序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种化锌纳米柱阵列的制备方法 CN201710693227.2 2017-08-14 CN107344730A 2017-11-14 刘战辉; 张李骊; 李庆芳; 张雅男; 邵绍峰
发明提供一种化锌纳米柱阵列的制备方法。利用目前工艺成熟的微电子加工技术,本发明在带有纳米阵列图案的GaN模板上,以Zn(NO3)2和六甲基磷酸三酰胺溶液作为ZnO纳米柱阵列生长的前驱溶液,采用水热法重辅助倒置生长制备高度有序、尺寸均匀的ZnO纳米柱阵列。通过制作不同图案的纳米阵列模板生长不同的氧化锌纳米柱阵列;通过调整Zn(NO3)2和六甲基磷酸三酰胺浓度和纳米柱阵列生长温度来调控纳米柱尺寸。本发明通过调整不同的工艺参数可以制备各种高度有序、尺寸均匀的ZnO纳米柱阵列。
2 一种形貌高度规则的非晶钯系微米棒及其制备方法 CN201611043614.3 2016-11-24 CN106673077A 2017-05-17 郭林; 康建新
发明公开了一种形貌高度规则的非晶钯系微米棒及其制备方法,属于无机化合物新材料制备技术领域。本发明将钯盐溶解在二甲亚砜中,得到浅黄色溶液;在90~140℃油浴中保温至溶液变为橙红色;使用离心机将固体沉淀从溶液中分离出,将固体沉淀用溶剂洗涤并干燥,得到形貌高度规则的多孔或非多孔状非晶钯系微米棒。所述的微米棒整体外观呈标准六棱柱状,任何两个侧面的夹都是120°;其两个顶面均由突出的三个菱形面拼成;多孔六棱柱在两个顶端每个菱形面上各有一个孔。本发明首次合成了具有规则形貌的非晶多孔状/非多孔状钯系微米棒,该方法条件温和,得到的微米棒尺寸和形貌均一;无任何表面活性剂辅助,合成方法简单易行。
3 Sm-Fe-N系列合金粉末的制造方法 CN200410101356.0 1998-12-24 CN1618554A 2005-05-25 河野芳之; 久米道也; 一宫敬治
发明的Sm-Fe-N系列合金磁性粉末的制造方法中,Sm-Fe与化物的混合物,是借助于共沉淀法得到氢氧化合物之类的沉淀物,再经过烧成而得到的。氧化物的混合物再与金属混合,经过加热,扩散还原,从而得到Sm-Fe合金粉末。然后,原封不动地放置在炉内,在氮元素的氛围中进行氮化处理,就能获得具有上述平均粒径和平均针状度的Sm-Fe-N系列的磁性粉末。把这种磁性粉末混合在树脂中,做成一定的形状,即可用作粘结磁
4 分散颗粒的制备方法 CN96198847.9 1996-11-22 CN1203566A 1998-12-30 D·R·都茨施; K·J·威斯
发明公开了一种通过在约8~64℃的温度酸化含有糖类或多糖类或者糖类或多糖类和金属离子的氢基浆料来制备分散的棱形碳酸钙的方法。生成产物的比表面为10~120m2/g,可用于涂料、塑料、涂层纸、纸填料和制药。
5 Sm-Fe-N系列合金粉末及其制造方法 CN98812663.X 1998-12-24 CN100513015C 2009-07-15 河野芳之; 久米道也; 一宫敬治
发明涉及Sm-Fe-N系列合金磁性粉末,合金粉末的平均粒径在0.5~10微米的范围内,以粒子针状度的粒子数平均值表示的平均针状度在75%以上。针状度以下式表示:针状度(%)=(b/a)×100%,式中,a是粒子图像中的最长直径,b是与a垂直的最大直径。也可以用圆度的粒子数平均值表示的平均圆度来代替平均针状度,这种平均圆度在78%以上,圆度的定义用下式表示:圆度=(4πS/L2)×100%,式中,S是粒子的投影面积,L是粒子图像的周长。针状度或圆度在上述数值范围内的粒子,其粒径在单磁区的范围内,而且粒子的形状接近球形,所以能获得非常高的剩磁和非常高的矫顽。特别是,如果使用Sm2Fe17N3系列的磁性粉末,其粉末的平均粒径在0.6~10微米的范围内,平均针状度在85%以上时,能确保矫顽力在15kOe以上,剩磁可在125emu/g以上。本发明的Sm-Fe-N系列合金的磁性粉末的制造方法中,Sm-Fe与化物的混合物,是借助于共沉淀法得到氢氧化合物之类的沉淀物,再经过烧成而得到的。氧化物的混合物再与金属混合,经过加热,扩散还原,从而得到Sm-Fe合金粉末。然后,原封不动地放置在炉内,在氮元素的氛围中进行氮化处理,就能获得具有上述平均粒径和平均针状度的Sm-Fe-N系列的磁性粉末。把这种磁性粉末混合在树脂中,做成一定的形状,即可用作粘结磁
6 用于合成氮化镓粉末的改进的系统和方法 CN200580040055.4 2005-10-26 CN101065320A 2007-10-31 F·A·旁丝; R·加西亚; A·贝尔; A·C·托马斯; M·R·史蒂文思
一种通过在管式反应器中在受控的条件下结合高纯镓和高纯制备高质量GaN粉末的方法。在受控的条件下的氨和镓之间的反应制备了多孔镓熔体且至完全反应,产生具有化学计量比的氮浓度和六形纤锌矿结构的高纯结晶GaN粉末。
7 Sm-Fe-N系列合金粉末的制造方法 CN200410101356.0 1998-12-24 CN1286602C 2006-11-29 河野芳之; 久米道也; 一宫敬治
发明的Sm-Fe-N系列合金磁性粉末的制造方法中,Sm-Fe与化物的混合物,是借助于共沉淀法得到氢氧化合物之类的沉淀物,再经过煅烧而得到的。氧化物的混合物再与金属混合,经过加热,扩散还原,从而得到Sm-Fe合金粉末。然后,原封不动地放置在炉内,在氮元素的氛围中进行氮化处理,就能获得具有上述平均粒径和平均针状度的Sm-Fe-N系列的磁性粉末。把这种磁性粉末混合在树脂中,做成一定的形状,即可用作粘结磁
8 Sm-Fe-N系列合金粉末及其制造方法 CN98812663.X 1998-12-24 CN1283142A 2001-02-07 河野芳之; 久米道也; 一宫敬治
发明涉及Sm-Fe-N系列合金磁性粉末,合金粉末的平均粒径在0.5~10微米的范围内,以粒子针状度的粒子数平均值表示的平均针状度在75%以上。针状度以下式表示:针状度(%)=(b/a)×100%,式中,a是粒子图像中的最长直径,b是与a垂直的最大直径。也可以用圆度的粒子数平均值表示的平均圆度来代替平均针状度,这种平均圆度在78%以上,圆度的定义用下式表示:圆度=(4πS/L2)×100%,式中,S是粒子的投影面积,L是粒子图像的周长。针状度或圆度在上述数值范围内的粒子,其粒径在单磁区的范围内,而且粒子的形状接近球形,所以能获得非常高的残余磁性和非常高的顽磁。特别是,如果使用Sm2Fe17N3系列的磁性粉末,其粉末的平均粒径在0.6~10微米的范围内,平均针状度在85%以上时,能确保顽磁力在15kOe以上,残余磁性可在125emu/g以上。本发明的Sin-Fe-N系列合金的磁性粉末的制造方法中,Sin-Fe与化物的混合物,是借助于共沉淀法得到氢氧化合物之类的沉淀物,再经过烧成而得到的。氧化物的混合物再与金属混合,经过加热,扩散还原,从而得到Sm-Fe合金粉末。然后,原封不动地放置在炉内,在氮元素的氛围中进行氮化处理,就能获得具有上述平均粒径和平均针状度的Sm-Fe-N系列的磁性粉末。把这种磁性粉末混合在树脂中,做成一定的形状,即可用作粘结磁
9 Samarium-iron-nitrogen series alloy powder and its production JP33467998 1998-11-25 JPH11241104A 1999-09-07 KONO YOSHIYUKI; KUME MICHIYA; ICHINOMIYA TAKAHARU
PROBLEM TO BE SOLVED: To obtain an Sm-Fe-N series magnetic material without using mechani cal stress such as pulverization by making the average grain size and coefficient of the acicular degree of alloy powder in specified ranges. SOLUTION: In this Sm-Fe-N series alloy powder, the average grain size is 0.5 to 10 μm and the coefficient of the acicular degree defined by following formula is >=75%, where the coefficient of the acicular degree (%)=(b/a)×100%, (a) = the longest size of the grain images and (b) = the maximum size vertical to (a). In the Sm2Fe17N3 alloy spherical grains, as the most preferable ranges, the average grain size is made to 0.7 to 4 μm and the coefficient of the acicular degree is made to >=90% by which its coercive force can be made to >=17 kOe and the residual magnetization can be made to >=130 emu/g. The alloy powder can be obtained by the following procedures. Sm as a rare earth element and Fe as a transition metal are dissolved in acid and Sm, Fe ions and a substance to form insoluble salt are allowed to react and are precipitated. The precipitates are fired to make them into metallic oxide which is reduced.
10 Regeneration of two-layered crystalline lithium aluminate using li(+) aqueous solution JP19188784 1984-09-14 JPS6174645A 1986-04-16 JIYON RESURII BAABA ZA SAADO
11 MORPHOLOGICALLY AND SIZE UNIFORM MONODISPERSE PARTICLES AND THEIR SHAPE-DIRECTED SELF-ASSEMBLY US15678344 2017-08-16 US20170369777A1 2017-12-28 Joshua E. COLLINS; Howard Y. BELL; Xingchen YE; Christopher Bruce MURRAY
Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.
12 Metal oxide nano powder and manufacturing method of the same US11979571 2007-11-06 US20080193760A1 2008-08-14 Chang Kyu Rhee; Min Ku Lee; Young Rang Uhm; Jin Ju Park; Byung Sun Han; Hi Min Lee; Seung-Hee Woo
Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
13 Systems and methods for synthesis of gallium nitride powders US10997254 2004-11-24 US07255844B2 2007-08-14 Fernando A. Ponce; Rafael Garcia; Abigail Bell; Alan C. Thomas; Michael R. Stevens
A method of producing high quality GaN powder by combining high purity gallium and high purity ammonia in a tube reactor under controlled conditions. A reaction between the ammonia and gallium under the controlled conditions produces a porous gallium melt and to a full reaction, yielding high purity crystalline GaN powders with a stoichiometric nitrogen concentration and a hexagonal wurtzite structure.
14 Perovskite titanium-containing composite oxide particle, production process and uses thereof US11246373 2005-10-11 US20060078492A1 2006-04-13 Tadatoshi Kurozumi; Akihiko Shirakawa; Hitoshi Yokouchi
The present invention provides a perovskite titanium-containing composite oxide fine particle represented by the formula: (A1XA2(1−X))YTiO3±δ (wherein 0≦X≦1, 0.98≦Y≦1.02, 0≦δ≦0.05, A1 and A2 each is an atom selected from a group consisting of Ca, Sr, Ba, Pb and Mg and are different from each other), wherein the specific surface area is from 1 to 100 m2/g and the D2/D1 value is from 1 to 10.
15 Sm-Fe-N alloy powder and process for the production thereof US09582293 2000-06-23 US06334908B1 2002-01-01 Yohsiyuki Kawano; Michiya Kume; Keiji Ichinomiya
A magnetic powder of an Sm—Fe—N alloy, which has a mean particle diameter of 0.5 to 10 &mgr;m, and either an average acicularity of 75% or above or an average sphericity of 78% or above. The powder exhibits an extremely high residual magnetization and an extremely high coercive force, since particles characterized by the above acicularity or sphericity have particle diameters approximately equal to that of the single domain particle and nearly spherical particle shapes. The powder can be produced by preparing an Sm—Fe oxide by firing a coprecipitate corresponding to the oxide, mixing the obtained oxide with metallic calcium and subjecting the mixture to reduction/diffusion and nitriding successively.
16 Process for the preparation of discrete particles of calcium carbonate US567754 1995-12-05 US5741471A 1998-04-21 Donald Richard Deutsch; Kenneth James Wise
A process for the precipitation of discrete prismatic calcium carbonate particles by carbonation of aqueous calcium hydroxide containing a saccharide or polysaccharide or a saccaride or polysaccharide and a metal ion at temperatures of from about 8.degree. C. to about 64.degree. C. is disclosed. The resulting product has specific surface areas between about 10 m.sup.2 /g and about 120 m.sup.2 /g and is useful in paints, plastics, paper coating, paper filling, and pharmaceutical applications.
17 Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper US491366 1990-03-09 US5043017A 1991-08-27 June D. Passaretti
A form of calcium carbonate, acid-stabilized by the addition to finely divided calcium carbonate of one of a calcium- chelating agent and a conjugate base, such as sodium hexametaphosphate, followed by the addition of a weak acid, such as phosphoric acid, is disclosed. A process for producing this material, and a method for its use in the making of neutral to acidic paper in order to improve the optical properties of the paper are also disclosed.
18 Crystalline 3-layer lithium aluminates US412612 1982-08-30 US4540509A 1985-09-10 John L. Burba, III
Ion exchange resins in the base form, e.g., DOWEX MWA--1--OH ion exchange resin, which contain crystalline Al(OH).sub.3, e.g., gibbsite, and/or bayerite, and/or norstrandite, are treated with hot, concentrated LiX solutions (where X is anion) to prepare 3-layer crystalline LiX.2Al(OH).sub.3.nH.sub.2 O in the resin.
19 Composite pigment comprising a metal carbonate crystals precipitated in situ JP2001558157 2001-01-24 JP2003522271A 2003-07-22 ビルーブ,リチヤード・アール; フインチ,アーネスト・エム; ラビシヤンカー,エス・エイ
(57)【要約】 シリケート又は酸化物鉱物の粒子上に現場での沈降の結果として金属炭酸塩の多数の粒子を付着させたシリケート又は酸化物鉱物の粒子を含んでなる複合顔料。
20 Processing of paper for the inorganic filler by polysaccharides JP51618395 1994-11-04 JPH09506397A 1997-06-24 フェアチャイルド,ジョージ・エイチ
(57)【要約】 本発明は、アニオン多糖又はアニオン改質多糖の少なくとも1種によって処理した無機物質の微粉状カチオン荷電粒子を含む組成物に関する。 本発明はさらに、改良された強度の紙の製造方法に関する。 この方法は無機物質の微粉状粒子を用意し、この粒子をアニオン多糖又はアニオン改質多糖の少なくとも1種によって処理し、処理済み粒子を製紙のアルカリプロセス中にセルロース繊維に加えることを含む。 また、アニオン多糖又はアニオン改質多糖の少なくとも1種によって処理した無機物質の微粉状カチオン荷電粒子を含むアルカリ紙組成物も開示する。
QQ群二维码
意见反馈