序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 用于生产高级质耐火材料的硅酸泥及其生产工艺 CN200710195251.X 2007-12-05 CN101219865A 2008-07-16 王杰曾; 叶亚红; 王骏涛; 赵洪亮
发明涉及一种用于生产高级质耐火材料的硅酸泥,所述的水泥主要含有硅酸三、硅酸二钙和酸二钙,但不含Al2O3,且C3S含量高、细度大,该水泥的理论矿物组成为:95~80%C3S、2~14%C2S、3~10%C2F,外掺1~2%萤石、0~6%硫酸钙、0~4%硫酸镁化镁为矿化剂。所述水泥的生产工艺为按照上述组成设计、配制出经混合、粉磨成0.088筛余小于10%的生料,再成坯、干燥后,在1260~1350℃烧成1~6小时,再用超细粉磨装置制成中位粒径D50=2~10μm的水泥即成。本发明具有硬化快、强度高、与微粉和外加剂适应性好、无Al2O3杂质等特点,适合作为高级硅质耐火材料的结合剂和矿化剂。
2 用于耐火建筑组件的石膏复合材料 CN201380029670.X 2013-06-28 CN104471174B 2016-07-20 埃文·R·丹尼尔斯; 乔纳森·纽顿
一种复合材料产品,其包含按重量计60至90%的量的石膏、在整个复合材料中基本上均匀分布的按重量计1.5至26%的量的纤维和按重量计0.5至6%的量的流变改性剂。引发或允许所述复合材料固化,以形成固化的复合材料。所述固化的复合材料为用于防火芯、防火门或防火建筑板的耐火组件。所述耐火组件可以包括建筑板、门板、门芯、门冒头、门边挺、门、门边框或门插入物。
3 用于生产高级质耐火材料的硅酸泥及其生产工艺 CN200710195251.X 2007-12-05 CN100591636C 2010-02-24 王杰曾; 叶亚红; 王骏涛; 赵洪亮
发明涉及一种用于生产高级质耐火材料的硅酸泥,所述的水泥主要含有硅酸三、硅酸二钙和酸二钙,但不含Al2O3,且C3S含量高、细度大,该水泥的理论矿物组成为:95~80%C3S、2~14%C2S、3~10%C2F,外掺1~2%萤石、0~6%硫酸钙、0~4%硫酸镁化镁为矿化剂。所述水泥的生产工艺为按照上述组成设计、配制出经混合、粉磨成0.088筛余小于10%的生料,再成坯、干燥后,在1260~1350℃烧成1~6小时,再用超细粉磨装置制成中位粒径D50=2~10μm的水泥即成。本发明具有硬化快、强度高、与微粉和外加剂适应性好、无Al2O3杂质等特点,适合作为高级硅质耐火材料的结合剂和矿化剂。
4 用于制备隔热复合建筑砌的方法 CN201580025342.1 2015-04-02 CN106458773A 2017-02-22 H·隆布瓦-比尔热; C·罗伊; C·利维
发明涉及用于制备包含矿物泡沫隔热复合砌的方法,所述方法包括以下步骤:a.提供包含至少一个孔的砌块,所述孔具有足够湿或者由防材料组成的壁,以及b.用基本上不含任何的矿物泡沫填充所述孔。本发明还涉及包含砌块的隔热复合砌块,所述砌块包含具有壁的至少一个孔,所述壁任选地包含防水材料,所述孔填充有基本上不含任何铝酸钙的矿物泡沫。
5 用于耐火建筑组件的石膏复合材料 CN201380029670.X 2013-06-28 CN104471174A 2015-03-25 埃文·R·丹尼尔斯; 乔纳森·纽顿
一种复合材料产品,其包含按重量计60至90%的量的石膏、在整个复合材料中基本上均匀分布的按重量计1.5至26%的量的纤维和按重量计0.5至6%的量的流变改性剂。引发或允许所述复合材料固化,以形成固化的复合材料。所述固化的复合材料为用于防火芯、防火门或防火建筑板的耐火组件。所述耐火组件可以包括建筑板、门板、门芯、门冒头、门边挺、门、门边框或门插入物。
6 耐火性建築構成材に使用する石膏複合材 JP2015520597 2013-06-28 JP2015527966A 2015-09-24 エヴァン アール. ダニエルス; ジョナサン ニュートン
複合材製品は、60〜90重量%の量の石膏、前記複合材中に実質的に均一に分布した1.5〜26重量%の量の繊維、及び0.5〜6重量%の量のレオロジー改質剤を含む。複合材の硬化を引き起こすか又はその硬化を可能にして、硬化した複合材を形成する。硬化した複合材は、防火ドアの芯材、防火ドア又は防火建築パネルに使用される耐火構成材である。前記耐火構成材は、建築パネル、ドアの鏡板、ドアの芯材、ドアの横框、ドアの縦框、ドアロックブロック、ドアの縁、又はドアの中桟(insert)を含んでよい。
7 耐火性建築構成材に使用する石膏複合材 JP2015520597 2013-06-28 JP6353832B2 2018-07-04 ダニエルス エヴァン アール.; ニュートン ジョナサン
8 METHOD FOR PRODUCING AN INSULATING COMPOSITE BUILDING BLOCK US15300855 2015-04-02 US20170022116A1 2017-01-26 Hélène LOMBOIS-BURGER; Cédric ROY; Christophe LEVY
A method for producing an insulating composite block including a mineral foam, includes: providing a block including at least one cell having walls which are either sufficiently humid or consist of a water-repellent material, and b. filling the cell with a mineral foam that does not substantially include any calcium aluminate.
9 Gypsum composites used in fire resistant building components US14542930 2014-11-17 US09410361B2 2016-08-09 Evan R. Daniels; Jonathan Newton
A composite product includes gypsum in an amount of 60 to 90% by weight, fibers in an amount of 1.5 to 26% by weight substantially homogeneously distributed through the composite, and a rheology-modifying agent in an amount of 0.5 to 6% by weight. The composite is caused or allowed to cure to form a cured composite. The cured composite is a fire resistant component used in a fire-rated door core, a fire-rated door or a fire-rated building panel. The fire resistant component may include a building panel, a door panel, a door core, a door rail, a door stile, a door lock block, a door border, or a door insert.
10 Gypsum composites used in fire resistant building components US14543001 2014-11-17 US09027296B2 2015-05-12 Evan R. Daniels; Jonathan Newton
A composite product includes gypsum in an amount of 60 to 90% by weight, fibers in an amount of 1.5 to 26% by weight substantially homogeneously distributed through the composite, and a rheology-modifying agent in an amount of 0.5 to 6% by weight. The composite is caused or allowed to cure to form a cured composite. The cured composite is a fire resistant component used in a fire-rated door core, a fire-rated door or a fire-rated building panel. The fire resistant component may include a building panel, a door panel, a door core, a door rail, a door stile, a door lock block, a door border, or a door insert.
11 Corrosion-resistant ceramics US10330023 2002-12-26 US20030138641A1 2003-07-24 Takero Fukudome; Sazo Tsurudono; Tohru Hisamatsu; Isao Yuri
Anti-corrosion ceramics comprising a substrate of at least one kind of silicon-containing ceramics selected from a silicon nitride, a silicon carbide and Sialon, and a surface protection layer formed on the surface of the substrate, wherein the surface protection layer comprises a zirconium oxide stabilized with an element of the Group IIIa of periodic table, and the total amount of Al and Si in the surface protection layer is suppressed to be not larger than 1% by mass. Particularly, the surface layer has a thickness of from 5 to 200 nullm and a porosity of 5 to 30%. The anti-corrosion ceramics exhibits a high resistance against the corrosion due to the water vapor of high temperatures in a region of not lower than 1000null C., and can be preferably used as parts of internal combustion engines such as parts of gas turbine engines, like a turbine rotor, nozzles, a combustor liner and a transition duct.
12 High strength SiC filter and method for the manufacture thereof US10256844 2002-09-27 US20030062303A1 2003-04-03 William Isaac Hoffman; Rudolf A. Olson III
There is provided an improved ceramic foam filter for use in filtering molten metals, metal prepared from a ceramic slurry containing silicon carbide, a colloidal silica binder and at least 10 percent of fumed silica. The filter has enhanced strength properties.
13 Method for producing an insulating composite building block US15300855 2015-04-02 US10040726B2 2018-08-07 Hélène Lombois-Burger; Cédric Roy; Christophe Levy
A method for producing a composite insulating mineral block, includes providing a mineral masonry block including at least one cell with walls having a water absorption rate of less than 5 g/(m2·s) at 10 minutes, and filling the cell with a mineral cement foam, wherein a cement used to produce the mineral cement foam has an aluminum oxide content of less than 20% by weight of the cement.
14 Gypsum Composites Used in Fire Resistant Building Components US15230774 2016-08-08 US20160340587A1 2016-11-24 Evan R. Daniels; Jonathan Newton
A composite product includes gypsum in an amount of 60 to 90% by weight, fibers in an amount of 1.5 to 26% by weight substantially homogeneously distributed through the composite, and a rheology-modifying agent in an amount of 0.5 to 6% by weight. The composite is caused or allowed to cure to form a cured composite. The cured composite is a fire resistant component used in a fire-rated door core, a fire-rated door or a fire-rated building panel. The fire resistant component may include a building panel, a door panel, a door core, a door rail, a door stile, a door lock block, a door border, or a door insert.
15 GYPSUM COMPOSITES USED IN FIRE RESISTANT BUILDING COMPONENTS US14543122 2014-11-17 US20150107172A1 2015-04-23 Evan R. Daniels; Jonathan Newton
A composite product includes gypsum in an amount of 60 to 90% by weight, fibers in an amount of 1.5 to 26% by weight substantially homogeneously distributed through the composite, and a rheology-modifying agent in an amount of 0.5 to 6% by weight. The composite is caused or allowed to cure to form a cured composite. The cured composite is a fire resistant component used in a fire-rated door core, a fire-rated door or a fire-rated building panel. The fire resistant component may include a building panel, a door panel, a door core, a door rail, a door stile, a door lock block, a door border, or a door insert.
16 Corrosion-resistant ceramics US10330023 2002-12-26 US06682821B2 2004-01-27 Takero Fukudome; Sazo Tsurudono; Tohru Hisamatsu; Isao Yuri
Anti-corrosion ceramics comprising a substrate of at least one kind of silicon-containing ceramics selected from a silicon nitride, a silicon carbide and Sialon, and a surface protection layer formed on the surface of the substrate, wherein the surface protection layer comprises a zirconium oxide stabilized with an element of the Group IIIa of periodic table, and the total amount of Al and Si in the surface protection layer is suppressed to be not larger than 1% by mass. Particularly, the surface layer has a thickness of from 5 to 200 &mgr;m and a porosity of 5 to 30%. The anti-corrosion ceramics exhibits a high resistance against the corrosion due to the water vapor of high temperatures in a region of not lower than 1000° C., and can be preferably used as parts of internal combustion engines such as parts of gas turbine engines, like a turbine rotor, nozzles, a combustor liner and a transition duct.
17 High strength SiC filter and method for the manufacture thereof US10256844 2002-09-27 US06663776B2 2003-12-16 William Isaac Hoffman; Rudolph A. Olson, III
There is provided an improved ceramic foam filter for use in filtering molten metals, metal prepared from a ceramic slurry containing silicon carbide, a colloidal silica binder and at least 10 percent of fumed silica. The filter has enhanced strength properties.
18 PRE-BLEND COMPOSITION, AND METHOD OF MAKING JOINT COMPOUND USING SAME EP02736570.9 2002-04-15 EP1397322A1 2004-03-17 AYAMBEM, Amba; SMITH, Richard, E.; TARAVELLA, Salvatore
A pre-blend composition for preparation of joint compound including water, a cellulose ether thickener, and about 19% or less by weight of a salt selected from the group consisting of potassium carbonate, potassium sulfate, sodium acetate, and mixtures thereof, wherein the composition is essentially free of alumina, is disclosed.
19 SILICON CARBIDE FILTER AND METHOD FOR THE MANUFACTURE THEREOF-- EP02800418.2 2002-10-01 EP1444028A1 2004-08-11 HOFFMAN, William Isaac,; OLSON, Rudolph, A, III
A ceramic foam filter for use in filtering molten metalS. A filter body is prepared from a ceramic slurry containing silicon carbide, a colloidal silica binder and at least 10 percent of fumed silica. The filter has enhanced strength properties.
20 Funktionsbeschichtung und Verfahren zu deren Erzeugug, insbesondere zum Verschleissschutz, Korrosionsschutz oder zur Temperaturisolation EP02006990.2 2002-03-27 EP1258542A3 2004-01-28 Hruschka, Martin; Hasenkox, Ulrich; Klamt, Guido

Es wird eine Funktionsbeschichtung auf einem Substrat vorgeschlagen, die eine anorganische Matrixphase, die möglichst weitgehend aus einem Phosphat besteht, und einen darin eingebetteten Funktionswerkstoff aufweist. Weiter wird ein Verfahren zu deren Erzeugung vorgeschlagen, wobei zunächst mindestens ein Funktionswerkstoff in einer Matrixlösung mit einer flüssigen Komponente und einem Phosphat dispergiert, und die so erzeugte, gelartige Dispersion in Form einer Beschichtung auf das Substrat aufgebracht wird. Danach wird diese Beschichtung mittels einer Wärmebehandlung in die Funktionsbeschichtung mit der anorganische Matrixphase und mit dem darin integrierten Funktionswerkstoff überführt. Die vorgeschlagene Funktionsbeschichtung eignet sich vor allem für den Verschleiß- oder Korrosionsschutz oder für die Temperaturisolation, beispielsweise in der Kraftfahrzeug- oder Wärmetechnik.

QQ群二维码
意见反馈