DEVELOPMENT OF HBV- AND/OR HDV-SUSCEPTIBLE CELLS, CELL LINES AND NON-HUMAN ANIMALS

申请号 EP13792883.4 申请日 2013-11-12 公开(公告)号 EP2917230B1 公开(公告)日 2018-07-18
申请人 Ruprecht-Karls-Universität Heidelberg; 发明人 URBAN, Stephan; NI, Yi;
摘要 The present invention relates to a novel Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) receptor and its use for the development of cells, cell lines and non-human animals that are susceptible to HBV and/or HDV infection and can be used for immunological studies and/or for the screening of drugs, post-entry restriction factors and host dependency factors. It further relates to the use of the receptor for the identification of compounds useful in the treatment of HBV and/or HDV infection.
权利要求 A method for producing a cell that is susceptible to Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) infection, or has an increased susceptibility to HBV and/or HDV infection, or is able to bind HBV and/or HDV, said method comprising the steps of- providing a cell that is non-susceptible to HBV and/or HDV infection or has a low susceptibility to HBV and/or HDV infection or is unable to bind HBV and/or HDV; and- transfecting or transducing said cellwith a nucleic acid sequence encoding a HBV or HDV receptor, said HBV or HDV receptor havingan amino acid sequence represented by SEQ ID NO:1
or
with a vector comprising said nucleic acid sequence encoding a HBV or HDV receptor,wherein the cells are non-human.
An in vitro method for producing a cell that is susceptible to Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) infection, or has an increased susceptibility to HBV and/or HDV infection, or is able to bind HBV and/or HDV, said method comprising the steps of- providing a cell that is non-susceptible to HBV and/or HDV infection or has a low susceptibility to HBV and/or HDV infection or is unable to bind HBV and/or HDV; and- transfecting or transducing said cellwith a nucleic acid sequence encoding a HBV or HDV receptor, said HBV or HDV receptor having an amino acid sequence represented by SEQ ID NO:1, orwith a vector comprising said nucleic acid sequence encoding a HBV or HDV receptor, wherein the cells are human.The method according to claim 1 or 2, wherein the nucleic acid sequence encoding a HBV or HDV receptor is a DNA sequence.The method according to any one of claims 1 to 3, wherein the vector is a viral transfer vector, preferably selected from the group consisting of lentivirus vectors, retrovirus vectors, herpesvirus vectors, adenovirus vectors, baculovirus vectors and adeno-associated virus (AAV) vectors.The method according to any one of claims 1 to 4, further comprising the step of- adding a cell-cycle arresting or differentiation inducing agent to said cell, prior to said step of transfecting or transducing said cell,
and/or further comprising the step of
- knocking-out or knocking-down one or more endogenous genes of said cell,
and/or further comprising the step of
- immortalizing said cell to obtain a stable cell line of said cell.
Use of an amino acid sequence represented by SEQ ID NO: 1 as a receptor for HBV or HDV,
wherein said use is carried out in non-human cells.
In vitro use of an amino acid sequence represented by SEQ ID NO: 1 as a receptor for HBV or HDV.A method for identifying a compound useful in the treatment of HBV and/or HDV infection, said method comprising the step of
identifying a compound that binds to the HBV or HDV receptor and/or inhibits binding of HBV or HDV to the HBV or HDV receptor,
said HBV or HDV receptor having
an amino acid sequence represented by SEQ ID NO:1 .
说明书全文

The present disclosure relates to a novel Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) receptor and its use for the development of cells, and cell lines that are susceptible to HBV and/or HDV infection. It further relates to the use of the receptor for the identification of compounds useful in the treatment of HBV and/or HDV infection.

The human hepatitis B virus (HBV) causes acute and chronic liver infections. 350 million people are persistently infected (Cornberg et al., Minerva Gastroenterol Dietol 2010, 56(4), 451-465). Chronic hepatitis B will remain a major global health problem, despite the availability of vaccines. Therapies (IFNα and five nucleoside analogues) are limited and mostly non-curative.

HBV is a member of the hepadnaviridae. Hepadnaviruses are the smallest enveloped DNA viruses which replicate via reverse transcription of a pgRNA intermediate. During assembly the nucleocapsid acquires three viral envelope proteins termed large (L), middle (M) and small (S). They are encoded in one open reading frame and share the S-domain which is required for membrane anchoring. In addition to the S-domain, M contains an N-terminal hydrophilic extension of 55 amino acids (preS2), while L is further extended by 107, 117 or 118 amino acids (genotype-dependent) termed preS1 (Urban, Future Virol. 2008, 3(3), 253-264). The hepatitis D virus (HDV) is a satellite virusoid utilizing the HBV envelope proteins for entry into hepatocytes. The myristoylated preS1-domain of L is known to play the key role in HBV and HDV infectivity.

Hepadnaviruses show pronounced species specificities. The fact that mice and rats are refractory to HBV has been attributed to the lack of either (an) entry factor(s) or the presence of post entry restriction factors. Since delivery of plasmid-encoded HBV-genomes into hepatic cells of non-susceptible species promote virion secretion, it is assumed that host constraints are related to early infection events. Another peculiarity of HBV is the efficacy to selectively infect hepatocytes in vivo. The hypothesis that the species specificity and the extraordinary liver tropism are associated with an early step of HBV infection, e.g. specific receptor recognition, is attractive.

Currently only primary human (PHH), primary tupeia belangeri (PTH) hepatocytes and differentiated HepaRG cells support the complete HBV replication cycle. The latter is a hepatic progenitor cell line capable of differentiation into PHH-like cells following DMSO treatment. Primary mouse (PMH) and primary rat hepatocytes (PRH) are refractory to HBV. Accordingly, mice and rats do neither support de novo HBV infection nor virus spread. The lack of a (immune competent) small animal model is a major obstacle in HBV research demanding for the elucidation of the underlying molecular restriction factors. It lead to the development of surrogate systems like HBV-transgenic mice, bearing an integrate of an over-length HBV genome, or immune-deficient PHH-transplanted uPA/Scid mice.

Journal of Pharmacology and Experimental Therapeutics, 291, 1999, 1204-1209 discloses a cDNA sequence encoding human NTCP and the transfection of HeLa cells with a plasmid vector encoding the same.

The inventors have previously identified HBV L-protein derived lipopeptides that block HBV and HDV infection of PHH and HepaRG cells (Gripon et al., J Virol 2005, 79(3), 1613-1622; Schulze et al., J Virol 2010, 84(4), 1989-2000; WO 2009/092611 A1). They represent the N-terminal 47 amino acids of the preS1-domain of HBV (HBVpreS/2-48myr) and include the naturally occurring modification with myristic acid. Since preincubation of cells with HBVpreS/2-48myr blocks infection they presumably address a receptor, which, however, is so far unknown.

Accordingly, it was an object of the present invention to identify the receptor responsible for the binding of these HBV L-protein derived lipopeptides.

It was a further object of the present invention to provide methods for producing cells and cell lines that are susceptible to HBV and/or HDV infection through transfecting or transducing cells with a nucleic acid encoding said receptor.

Such transgenic cells, and cell lines may be used for immunological studies and/or for the screening of drugs, post-entry restriction factors and host dependency factors. Furthermore, the newly identified receptor could be used to identify further compounds useful in the treatment of HBV and/or HDV infection.

The objects of the present invention are solved as claimed in the claims.

The objects of the present invention are solved by a method for producing a cell that is susceptible to Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) infection, or has an increased susceptibility to HBV and/or HDV infection, or is able to bind HBV and/or HDV.

Said method comprises the steps of

  • providing a cell that is non-susceptible to HBV and/or HDV infection or has a low susceptibility to HBV and/or HDV infection or is unable to bind HBV and/or HDV; and
  • transfecting or transducing said cell

    • with a nucleic acid sequence encoding a HBV or HDV receptor, said HBV or HDV receptor having an amino acid sequence represented by SEQ ID NO:1

      or

    • with a vector comprising said nucleic acid sequence encoding a HBV or HDV receptor, wherein the cells are non-human.

The objects of the present invention are solved by an in vitro method for producing a cell that is susceptible to Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) infection, or has an increased susceptibility to HBV and/or HDV infection, or is able to bind HBV and/or HDV.

Said method comprises the steps of

  • providing a cell that is non-susceptible to HBV and/or HDV infection or has a low susceptibility to HBV and/or HDV infection or is unable to bind HBV and/or HDV; and
  • transfecting or transducing said cell

with a nucleic acid sequence encoding a HBV or HDV receptor, said HBV or HDV receptor having an amino acid sequence represented by SEQ ID NO:1, or

with a vector comprising said nucleic acid sequence encoding a HBV or HDV receptor, wherein the cells are human.

The present specification describes a Hepatitis B virus (HBV) or Hepatitis D virus (HDV) receptor having

  1. (a) an amino acid sequence represented by SEQ ID NO:1, or
  2. (b) an amino acid sequence comprising SEQ ID NO:2, and an amino acid sequence having the general formula Pro-Tyr-X-Gly-Ile [SEQ ID NO: 11], wherein X is selected from Lys, Arg and Val.

The present specification also describes a Hepatitis B virus (HBV) or Hepatitis D virus (HDV) receptor having

  1. (a) an amino acid sequence represented by SEQ ID NO: 1, or
  2. (b) an amino acid sequence comprising SEQ ID NO:2, and having Gly in the position corresponding to amino acid 158 of SEQ ID NO:1 or having the sequence Gly-Ile in the position corresponding to amino acids 158 and 159 of SEQ ID NO:1.

SEQ ID NO:1 is the human sodium taurocholate cotransporter polypeptide NTCP/SLC10A1.

Said amino acid sequence (b) can comprise two regions or domains:

  1. (1) a region or domain comprising the amino acids 265 to 291 of human NTCP QLCSTILNVAFPPEVIGPLFFFPLLYM [SEQ ID NO: 2];
  2. (2) a region or domain comprising an amino acid sequence having the general formula PYXGI [SEQ ID NO: 11],

    wherein X is selected from K, R and V.

Said amino acid sequence (b) can further comprises the amino acid sequence Gly-Met-Ile-Ile-Ile-Leu-Leu [SEQ ID NO: 12].

In one embodiment, the nucleic acid sequence encoding a HBV or HDV receptor as defined above is a DNA sequence.

A vector can comprise said nucleic acid sequence.

In one embodiment, the vector is a viral transfer vector, preferably selected from the group consisting of lentivirus vectors, retrovirus vectors, herpesvirus vectors, adenovirus vectors, baculovirus vectors and adeno-associated virus (AAV) vectors. Lentivirus vectors allow to produce stable cell lines, adenovirus vectors and AAVs are useful in transducing primary hepatocytes in vitro or mice in vivo and render them transiently susceptible to HBV and/or HDV infection.

The present specification also describes a host cell comprising the vector as defined above or comprising the nucleic acid sequence as defined above, which has been artificially introduced into said host cell.

The term "artificially introduced" refers to the fact that the nucleic acid sequence is expressed under the control of a non-endogenous promoter, e.g. a promoter that is naturally not affiliated with said nucleic acid sequence in said host cell.

Exemplary cells are cancer cell lines, stem cell lines and primary hepatocytes, wherein said cancer cell lines can be hepatoma cell lines, e.g. human, mouse or rat hepatoma cell lines. For example, human hepatoma cell lines include HuH7, HepG2 and HepaRG. For example, mouse hepatoma cell lines include Hep56.1D and Hepa1-6. Said primary hepatocytes can be immortalized.

The present specification also describes a transgenic cell or cell line comprising one or more transgenes, wherein one of said one or more transgenes is the nucleic acid sequence as defined above, thereby

making said transgenic cell or cell line susceptible to HBV and/or HDV infection or increasing the susceptibility of said transgenic cell or cell line to HBV and/or HDV infection or allowing said transgenic cell or cell line to bind HBV and/or HDV.

The present specification also describes a non-human transgenic animal comprising one or more transgenic cells or cell lines as defined above or comprising one or more transgenes, wherein one of said one or more transgenes is the nucleic acid sequence as defined above, thereby

making said transgenic animal susceptible to HBV and/or HDV infection or increasing the susceptibility of said transgenic animal to HBV and/or HDV infection.

For example, non-human transgenic animals are mouse, rat, rabbit, guinea pig and non-human primates, such as cynomolgus monkey and rhesus monkey

In one embodiment, the methods of the present invention further comprises the step of

  • adding a cell-cycle arresting or differentiation inducing agent to said cell, prior to said step of transfecting or transducing said cell.

In one embodiment, said cell-cycle arresting or differentiation inducing agent is DMSO, wherein, preferably, DMSO is added to a final concentration in the range of from 0,1 to 5% (v/v), more preferably 0,5 to 2,5% (v/v).

In one embodiment, the methods of the present invention further comprises the step of

  • knocking-out or knocking-down one or more endogenous genes of said cell.

In one embodiment, said endogenous gene of said cell is the gene encoding the natural NTCP/SCL10A1 polypeptide of said cell (i.e. a homologue of human NTCP/SCL10A1, which does not make said cell susceptible to HBV and/or HDV infection and/or does not allow said cell to bind HBV and/or HDV). Such knock-out or knock-down helps to prevent a dominant negative effect of the endogenous (non-human) gene.

In one embodiment, said knocking-out or knocking-down of one or more endogenous genes of said cell is achieved by means of an shRNA-vector. In one embodiment both the nucleic acid sequence as defined above and the shRNA are contained in a single vector.

In one embodiment, said methods of the present invention further comprises the step of

  • immortalizing said cell to obtain a stable cell line of said cell.

In one embodiment, said cell is selected from a hepatoma cell line, e.g. human hepatoma cell lines, such as HuH7, HepG2 and, in particular, HepaRG. In another embodiment, said cell is a primary hepatocyte.

The present specification also describes a method of producing a cell that is susceptible to HBV and/or HDV infection, said method comprising the steps of

  • providing a cell that is non-susceptible to HBV and/or HDV infection; and
  • modifying the endogenous gene of said cell corresponding to the human gene encoding SEQ ID NO: 1 by homologous recombination, so as to replace the amino acids corresponding to amino acids 192 to 200, such as amino acids 194 to 197, of SEQ ID NO: 1 with amino acids 192 to 200, such as amino acids 194 to 197, of SEQ ID NO: 1 or SEQ ID NO:5 and/or

    the amino acids corresponding to amino acids 155 to 165, such as amino acids 156 to 162, of SEQ ID NO: 1 with amino acids 155 to 165, such as amino acids 156 to 162, of SEQ ID NO: 1, SEQ ID NO:4 or SEQ ID NO: 5.

Without wishing to be bound by a certain theory, the present inventors believe that the region corresponding to amino acids 155 to 165, and in particular amino acids 157 and 158 (Gly), are involved in the binding of HBV and/or HDV, whereas the region corresponding to amino acids 192 to 200, and in particular amino acids 195 to 197 (Ile-Leu-Leu), are involved in HBV and/or HDV infection (e.g. by mediating a cell entry step, such as membrane fusion).

The objects of the present invention are also solved by the use of an amino acid sequence represented by SEQ ID NO:1 as a receptor for HBV or HDV, wherein said use is carried out in non-human cells.

The objects of the present invention are also solved by the in vitro use of an amino acid sequence represented by SEQ ID NO: 1 as a receptor for HBV or HDV.

Said use may comprise the steps of

  • exposing a first cell, which expresses said amino acid sequence, to a compound known to bind to said receptor for HBV or HDV and measuring a response of said cell;
  • exposing a second cell of the same type of said first cell, which expresses said amino acid sequence, to a candidate compound suspected of binding to said receptor for HBV or HDV and measuring a response of said second cell; and
  • comparing the response of said cell and the response of said second cell and determining whether or not said candidate compound binds to said receptor for HBV or HDV based on such comparison.

Compounds known to bind to said receptor for HBV or HDV include certain HBV preS-derived lipopeptides, as, for example, defined in WO 2009/092611 A1.

The objects of the present invention are also solved by a method for identifying a compound useful in the treatment of HBV and/or HDV infection, said method comprising the step of

identifying a compound that binds to the HBV and/or HDV receptor and/or inhibits binding of HBV and/or HDV to the HBV and/or HDV receptor, said HBV or HDV receptor having an amino acid sequence represented by SEQ ID NO:1.

SEQ ID NOs:1 to 10 refer to the following sequences:

  • SEQ ID NO:1 (Human NTCP)

  • SEQ ID NO:2 (amino acids 265 to 291 of Human NTCP) QLCSTILNVAFPPEVIGPLFFFPLLYM
  • SEQ ID NO:3 (Chimpanzee NTCP)

  • SEQ ID NO:4 (Orang-utan NTCP)

  • SEQ ID NO:5 (Tupaia belangeri / Tree shrew NTCP)

  • SEQ ID NO:6 (Mouse NTCP)

  • SEQ ID NO:7 (Rat NTCP)

  • SEQ ID NO:8 (Dog NTCP)

  • SEQ ID NO:9 (Cynomolgus NTCP)

  • SEQ ID NO:10 (Pig NTCP)

The inventors have identified a novel HBV preS1-specific receptor playing a key role in Hepatitis B virus (HBV) and/or Hepatitis D virus (HDV) infection, the human sodium taurocholate cotransporter polypeptide NTCP/SLC10A1. Expression of this receptor or of certain non-human counterparts allows to transform cells that were previously unable to bind HBV and/or HDV and/or non-susceptible to HBV and/or HDV infection into cells that are HBV and/or HDV binding-competent and/or susceptible to HBV and/or HDV infection. Cells that are already susceptible to HBV and/or HDV infection (e.g. HepaRG cells) show a significantly increased susceptibility upon expression of NTCP.

Furthermore, an alignment of NTCP/SLC10A1 sequences from various species revealed specific amino acid sequences presumed to be responsible for HBV and/or HDV binding and conferring susceptibility to HBV and/or HDV infection. It is possible to introduce these specific amino acid sequences, e.g. by homologous recombination, into the endogenous NTCP/SLC10A1 genes of cells/organisms exhibiting no or low HBV and/or HDV binding or infection susceptibility in order to confer or increase HBV and/or HDV binding-competence and/or infection susceptibility.

These surprising findings allows the development of HBV and/or HDV-susceptible cells, cell lines and non-human animals that can be used for immunological studies and/or for the screening of drugs, post-entry restriction factors and host dependency factors. Furthermore, the identification of this important receptor will allow the identification of novel compounds that are useful in the treatment of HBV and/or HDV infection.

Reference is now made to the figures, wherein

  • Figure 1 shows a sequence alignment of the sodium taurocholate co-transporter polypeptide NTCP/SLC10A1 from different species. Species supporting peptide binding and HBV infection (human, chimpanzee, orang-utan, and Tupaia belangeri), species that are competent in binding HBV-preS-derived lipopeptides without supporting infection (mouse, rat, dog) and species that are unable to bind and do not support infection are depicted. Identical amino acids are highlighted in yellow. Non conserved amino acid changes are shown without shading. The two amino acids (157 and 158) that differ in the non-binding species cynomolgus and pig (Meier et al., Hepatology 2012; Schieck et al., Hepatology 2012 in press) indicate the essential binding site (highlighted by the box);
  • Figure 2 shows that transient transfection of human NTCP and mouse NTCP into HuH7 cells confers binding of an Atto645-labeled HBV preS-lipopeptide (referred to as Myrcludex B, MyrB). HuH7 cells where transiently transfected with a plasmid encoding GFP (left), a plasmids encoding GFP together with human NTCP (middle) and a plasmid encoding GFP and mouse NTCP. 3 days post transfection, cells were incubated with a fluorescently labeled HBV preS-lipopeptide, washed and analyzed by fluorescent microscopy. GFP-fluorescence is shown in the upper left, cells are shown in the lower left, peptide binding is shown in the upper right panel; the merged pictures of transfected and binding competent cells is shown in the lower right panel;
  • Figure 3 shows that stably transduced HepG2 cells expressing human or mouse NTCP specifically bind an HBV preS-lipopeptide. HepG2 cells were stably transduced with hNTCP (upper pictures) or mNTCP (lower pictures) and incubated with 500 nM of an Atto-labelled wildtype HBV preS-lipopeptide (left pictures) or the same concentration of a respective mutant peptide with amino acid exchanges in the essential HBV-receptor binding domain (right pictures). Binding of the peptides was visualized by fluorescence microscopy;
  • Figure 4 shows that stably transduced mouse hepatoma cells (Hep56.1D and Hepa1-6) specifically bind an HBV preS-lipopeptide. HepG2, Hep56.1D and Hepa1-6cells were stably transduced with hNTCP and incubated with 500 nM of an Atto-labelled wildtype HBV preS-lipopeptide. Binding of the peptide was visualized by fluorescence microscopy;
  • Figure 5 shows that HuH7 cells transfected with human NTCP are susceptible to HDV infection. HuH7 inoculated with a HDV-containing human serum do not show any marker of HDV infection 4 days after inoculation (left picture). Following transfection with a human NTCP expression plasmid an HDV delta antigen-specific staining was observed (right picture);
  • Figure 6 shows that endogenous expression of human NTCP in Hep56.1D mouse cell lines renders them susceptible to HDV infection. Hep56.1D mouse hepatoma cell lines alone (mock) or transfected with human NTCP (hNTCP) were infected with an HDV containing serum (right picture). Hepatitis delta antigen expressing cells were counted 5 days post infection. As a second control, human HuH7 cells were transfected with human NTCP or mouse NTCP and infected with HDV (left picture);
  • Figure 7 shows that transfection of human but not mouse NTCP renders HuH7 cells susceptible to infection with hepatitis delta virus (HDV). HuH7 cells were transiently transfected with expression vectors encoding mouse NTCP (left panels) or human NTCP (right 4 panels in 2 different magnifications). At confluence, cells were incubated with a patient's serum containing HDV. 4 days after infection cells were stained with an antiserum detecting nuclear delta antigen;
  • Figure 8 shows immunofluorescence analysis of NTCP (human) transfected mouse Hep56.1D cells after infection with hepatitis delta virus. Hep56.1D mouse hepatoma cell lines were transfected with mouse NTCP (2 panels on the left) or human NTCP (hNTCP) (4 panels on the right in 2 different magnifications) were infected with an HDV-containing serum and stained with a hepatitis delta antigen specific antibody.
  • Figure 9 shows that HepG2 and HuH7 cells stably expressing human NTCP become susceptible to Hepatitis B Virus (HBV) infection. Stably hNTCP transduced HepG2 and HuH7 cell lines were inoculated with HBV at different concentrations of DMSO to induce differentiation processes. Medium was collected on day-5 post infection and HBeAg was quantified. As a specific control for infection an HBV preS-derived lipopeptide (MyrB) was used (left bars). In comparison to HepG2 cells, HuH7 cells produce lower amounts of viral replication markers indicating the presence of a restriction step.

The present invention is now further described by means of the following examples, which are meant to illustrate the present invention, and not to limit its scope.

EXAMPLES

Material & Methods

Sequence of NTCP

The protein sequences of NTCP from different species were obtained from Ensemble (www.ensemble.org).

Alignment

The alignment of NTCP proteins from different species was created by using Vector NTI 9.0 (Invitrogen).

Plasmids and peptides

The human NTCP (hNTCP) containing construct (pCMV6-XL4-hNTCP) was bought from Origene (USA). The open reading frames of hNTCP and NTCP were amplified by PCR and inserted into pWPIlentiviral vector for transient (pWPI-GFP) or stable expression (pWPI-puro).

The peptide used for inhibition of HBV infection has been described previously as Myrcludex B (MyrB). It is a N-myristoylated peptide comprising the 47 amino acid of HBV L protein. ATTO 645 and ATTO 488 (ATTO-TEC, Germany) are fluorescent dyes used to label the peptide for the binding assay. A mutant peptide with an alanine substitution in the essential binding site (amino acids 11-15) was used as control of the binding specificity.

Lentivirus transduction

To produce recombinant lentiviruses, HEK 293T cells were seeded one day prior transfection. 3µg of the envelope protein expression construct pczVSV-G, 9µg of the HIV Gag-Pol expression construct pCMVΔR8.74 and 9µg of the lentiviral vector pWPI were mixed with 25µg polyethyleneimine before adding to 293T cells. The supernatant containing lentiviral pseudoparticles were harvested and concentrated by ultracentrifugation. The precipitated lentiviral particles were resuspended in cell medium.

For transient expression, hepatic cells were incubated with lentiviruses in the presence of 4% PEG8000. The inoculum was removed after overnight incubation. The cells were washed once with PBS and cultivated for 3 days for expression of the target proteins. For the establishment of stable cell lines, 2.5µg/ml puromycin was added to select stably transduced cells. Generally, 90% of hepatic cells survived the selection without significant morphological difference compared to untransduced cells.

Cells

Four hepatic cells were used in this work. Two of them are derived from human (HuH-7 and HepG2) and the other two from mouse (Hep56.1D and Hepa1-6). HEK 293T cell were used for lentiviral production.

Binding assay with fluorescently labeled peptides

To determine the binding competence of hepatocytes, transiently or stably transduced cells were incubated with 200-500 nM fluorescence-labeled peptides in cell medium for 15-60 minutes. Then cells were washed with PBS for 3 times and analyzed by fluorescence microscopy.

HBV and HDV infection assay

HBV particles were obtained from HepAD38 cells. For HBV or HDV infection, cells were inoculated with medium containing 4% PEG 8000 and 10-20 µl virus (100x virus stock) overnight at 37°C. Afterwards, cells were washed three times with PBS and further cultivated for 5 days. Presence of the Hepatitis B virus-antigen (HBeAg) secreted into the culture supernatant was determined by Abbott HBeAg assay (Abbott Laboratories). HDV infection was determined by immuno-staining of HDV infected cells with an anti-HDV sera.

Results

The invention of the HepaRG cell line lead to the identification of peptidic receptor ligands derived from the N-terminal preS1-domain of the large (L) viral surface protein, which specifically bind to HBV-susceptible cells and efficiently block infection. Mapping of essential sites within the peptides revealed the requirement of the lipid moiety and the integrity of a conserved sequence 9-NPLGFFP-15 [SEQ ID NO: 15]. Radioactively and fluorescently labelled peptidic ligands where applied to analyse the biodistribution of the preS/receptor complex mice, rats, dogs, cynomolgus and chimpanzees and the expression patterns and turnover kinetics primary hepatocytes of the respective species or hepatoma cell lines. The results revealed that the receptor: (i) is specifically expressed in liver (ii) becomes induced during differentiation of HepaRG cells, (ii) is down-modulated upon dedifferentiation of PMH and PRH, (iii) shows association with the cytoskeleton allowing little lateral movement within the plasmamembrane, (iv) shows a limited rate of endocytosis (v) is exclusively sorted to the basolateral membrane (vi) conserved binding domain in human, mouse, rat, dog, chimpanzee, but not pig and cynomolgus monkey.

Based on these result the inventors performed a differential affimetrix based expression screen. Up regulated genes in HepaRG-cells undergoing DMSO-induced differentiation were subtracted from to down-regulated genes in PMH during dedifferentiation in the absence of DMSO. The most prominent hits of both screens were combined and subjected to the criteria defined above. Sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1) was the only appropriate candidate meeting these criteria: NTCP, an integral multi-transmembrane protein is exclusively expressed on the basolateral membrane of differentiated hepatocytes. It is scarcely expressed on HepG2, HuH7 and many other hepatoma cell lines. NTCP is instantly induced in HepaRG cells upon DMSO treatment at levels that correspond to the saturation levels of Myrcludex B. It is associated with the cytoskeleton and undergoes slow and regulated (PKC-dependent) endocytosis.

By sequence alignment of NTCP from three groups of hosts (Figure 1), which differ in their infection and binding competency, the inventors defined two critical amino acids of NTCP (amino acids 157 to 158). The consensus sequence (KG) is present in most susceptible and binding-competent hosts. In contrast, the binding incompetent hosts like cynomolgus monkey and pig do not contain this motif.

The inventors transduced hNTCP or mNTCP into HuH-7 cells and performed a peptide-binding assay (Figure 2). In comparison to the control with an empty vector (Mock), both human and mouse derived NTCP bind to the peptide. These signals of bound peptides are correlated to the amount of co-expressed GFP, which indicate the expression level of NTCP.

The inventors further generated four hepatic cells (HuH-7, HepG2, Hep56.1D and Hepa1-6) stably expressing hNTCP or mNTCP. The cells show homogenous binding with the wildtype (WT) peptide but not the mutant peptide (Figure 3). The mouse hepatoma cells expressing hNTCP or mNTCP show a strong binding to the peptide as well (Figure 4).

Although the transfection efficacy is low (∼20%), HuH-7 cells transfected with hNTCP can be infected by HDV (Figure 5). The gained susceptibility to HDV infection by hNTCP could also be observed in both human and mouse cells (Figure 6). Transient transduction of hNTCP confers susceptibility of HuH-7 cell to HDV infection (Figure 7), whereas the mNTCP protein supporting peptide-binding does not support HDV infection. The mouse cell line Hep56.1D supports HDV infection after transduction with hNTCP (Figure 8).

The gained susceptibility to HBV infection by NTCP could be observed in HepG2 cells stably expressing hNTCP (Figure 9). This infection could be specifically inhibited by the peptide Myrcludex B (MyrB) and enhanced by adding DMSO to the cultivation medium. HuH-7 cells expressing hNTCP seem to support HBV infection at a lower level, indicating that an unknown co-factor supporting HBV infection is absent in HuH-7 cells in comparison to HepG2 cells.

SEQUENCE LISTING

  • <110> Ruprecht-Karls-Universität Heidelberg
  • <120> Development of HBV- and/or HDV-susceptible cells, cell lines and non-human animals
  • <130> U30474WO
  • <150> US 61/725,144

    <151> 2012-11-12

  • <160> 15
  • <170> PatentIn version 3.5
  • <210> 1

    <211> 349

    <212> PRT

    <213> Homo sapiens

  • <400> 1

  • <210> 2

    <211> 27

    <212> PRT

    <213> Homo sapiens

  • <400> 2

  • <210> 3

    <211> 349

    <212> PRT

    <213> Pan troglodytes (Chimpanzee)

  • <400> 3

  • <210> 4

    <211> 349

    <212> PRT

    <213> Pongo pygmaeus

  • <400> 4

  • <210> 5

    <211> 349

    <212> PRT

    <213> Tupaia belangeri

  • <400> 5

  • <210> 6

    <211> 362

    <212> PRT

    <213> Mus musculus

  • <400> 6

  • <210> 7

    <211> 362

    <212> PRT

    <213> Rattus norvegicus

  • <400> 7

  • <210> 8

    <211> 392

    <212> PRT

    <213> Canis familiaris

  • <400> 8

  • <210> 9

    <211> 349

    <212> PRT

    <213> Macaca fascicularis

  • <400> 9

  • <210> 10

    <211> 352

    <212> PRT

    <213> Sus scrofa

  • <400> 10

  • <210> 11

    <211> 5

    <212> PRT

    <213> Artificial Sequence

  • <220>

    <223> binding region of HBV

  • <220>

    <221> misc_feature

    <222> (3)..(3)

    <223> Xaa can be Lys, Arg and Val

  • <400> 11

  • <210> 12

    <211> 7

    <212> PRT

    <213> Homo sapiens

  • <400> 12

  • <210> 13

    <211> 47

    <212> PRT

    <213> Hepatitis B virus

  • <400> 13

  • <210> 14

    <211> 47

    <212> PRT

    <213> Artificial Sequence

  • <220>

    <223> mutant MyrB(Ala11-15)

  • <400> 14

  • <210> 15

    <211> 7

    <212> PRT

    <213> Hepatitis B virus

  • <400> 15

QQ群二维码
意见反馈