序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 金属络合物和过化氢的制造方法 CN201380048834.3 2013-08-02 CN104640854B 2016-08-24 小江诚司; 加藤贤治; 长田昌辉
发明的目的在于,提供能够替代以往的蒽醌法的、新型的过化氢的基于直接合成的制造方法以及该制造方法中使用的催化剂。本发明为下述通式(1)、(2)、(3)或(4)所示的金属络合物。
2 在自动化过氧化氢生产中回收性过氧化氢 CN200880008163.7 2008-03-14 CN101631743A 2010-01-20 X·周; K·哈马克; D·S·塞斯
在具有小截面尺寸的长通道的装置中,用性介质通过液-液萃取从含H<sub>2</sub>O<sub>2</sub>的有机溶液中回收自动化方法中产生的过氧化氢,所述通道有利于从有机溶液中有效萃取水性过氧化氢。
3 化氢的制备方法 CN93114940.1 1993-11-20 CN1087600A 1994-06-08 平山秀二; 广本和彦; 门前博之; 近藤信幸; 石上春树; 石村善正
在反应介质中,通过氢和接触制造过氧化氢的方法中,使用在铌氧化物、铌复合氧化物、钽氧化物、钽复合氧化物、钼氧化物,或钨氧化物上载持有铂族金属的铂族金属催化剂。
4 纳米模拟半胱氧化酶 CN201710157957.0 2017-03-16 CN106955704A 2017-07-18 陈伟; 胡爱玲; 邓豪华; 彭花萍; 林秀玲
发明公开一种纳米模拟半胱氧化酶,所述的纳米氧化铜是以快速沉淀法制备得到。纳米氧化铜具有优良的半胱氨酸氧化酶活性,可催化氧气氧化半胱氨酸生成胱氨酸和过氧化氢。可用于将半胱氨酸快速转化为胱氨酸、将氧气转化为过氧化氢等。本发明所使用的纳米氧化铜制备过程简单快速。本发明纳米氧化铜模拟半胱氨酸氧化酶,可实现半胱氨酸快速转化为胱氨酸以及氧气快速转化为过氧化氢。
5 金属络合物和过化氢的制造方法 CN201380048834.3 2013-08-02 CN104640854A 2015-05-20 小江诚司; 加藤贤治; 长田昌辉
发明的目的在于,提供能够替代以往的蒽醌法的、新型的过化氢的基于直接合成的制造方法以及该制造方法中使用的催化剂。本发明为下述通式(1)、(2)、(3)或(4)所示的金属络合物。
6 在自动化过氧化氢生产中回收性过氧化氢 CN200880008163.7 2008-03-14 CN101631743B 2014-10-01 X·周; K·哈马克; D·S·塞斯
在具有小截面尺寸的长通道的装置中,用性介质通过液-液萃取从含H2O2的有机溶液中回收自动化方法中产生的过氧化氢,所述通道有利于从有机溶液中有效萃取水性过氧化氢。
7 利用光过化方法的聚合物组合物和聚合引发剂 CN200980153851.7 2009-12-21 CN102264837A 2011-11-30 O·卡巴舍斯库
发明公开了一种橡胶改性聚合物组合物,其主要具有核-壳形态。所述橡胶改性聚合物组合物可以是包含苯乙烯、聚丁二烯和高接枝引发剂的聚苯乙烯,其中高接枝引发剂通过使单重态接触包含烯丙氢或二烯的烯,形成氢过氧化物或过氧化物来形成。所述单重态氧可通过使基态氧接触光催化剂形成,如曝光的光敏染料。
8 化氢的制备方法 CN93114940.1 1993-11-20 CN1035320C 1997-07-02 平山秀二; 广本和彦; 门前博之; 近藤信幸; 石上春树; 石村善正
在反应介质中,通过氢和接触制造过氧化氢的方法中,使用在铌氧物、铌复合氧化物、钽氧化物、钽复合氧化物、钼氧化物,或钨氧化物上载持有铂族金属的铂族金属催化剂。
9 金属錯体及び過酸化素の製造方法 JP2012205229 2012-09-19 JP6063681B2 2017-01-18 小江 誠司; 加藤 賢治; 長田 昌輝
10 Recovery of aqueous hydrogen peroxide in the auto-oxidation h2o2 manufacturing JP2009553812 2008-03-14 JP2010521398A 2010-06-24 エス セチ,ダルビール; チョー,シンリャン; ハムマック,ケビン
約5ミクロンから約5mmの範囲内の少なくとも1つの断面の大きさを有する長いチャンネルをもつ装置中で自動酸化プロセス例えばアントラキノン自動酸化におけるH 含有有機溶液と性抽出媒体とを接触させて有機溶液から水性媒体への過酸化水素の液体−液体抽出を行い、次にH の減少した有機溶液から抽出された過酸化水素を含む水性媒体を分離してH 含有水溶液を得る自動酸化プロセスで生成された過酸化水素を回収する方法であって、抽出による物質移動で従来のシーブトレーカラムよりも能率的であり、しかもこのようなカラムよりもコストが低い抽出装置において、過酸化水素含有有機溶液から水性過酸化水素の液体−液体抽出を行う改善された方法の提供。
【選択図】図1
11 Direct manufacturing method of hydrogen peroxide JP27851598 1998-09-30 JP3382860B2 2003-03-04 イン リー ウォー; エオン パルク サン; ウェー リー チュール; ワー ヨー ユン; キ パルク ヨン; サン チャン ヨン
12 PORTABLE CHEMICAL OXYGEN GENERATOR US15811148 2017-11-13 US20180154192A1 2018-06-07 Richard P. Imbruce; David Cowan
A portable chemical oxygen generator for delivering oxygen to a patient is described. The generator includes a housing containing a reaction chamber. Within the reaction chamber is a quantity of a peroxide adduct. A valve is provided with a lower portion of the valve in fluid communication with the reaction chamber. An upper portion of the valve is in fluid communication with a reservoir that holds a quantity of an aqueous solution. An internal chamber is formed within the valve by releasable seals that separate the internal chamber from the upper portion of the valve and a lower portion of the valve. The internal chamber holds a quantity of a peroxide-decomposing catalyst. The generator also includes a valve actuator. Operation of the valve actuator releases the seals in the valve and creates a fluid path from the reservoir through the internal chamber into the reaction chamber. When the valve is actuated, the aqueous solution flows from the reservoir through the internal chamber and into the reaction chamber. This flow washes the catalyst into the reaction chamber along with the aqueous solution. The solution and catalyst mix with the peroxide adduct and cause an oxygen-generating reaction.
13 Portable chemical oxygen generator US15366891 2016-12-01 US09849312B1 2017-12-26 Richard P. Imbruce; David Cowan
A portable chemical oxygen generator for delivering oxygen to a patient is described. The generator includes a housing containing a reaction chamber. Within the reaction chamber is a quantity of a peroxide adduct. A valve is provided with a lower portion of the valve in fluid communication with the reaction chamber. An upper portion of the valve is in fluid communication with a reservoir that holds a quantity of an aqueous solution. An internal chamber is formed within the valve by releasable seals that separate the internal chamber from the upper portion of the valve and a lower portion of the valve. The internal chamber holds a quantity of a peroxide-decomposing catalyst. The generator also includes a valve actuator. Operation of the valve actuator releases the seals in the valve and creates a fluid path from the reservoir through the internal chamber into the reaction chamber. When the valve is actuated, the aqueous solution flows from the reservoir through the internal chamber and into the reaction chamber. This flow washes the catalyst into the reaction chamber along with the aqueous solution. The solution and catalyst mix with the peroxide adduct and cause an oxygen-generating reaction.
14 Chemical process US11476894 2006-06-29 US20070012579A1 2007-01-18 Magnus Rosvall; Rolf Edvinsson Albers
The invention relates to a process for the production of alkali metal chlorate comprising: providing an electrochemical cell comprising an anode and a cathode in separate anode and cathode compartments; contacting the cathode with an electrolyte comprising at least one organic mediator and one or more organic or mineral acids; reacting the organic mediator at the cathode to form at least one reduced form of the mediator; reacting the at least one reduced form of the mediator with oxygen to form hydrogen peroxide; contacting the anode with an anolyte comprising alkali metal chloride; reacting chloride at the anode to form chlorine that is hydrolysed; and, reacting the hydrolysed chlorine to form chlorate.
15 Agents and methods for generation of active oxygen US700592 1996-08-14 US5741887A 1998-04-21 Ken-ichi Morita; Shigeru Otsuka; Kiyoshi Saito
Agents containing polyaniline of one or more specified kinds shown by Formulas (1)-(4) given below can generate active oxygen efficiently and economically when contacted with a liquid having oxygen dissolved therein: ##STR1## where A is a negative ion, n is an integer between 2 and 5000, x and y are numbers such that x+y=1 and 0.ltoreq.y.ltoreq.0.5.
16 Photochemical production of hydrogen peroxide US402463 1989-09-05 US4946566A 1990-08-07 R. D. Samuel Stevens; Stephen R. Cater; Clarke E. Slemon
The present invention relates to a photochemical process for the manufacture of hydrogen peroxidewherein a 9,10-phenanthraquinone compound is exposed, in the presence of an effective amount of a hydrogen donor alcohol, to electromagnetic radiation to photoreduce the 9,10-phenanthraquinone compound to the correpsonding dihydro-compound,wherein the dihydro-compound obtained is oxidized to produce hydrogen peroxide and to regenerate the 9,10-phenanthraquinone compound, andcharacterized in that said 9,10-phenanthraquinone compound is selected from the group of compounds consisting of unsubstituted 9,10-phenanthraquinone and 9,10-phenanthraquinone substituted by one or more members of the class consisting of alkyl groups of 1 to 8 carbon atoms, --CF.sub.3, F and --SO.sub.3 M, M being H or an alkali metal.
17 Process for preparing hydrogen peroxide US547193 1983-10-31 US4547354A 1985-10-15 Frances S. Pinault
An improved process for the acid-catalyzed hydrolysis tertiary butyl hydroperoxide to form hydrogen peroxide wherein an organic solvent is added to the hydrolysis zone, which solvent promotes the partitioning of hydrogen peroxide and oxidizable organic material into separate aqueous and organic phases, respectively.
18 Metal cage complexes and production thereof US355663 1982-03-08 US4497737A 1985-02-05 Alan M. Sargeson; Anthony J. Herlt; John M. Harrowfield
Hydrogen peroxide is produced by oxidation of a coordination complex of a metal ion capable of existing in at least two oxidation states and a ligand, the coordination complex being sufficiently stable for the metal ion to be oxidized and reduced without decomposition of the complex and the metal ion being in its lower oxidation state. In a cyclic process, the step of reduction of the complex with the metal ion in its higher oxidation state precedes the oxidation step, and the reduction and oxidation steps are repeated sequentially. Novel coordination complexes which may be used in the process have the formula: ##STR1## in which n represents an integer; M represents a cobalt ion or other metal ion having at least two oxidation states; x and y, which may be the same or different, each represent .tbd.N, .tbd.P or .tbd.C--R', in which R' represents a hydrogen or halogen atom, or a hydroxyl, nitro, nitroso, amino, alkyl, or cyano group, or a group of the formula --COOR", --COCOOR" or --NH--COCH--CHCOOR" in which R" is a hydrogen atom or alkyl group; provided that when M represents a cobalt ion and n is 2, x and y do not both represent .tbd.N.
19 Polymer composition and the polymerization initiator using light peroxidation process JP2011543608 2009-12-21 JP2012514079A 2012-06-21 カバシエスク,オルガ
A rubber-modified polymeric composition having predominately core-shell morphology is disclosed. The rubber-modified polymeric composition can be a polystyrene comprising styrene, polybutadiene, and a high-grafting initiator formed by contacting singlet oxygen with an olefin containing an allylic hydrogen or a diene to form a hydroperoxide or peroxide. The singlet oxygen can be formed by contacting ground state oxygen with a photo catalyst, such a photosensitive dye exposed to light.
20 Method for producing hydrogen peroxide JP51296494 1993-11-16 JP3394043B2 2003-04-07 秀二 平山; 和彦 広本; 春樹 石上; 善正 石村; 信幸 近藤; 博之 門前
QQ群二维码
意见反馈