화합물이다. 식물에서 이들의 작용은 완전하게 알려지지는 않았으나, 식물의 엑디스테로이드는 일부 비순응 식식성 곤충(non-adapted phytophagous insect)에 대해서 섭식 저해, 기피 및 살충 등의 효과를 보여 식물 방어기전에 영향을 미치는 것으로 알려져 있다.

    한편, 사이토크롬 P450(cytochrome P450,CYP)은 많은 식물들이 함유하고 있으며 헴(heme) 구조를 가지고 있는 효소로서 식물뿐만 아니라, 세균, 곰팡이를 비롯하여 포유동물에서도 발견된다. 특히 사이토크롬 P450 유전자는 몇몇 식물에서 전체 게놈(genome)의 약 1%를 차지할 정도로 많은 패밀리 종류가 보고되었고, 애기장대( Arabidopsis thaliana )에서도 246개의 사이토크롬 P450 유전자와 26개의 슈도(Pseudo) 사이토크롬 P450 유전자가 보고되었다. 이들은 식물에서 식물 호르몬의 생합성 반응에 관여하거나, 신호전달 분자나 방어반응의 요소로서 역할을 하는 것으로 알려졌다. 또한 식물의 생장조절자로서 알려진 옥신(auxins), 지베렐린(gibberellins), 자스몬산(jasmonic acid), 브라시노스테로이드(brassinosteroids) 뿐만 아니라 페닐프로파노이드(phenylpropanoids), 알칼로이드(alkaloids), 테르페노이드(terpenoids), 지질(lipids), 사이아노제닉 글라이코사이드(cyanogenic glycosides), 글루코시놀레이트(glucosinolates)와 같은 식물 천연물질의 생합성 경로에 참여하고 있는 것으로도 알려졌다. 특히 사이토크롬 P450 유전자는 곰팡이나, 세균, 곤충이나 포유동물의 공격과 같은 외부 자극에 대하여 발현이 증가하게 되고 이는 식물의 방어반응 관련 물질들의 합성을 유도한다. 이러한 사실을 토대로 사이토크롬 P450은 관련 유전자 및 신호 전달 체계를 연구 및 이해하여 병해충 저항성이 증진되는 생명공학적 식물을 개발하거나 식물의 병해충 저항성 유전자 재료로서 분자육종에 실용적으로 이용될 수 있을 것이다.

    한편, 한국등록특허 제0834380호에는 애기장대 유래 CYP78A7을 이용한 '식물의 수분 스트레스 저항성을 증가시키는 시토크롬 P450 유전자'가 개시되어 있고, 한국등록특허 제1256277호에는 '병원균에 대한 저항성 반응에 관여하는 고추의 사이토크롬 P450 유전자(CaCYP450A) 및 이를 이용한 형질전환 병저항성 식물체'가 개시되어 있으나, 본 발명의 시금치 유래의 CYP85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체에 관한 것은 기재된 바가 없다.

    본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 시금치 유래 CYP85 코딩 유전자를 과발현시킨 형질전환 식물체를 제조하고, 형질전환 식물체 내에서 20-히드록시엑디손의 함량이 비형질전환 식물체와 비교하여 증가된 것을 확인함으로써, 본 발명을 완성하였다.

    상기 과제를 해결하기 위해서, 본 발명은 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및

    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체의 제조 방법을 제공한다.

    또한, 본 발명은 상기 방법에 의해 제조된 야생형 식물에 비해 20-히드록시엑디손 함량이 증진된 형질전환 식물체 및 이의 종자를 제공한다.

    또한, 본 발명은 상기 시금치 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 20-히드록시엑디손 함량 증진용 조성물을 제공한다.

    또한, 본 발명은 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 CYP85 유전자를 과발현하는 단계를 포함하는 야생형 식물에 비해 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량을 증진시키는 방법을 제공한다.

    또한, 본 발명은 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및

    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 내충성이 증가된 형질전환 식물체의 제조 방법을 제공한다.

    또한, 본 발명은 상기 방법에 의해 제조된 내충성이 증가된 형질전환 식물체 및 이의 종자를 제공한다.

    또한, 본 발명은 상기 시금치 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 내충성 증진용 조성물을 제공한다.

    본 발명에서는 시금치 유래 CYP85 단백질 코딩 유전자를 과발현시켜 식물체 내 20-히드록시엑디손의 함량이 증가되는 것을 확인하였다. 20-히드록시엑디손은 일부 해충에 대해 섭식저해, 기피 및 살충효과를 나타내므로 본 발명의 시금치 CYP85 단백질 코딩 유전자를 사용하여 내충성이 증가된 농산물의 개발 및 증가된 20-히드록시엑디손을 이용한 해충 방제 조성물을 개발할 수 있으므로, 산업적으로 유용하게 이용될 수 있을 것으로 판단된다.

    도 1은 본 발명의 시금치 유래 CYP85 단백질 코딩 유전자를 포함하는 재조합 벡터 pB7WG2D,1의 모식도이다.
    도 2는 기내 조직배양 및 형질전환을 통하여 확보한 시금치 식물체로 비형질전환 야생형 대조구(좌, wild type plant)와 시금치 CYP85 유전자 과발현 형질전환 식물체(우, transgenic plant)의 사진이다.
    도 3은 형질전환 식물체에 대한 시금치 CYP85 유전자의 도입여부를 게놈 DNA를 이용하여 PCR 분석한 결과이다. SoCYP85, 시금치 CYP85 유전자; p35S-SoCYP85, 재조합벡터 내 프로모터와 도입유전자 부위; EGFP, 리포터 유전자; W, 대조구 야생형 시금치; P, 시금치 CYP85 유전자 함유 식물 발현 벡터 양성 대조구; 1~3, 형질전환 시금치.
    도 4는 형질전환 식물체에 대한 시금치 CYP85 유전자의 발현 증가 여부를 확인한 RT-PCR 결과이다. SoCYP85, 시금치 CYP85 유전자; p35S-SoCYP85, 재조합벡터 내 프로모터와 도입유전자 부위; EGFP, 리포터 유전자; W, 대조구 야생형 시금치; P, 시금치 CYP85 유전자 함유 식물 발현 벡터 양성 대조구; 1~3, 형질전환 시금치.
    도 5는 LC/MS/MS를 이용하여 야생형 시금치와 CYP85 유전자 과발현 형질전환 시금치의 20-히드록시엑디손 함량을 분석한 크로마토그램이다.

    본 발명의 목적을 달성하기 위하여, 본 발명은

    시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및

    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체의 제조 방법을 제공한다.

    본 발명에 따른 CYP85 단백질의 범위는 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량을 조절하는 활성을 의미한다.

    또한, 본 발명은 상기 CYP85 단백질을 암호화하는 유전자를 제공한다. 본 발명의 유전자는 서열번호 1로 표시되는 염기서열을 포함할 수 있다. 또한, 상기 염기 서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.

    용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.

    본 발명에서, 상기 CYP85 유전자 서열은 재조합 발현 벡터 내로 삽입될 수 있다. 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.

    CYP85 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.

    본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.

    발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.

    본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "지속적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 지속적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 지속적 프로모터는 선택 가능성을 제한하지 않는다.

    본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.

    식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직 배양기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito RD et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein TM et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.

    본 발명의 방법은 본 발명에 따른 재조합 벡터로 식물 세포를 형질전환하는 단계를 포함하는데, 상기 형질전환은 예를 들면, 아그로박테리움 튜머파시엔스( Agrobacterium tumefiaciens )에 의해 매개될 수 있다. 또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.

    형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, NY).

    또한, 본 발명은 상기 방법에 의해 제조된 야생형 식물에 비해 20-히드록시엑디손(20-hydroxyecdysone) 함량이 증진된 형질전환 식물체 및 이의 종자를 제공한다.

    본 발명의 일 구현 예에 있어서, 상기 식물체는 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물일 수 있으며, 바람직하게는 쌍자엽 식물이며, 더욱 바람직하게는 가는갯는쟁이, 창명아주, 갯는쟁이, 근대, 사탕무, 나문재, 방석나물, 칠면초, 해홍나물, 댑싸리, 냄새명아주, 얇은명아주, 양명아주, 좀명아주, 창명아주, 취명아주, 흰명아주, 수송나물, 시금치, 퉁퉁마디, 호모초 등의 명아주과(Chenopodiaceae) 식물일 수 있으며, 가장 바람직하게는 시금치일 수 있으나, 이에 제한되지 않는다.

    또한, 본 발명은 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량 증진용 조성물을 제공한다.상기 조성물은 유효성분으로 서열번호 2의 아미노산 서열로 이루어진 CYP85 단백질을 코딩하는 유전자를 함유하며, 상기 유전자를 식물체에 형질전환시킴으로써 식물체의 20-히드록시엑디손 함량을 증가시킬 수 있는 것이다.

    또한, 본 발명은 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 CYP85 유전자를 과발현하는 단계를 포함하는 야생형 식물에 비해 식물체의 20-히드록시엑디손(20-hydroxyecdysone) 함량을 증진시키는 방법을 제공한다.

    또한, 본 발명은 시금치( Spinacia oleracea ) 유래 CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환하는 단계; 및

    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 내충성이 증가된 형질전환 식물체의 제조 방법을 제공한다.

    본 발명의 '내충성'이란 식물이 충해에 대하여 나타내는 저항성과 내성을 포함하는 것으로, 기생식물에 대한 해충의 선호성 저지, 해충에 대한 기주의 생육저해성, 강한 보상력이나 회복력에 의하여 충해의 영향을 받지 않는 내성 등을 포함한다.

    본 발명의 시금치 유래 CYP85 단백질 코딩 유전자를 포함하는 재조합 벡터로 형질전환된 식물체는 20-히드록시엑디손의 함량이 증가하게 되는데, 20-히드록시엑디손은 일부 해충에 대해서 섭식저해, 기피 및 살충 활성을 나타내는 것으로 알려져 있으므로, 상기 시금치 유래 CYP85 단백질 코딩 유전자를 포함하는 재조합 벡터로 형질전환된 식물체는 증가된 20-히드록시엑디손의 영향으로 내충성이 증가될 수 있다.

    또한, 본 발명은 상기 방법에 의해 제조된 내충성이 증가된 형질전환 식물체 및 이의 종자를 제공한다.

    본 발명의 상기 식물체는 전술한 바와 같다.

    또한, 본 발명은 CYP85 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 식물체의 내충성 증가용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 서열번호 2의 아미노산 서열로 이루어진 CYP85 단백질 코딩 유전자를 포함하며, 상기 CYP85 단백질 코딩 유전자를 식물체에 형질전환시켜 발현시킴으로써 식물체의 내충성을 증가시킬 수 있는 것이다.

    이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.

    실시예 1. 시금치 CYP85 유전자 클로닝 및 식물 발현 벡터 제작

    CYP85(cytochrome P450, 85 family) 단백질 코딩 유전자는 시금치( Spinacia oleracea )로부터 클로닝하였다. 클로닝된 CYP85 유전자는 식물 발현 벡터 pB7WG2D,1에 gateway 시스템을 이용하여 삽입하였다. CYP85 유전자의 발현은 35S 프로모토에 의해 조절되도록 하였고, 리포터 유전자로 EGFP 유전자를 사용하였으며, 선발마커로 bar 유전자를 사용하였다(도 1).

    실시예 2. 형질전환 식물체 제작

    무균발아 시금치(겨우내 품종)의 뿌리에서 5μM α-나프탈렌아세트산(NAA, α-naphthaleneacetic acid), 10μM 6-벤질아데닌(BA, benzyladenine) 및 0.3μM 지베렐린산(GA3, gibberellic acid)이 첨가된 1/2 MS(20g/ℓ 수크로스, 2.5g/ℓ 젤란검(gellan gum), pH 6.0) 배지를 사용하여 캘러스를 유도하였다. 유도된 캘러스는 20μM NAA, 1μM BA 및 0.3μM GA3이 첨가된 1/2 MS(20g/ℓ 수크로스, 2.5g/ℓ 젤란검, pH 6.0) 배지에서 3주 간격으로 계대배양하며 유지하였다.

    형질전환 식물체를 제작하기 위해, 우선 3~7일 전 캘러스를 20μM NAA, 5μM BA 및 0.3μM GA3이 첨가된 1/2 MS(20g/ℓ 수크로스, 2.5g/ℓ 젤란검, pH 6.0) 배지에 옮겨두었다가 형질전환 당일에 필터 페이퍼에 옮겨 물기를 제거하였다. 형질전환은 EHA105 아그로박테리움 균주를 매개로 사용하였으며, 목표유전자가 도입된 아그로박테리움의 감염은 칼슘이온이 없는 1/2 MS(20g/ℓ 수크로스, 100μM 아세토시링곤(acetosyringone), pH 6.0) 배지에 상기 아그로박테리움을 OD 300 =0.2가 되도록 현탁한 후, 이 배지에 상기 캘러스를 일정량 침지하여 약 30분간 정치하고, 그 후 캘러스를 수거하여 필터 페이퍼 위에서 3~5분간 건조시킨 후, 다시 상기 아그로박테리움을 포함하고 있는 배지에 침지하여 3~5분간 정치하였다. 그 후 캘러스를 수거하여 필터 페이퍼 위에서 3~5분간 건조한 후, 칼슘이온이 없는 1/2 MS(20g/ℓ 수크로스, 100μM 아세토시링곤(acetosyringone), pH 5.4) 배지를 사용하여 암조건에서 4일간 공동배양하였다.

    공동배양 후 캘러스는 1mM 세포탁심(cefotaxime)이 첨가된 1/2 MS 용액에 30분간 침지한 후에 필터 페이퍼를 사용하여 건조시키고, 20μM NAA, 5μM BA 및 0.3μM GA3이 첨가된 1/2 MS(20g/ℓ 수크로스, 2.5g/ℓ 젤란검, 250μM 세포탁심, 5μM 포스피노트리신(PPT, phosphinothricin), pH 6.0) 선발배지에 옮겨 20℃에서 10시간 명, 16℃에서 14시간 암조건으로 4주 동안 배양하며 형질전환된 캘러스를 1차로 선별하였다. 1차 선발배지에서 선별된 캘러스는 PPT 농도를 5배 증가시킨 동일 배지에서 2차 선별을 수행하였으며, 2~4주 후 EGFP 유전자의 발현을 확인하여 최종 형질전환 캘러스를 선별하였다.

    최종 선별된 캘러스는 10μM NAA 및 0.3μM GA3이 첨가된 1/2 MS(20g/ℓ 수크로스, 2.5g/ℓ 젤란검, 250μM 세포탁심, pH 6.0) 배지에서 4~8주 동안 배양하다가, 뿌리를 형성하는 캘러스는 선발하여 2μM NAA 및 5μM BA가 첨가된 1/2 MS(20g/ℓ 수크로스, 3g/ℓ 젤란검, pH 6.0) 배지에 옮겨 체세포배형성을 유도하였다. 체세포배에서 얻어진 소식물체는 EGFP 유전자의 발현을 재확인하여 형질전환 식물체를 선발하고 이 후, 1/2 MS(20g/ℓ 수크로스, 8g/ℓ 아가, pH 6.0) 배지에 옮겨 식물체로 성장시켰다(도 2). 기내에서 완전한 식물체로 분화된 시금치는 토양으로 옮긴 후, 일정기간 높은 습도를 유지하면서 순화과정을 거친 후 성숙식물로 성장시켰다. 대조구 식물체는 아그로박테리움 감염 및 형질전환체 선발과정을 제외한 나머지 과정을 동일하게 수행하여 제작하였다.

    실시예 3. 형질전환 식물체의 도입유전자 확인 및 발현 분석

    형질전환 시금치의 CYP85 도입유전자 확인은 형질전환 식물체와 대조구 식물체의 DNA를 추출한 이후에 PCR을 수행하여 분석하였다. PCR 분석에 사용한 프라이머는 총 3쌍인데, 첫 번째는 CYP85 도입유전자의 일부분을 증폭할 수 있는 프라이머이고(soCYP85-F; 5'-GCTGGTATTGAATCAAGCTC-3'; 서열번호 3, soCYP85-R; 5'-GGTACTTGACAGCCATCATT-3'; 서열번호 4), 두 번째는 유전자 도입 시 사용한 재조합 벡터의 35S 프로모터 부위와 CYP85 유전자 사이의 일부분을 증폭할 수 있는 프라이머이며(P35S-SoCYP85-F; 5'-TTCGCAAGACCCTTCCTCTA-3'; 서열번호 5, P35S-SoCYP85-R; 5'-CTAATAACTCGAAACTCGAATGC-3'; 서열번호 6), 세 번째는 유전자 도입 시 리포터 유전자로 사용한 EGFP 유전자의 일부를 증폭할 수 있는 프라이머이다(EGFP-F; 5'-TCTTTTTCATCTTTTCACTTCTCC-3'; 서열번호 7, EGFP-R; 5'-TGATATAGACGTTGTGGCTGTTG-3'; 서열번호 8). 본 발명에서는 형질전환 시금치 3종(번호: 85201, 850203 및 853282)에 대해서 CYP85 유전자의 도입 여부를 확인하였다.

    그 결과, CYP85 유전자는 비형질전환 대조구에서는 0.4kb 크기의 밴드가 하나 검출되는 반면, 형질전환 시금치에서는 0.3~0.4kb 사이에서 두 개의 밴드가 검출되었다. 본 발명에 사용된 재조합 벡터를 양성 대조구로 사용하여 PCR을 수행한 결과를 토대로, 0.4kb 밴드는 시금치가 원래 가지고 있는 CYP85 유전자의 크기이며, 0.3kb 크기의 밴드는 도입된 유전자가 증폭되어 나타난 것으로 확인되었다(도 3). 유전자 크기의 차이는 도입 유전자는 인트론 부위가 존재하지 않기 때문으로, 이는 유전자 도입 시 사용한 35S 프로모터와 CYP85 유전자 사이를 증폭할 수 있는 프라이머(서열번호 5 및 6)를 사용하여 수행한 결과를 보면 비형질전환 대조구에서는 유전자의 증폭이 확인되지 않았으며, 형질전환 시금치 및 양성 대조구에서는 증폭산물을 확인할 수 있었다(도 3). 또한 리포터 유전자 EGFP의 도입 여부를 확인하여 본 결과 비형질전환 대조구에서는 검출되지 않는 반면, 형질전환 시금치에서는 리포터 유전자가 모두 확인되었다. 상기 PCR 분석과 동일하게 형질전환 시금치 3종(번호: 85201, 850203 및 853282)을 이용하여 분석을 수행하였다.

    CYP85 유전자의 도입이 확인된 형질전환 시금치에 대해서 도입 유전자의 발현 증가 여부를 RNA 수준에서 확인하여 보았다. 이를 위해 형질전환 식물체와 대조구 식물체의 총 RNA를 추출한 이후에 RT-PCR로 분석하였다. RT-PCR 분석에 사용한 프라이머는 3쌍으로, 첫 번째는 CYP85 유전자의 일부분을 증폭할 수 있는 프라이머이고(서열번호 3 및 4), 두 번째는 유전자 도입 시 리포터 유전자로 사용한 EGFP 유전자의 일부를 증폭할 수 있는 프라이머이며(서열번호 7 및 8), 세 번째는 목표 유전자의 발현증감을 평가하는데 기준이 될 수 있는 유전자, Cyclophilin(CYC)의 일부분을 증폭할 수 있는 프라이머이다(CYC-F; 5'-GATGTTACCCCCAAAACTGCT-3'; 서열번호 9, CYC-R; 5'-AACAACATGCTTTCCATCCAG-3'; 서열번호 10).

    그 결과 비형질전환 대조구와 형질전환 식물체 3종에 대해서 CYC 유전자의 발현은 각 시료 간에 동일한 수준인 것을 확인할 수 있는 반면, 도입된 CYP85 유전자의 경우는 비형질전환 대조구에 비해 형질전환 시금치 3종에서 발현 수준이 증가한 것을 확인할 수 있었다. 또한 리포터 유전자 EGFP의 발현도 형질전환 시금치 모두에서 확인되었다(도 4).

    이상의 결과를 토대로 본 발명의 형질전환 시금치 3종은 모두 도입한 CYP85 유전자를 함유하고 있으며, DNA 수준에서 CYP85 유전자의 도입이 확인된 형질전환 시금치 3종 모두에서 이 유전자의 발현이 비형질전환 대조구보다 증가된 것을 확인할 수 있었다.

    실시예 4. 형질전환 식물체의 20- 히드록시엑디손 (20E) 함량 분석

    상기의 CYP85 유전자의 도입이 확인된 형질전환 식물체에서 20-히드록시엑디손(20-hydroxyecdysone, 20E)의 함량 변화를 분석하였다.

    비형질전환 대조구 및 형질전환 식물체의 20E 추출은 약 50mg 건조시료를 5, 2.5, 2.5㎖ 메탄올로 3회 추출한 후 추출물에 물 2.5㎖을 첨가한 다음 헥산 10㎖로 2회 상분배하여 메탄올/물 층을 수거한 다음 농축하고 500μM 메탄올로 재용해하여 20E 분석 시료로 사용하였고, 추출물의 20E 함량 분석은 LC/MS/MS를 이용하였다. 본 발명의 20E 함량 분석에 사용한 LC/MS/MS의 조건은 하기 표 1과 같다.

    조건

    장비
    Accela pump,
    Autosampler,
    PDA detector,
    LXQ mass spectrophotometry(Thermo Scientific, 미국)


    조건
    컬럼 : YMC column(250x4.6mm)
    용매 : 11% isopropanol in 0.1% TFA in water
    PDA detector : UV 242nm
    유속 : 1 ㎖/분 (0.3~0.2 for MS, ~0.8 out)
    주입량 : 20㎕
    실행 시간 : 50분

    질량 스캔
    Mass 1 scan range : 100-1000
    Mass 2 range : 130-500
    Mass 2 parent : 481

    20E 함량분석 결과, 대조구 식물체의 경우 20E의 평균 함량은 약 100㎍/건조중량 g 인데 반해, 형질전환 식물체의 경우는 약 290㎍/건조중량 g으로 평균 약 3배 가량 증가한 것을 확인할 수 있었고, 형질전환 식물체 3종 중에는 대조구에 비해 최대 5배 정도 20E의 함량이 증가한 형질전환체도 확인되었다(도 5).

    상기의 결과들을 통해 시금치 유래 CYP85 유전자를 이용한 형질전환 식물체에서 20-하이드록시엑디손(20E)의 함량이 증가된 것을 알 수 있었다.

    <110> Jeju National University Industry-Academic Cooperation Foundation <120> Method for producing transgenic plant with increased content of 20-hydroxyecdysone using CYP85 gene from Spinacia oleracea and the plant thereof <130> PN13368 <160> 10 <170> KopatentIn 2.0 <210> 1 <211> 1395 <212> DNA <213> Spinacia oleracea <400> 1 atggccgttt ttatggtggt ttttgctgtg attttcagct tgttttgttt ctcttctgct 60 ttgttaagat ggaatgaact tagatatagg aagaaaggat tgccacctgg aactatgggt 120 tggcctatct ttggtgaaac tactgagttc cttaaacaag gctctaactt cattaagaac 180 caaagatcaa gatatgggaa ttttttcaag tcccatatat tggggtgtcc aacaatagtg 240 tcaatggatg cagaactaaa caggttcata ctaatgaatg aatcaaaagg gttagtacca 300 gggtacccac agtctatgtt agacattctt ggaaaatgta acattgctgc tgttcatggc 360 tccactcaca agtacatgag gggtaccctt ctttctttgg tcagtcccac catgattaga 420 gatcatattc tccccaaagt tgatcagttt atgagatccc atctctccaa ttggcaaaat 480 catgtcattg acatccaaca aaagactaag gagatggctt tcctgtcttc cttaaagcaa 540 attgctggta ttgaatcaag ctcaactgcc caactattta tgtctgaatt cttcaagctt 600 gttgaaggga cactttctct ccctattgac ctccctggca caaattaccg caggggtttt 660 caggcaagga aggtgatagt gaatatattg acacaactta taaaagaaag aagagcatca 720 aaaacaaaag atgttgatat tttaaattgt ctattaaaag aagaggagaa caaatataaa 780 ctaagtgatg aagagatcat tgatctcatc attactcttg cttattctgg ttatgaaact 840 gtctcaacta cttcaatgat ggctgtcaag taccttcatg atcaccccca tgttctagaa 900 gagctcagaa aagagcattt ggcaatcaga gcaaaaaaga agccggggga tcctattaac 960 tgggaagatt acaaggctat gaagtttact agagctgtga tatttgagac atcaagatta 1020 gccacaattg ttaatggggt gttgagaaaa acaactaaag agatggaaat aaatggtttc 1080 gtgattccgg aaggttggag aatatatgta tatacaagag aagtaaatta tgatccgtat 1140 ttgtacccgg atccactcgt cttcaaccca tggagatggc tggataggag cttggaatcg 1200 aagaattatt ttcttatatt tggaggtggg acgaggcagt gccctggcaa ggaattagga 1260 attgctgaaa tttctacatt ccttcattat tttgtaacta gatacagatg ggaggaagaa 1320 gagggtaata agctggtaaa gtttcctaga gtggaggcac caaatggatt acgcattcga 1380 gtttcgagtt attag 1395 <210> 2 <211> 464 <212> PRT <213> Spinacia oleracea <400> 2 Met Ala Val Phe Met Val Val Phe Ala Val Ile Phe Ser Leu Phe Cys 1 5 10 15 Phe Ser Ser Ala Leu Leu Arg Trp Asn Glu Leu Arg Tyr Arg Lys Lys 20 25 30 Gly Leu Pro Pro Gly Thr Met Gly Trp Pro Ile Phe Gly Glu Thr Thr 35 40 45 Glu Phe Leu Lys Gln Gly Ser Asn Phe Ile Lys Asn Gln Arg Ser Arg 50 55 60 Tyr Gly Asn Phe Phe Lys Ser His Ile Leu Gly Cys Pro Thr Ile Val 65 70 75 80 Ser Met Asp Ala Glu Leu Asn Arg Phe Ile Leu Met Asn Glu Ser Lys 85 90 95 Gly Leu Val Pro Gly Tyr Pro Gln Ser Met Leu Asp Ile Leu Gly Lys 100 105 110 Cys Asn Ile Ala Ala Val His Gly Ser Thr His Lys Tyr Met Arg Gly 115 120 125 Thr Leu Leu Ser Leu Val Ser Pro Thr Met Ile Arg Asp His Ile Leu 130 135 140 Pro Lys Val Asp Gln Phe Met Arg Ser His Leu Ser Asn Trp Gln Asn 145 150 155 160 His Val Ile Asp Ile Gln Gln Lys Thr Lys Glu Met Ala Phe Leu Ser 165 170 175 Ser Leu Lys Gln Ile Ala Gly Ile Glu Ser Ser Ser Thr Ala Gln Leu 180 185 190 Phe Met Ser Glu Phe Phe Lys Leu Val Glu Gly Thr Leu Ser Leu Pro 195 200 205 Ile Asp Leu Pro Gly Thr Asn Tyr Arg Arg Gly Phe Gln Ala Arg Lys 210 215 220 Val Ile Val Asn Ile Leu Thr Gln Leu Ile Lys Glu Arg Arg Ala Ser 225 230 235 240 Lys Thr Lys Asp Val Asp Ile Leu Asn Cys Leu Leu Lys Glu Glu Glu 245 250 255 Asn Lys Tyr Lys Leu Ser Asp Glu Glu Ile Ile Asp Leu Ile Ile Thr 260 265 270 Leu Ala Tyr Ser Gly Tyr Glu Thr Val Ser Thr Thr Ser Met Met Ala 275 280 285 Val Lys Tyr Leu His Asp His Pro His Val Leu Glu Glu Leu Arg Lys 290 295 300 Glu His Leu Ala Ile Arg Ala Lys Lys Lys Pro Gly Asp Pro Ile Asn 305 310 315 320 Trp Glu Asp Tyr Lys Ala Met Lys Phe Thr Arg Ala Val Ile Phe Glu 325 330 335 Thr Ser Arg Leu Ala Thr Ile Val Asn Gly Val Leu Arg Lys Thr Thr 340 345 350 Lys Glu Met Glu Ile Asn Gly Phe Val Ile Pro Glu Gly Trp Arg Ile 355 360 365 Tyr Val Tyr Thr Arg Glu Val Asn Tyr Asp Pro Tyr Leu Tyr Pro Asp 370 375 380 Pro Leu Val Phe Asn Pro Trp Arg Trp Leu Asp Arg Ser Leu Glu Ser 385 390 395 400 Lys Asn Tyr Phe Leu Ile Phe Gly Gly Gly Thr Arg Gln Cys Pro Gly 405 410 415 Lys Glu Leu Gly Ile Ala Glu Ile Ser Thr Phe Leu His Tyr Phe Val 420 425 430 Thr Arg Tyr Arg Trp Glu Glu Glu Glu Gly Asn Lys Leu Val Lys Phe 435 440 445 Pro Arg Val Glu Ala Pro Asn Gly Leu Arg Ile Arg Val Ser Ser Tyr 450 455 460 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 gctggtattg aatcaagctc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ggtacttgac agccatcatt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ttcgcaagac ccttcctcta 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ctaataactc gaaactcgaa tgc 23 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tctttttcat cttttcactt ctcc 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tgatatagac gttgtggctg ttg 23 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gatgttaccc ccaaaactgc t 21 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 aacaacatgc tttccatcca g 21

    QQ群二维码
    意见反馈