序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 3D成形可能なシート材料 JP2018517266 2016-10-13 JP2018534393A 2018-11-22 フンツィカー,フィリップ; ゲイン,パトリック; クリツィンガー,ヨハネス; シェンカー,ミヒェル
本発明は、3D成形可能なシート材料、3D成形物品の調製のための方法、3D成形可能なシート材料の調製のためおよび3D成形可能なシート材料の延伸加工性を増大させるためのセルロース材料および少なくとも1種の粒子状無機充填剤材料の使用、3D成形プロセスにおける3D成形可能なシート材料の使用ならびにこの使用による3D成形可能なシート材料を含む3D成形物品に関する。
82 高いスウェル比を有するポリエチレン組成物 JP2016118863 2016-06-15 JP6262289B2 2018-01-17 ヤコボス・ヴィットリアス; ジャンス・ウィーゼック; バーンド・ローター・マークジンク; ゲラルドゥス・マイヤー; ウルフ・シュラー; フォルカー・ドレ; ジョナス・フレドリッチ・エンダール; ディーター・リルゲ; バーバラ・ガール
83 電極の作製方法 JP2016004094 2016-01-13 JP6113309B2 2017-04-12 竹村 保彦; 森若 圭恵
84 金属合金とセラミック樹脂の複合体及びその製造方法 JP2016527922 2014-07-15 JP2016525032A 2016-08-22 ギョン リ,ウン; ワン チョウ,ヨン
金属合金とセラミック樹脂の複合体が開示される。本発明の金属合金とセラミック樹脂の複合体は、表面の油成分を界面活性剤を用いて除去し、脱脂された表面を、塩酸、硫酸、窒酸、ギ酸から選択される1種以上の酸溶液でエッチングして、平均表面粗さが80〜150μmの凹凸部アンダーカットが形成された金属合金;及び、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリアセチル、ポリカーボネート、ポリエステル、ポリフェニレンオキシドから選択される1種以上の樹脂30〜70〜重量%、炭化ケイ素20〜60重量%、無機フィラー5〜7重量%、分散剤3〜5重量%を含むセラミック樹脂材;を含み、凹凸部アンダーカットが形成された上記金属合金の表面に上記セラミック樹脂材を射出成形により一体化したことを特徴とする。本発明によれば、放熱機能を有するセラミック樹脂と金属合金とを一体化させることにより、各種電子機器、家電製品、医療機器、車両用構造部品、車両搭載用品、建築資材の部品、その他の構造用部品、外装用部品だけでなく、LED照明装置などで有用に使用可能であるとの効果を提供できるようになる。
85 電極の作製方法 JP2016004094 2016-01-13 JP2016105409A 2016-06-09 竹村 保彦; 森若 圭恵
【課題】電池に使用される活物質粒子等よりなる電極の導電性を高める。
【解決手段】従来、用いられていたグラファイト粒子、アセチレンブラック、炭素繊維等
の1次元以下の拡がりしか有しない導電助剤に代えて、1乃至10枚のグラフェンよりな
る2次元カーボンを導電助剤として用いる。2次元的な広がりを有する導電助剤は、活物
質粒子や他の導電助剤と接する確率が向上するため、導電率を改善できる。
【選択図】図1
86 高いスウェル比を有するポリエチレン組成物 JP2015537297 2013-10-22 JP2015532349A 2015-11-09 ヤコボス・ヴィットリアス; ジャンス・ウィーゼック; バーンド・ローター・マークジンク; ゲラルドゥス・マイヤー; ウルフ・シュラー; フォルカー・ドレ; ジョナス・フレドリッチ・エンダール; ディーター・リルゲ; バーバラ・ガール
向上したスウェル比と機械的性質を有し、特にブロー成形品の製造に適したポリエチレン組成物で、以下の特徴を有する。1)密度0.945g/cm3以上、0.952g/cm3未満2)MIF/MIP比15〜303)せん断誘起結晶化指数(SIC)2.5〜5.5
87 シート製造装置、及び解繊部 JP2013211677 2013-10-09 JP2015074848A 2015-04-20 樋口 尚孝; 山上 利昭; 阿部 信正
【課題】被解繊物を解繊する解繊部を有し、当該解繊部において、繊維長を短くしすぎることなく解繊し、実用的な強度を有するシートを製造することのできるシート製造装置を提供する。
【解決手段】本発明に係るシート製造装置は、回転部を回転させて被解繊物を乾式解繊処理する解繊部を含み、乾式解繊処理された解繊物の少なくとも一部を堆積させて加熱してシートを製造するシート製造装置であって、前記回転部は、回転中心側に位置する基部と、前記基部から前記回転中心から離れる方向に突設する複数の突部とを備える複数の回転プレートを、前記回転中心の延びる方向において前記突部が接するように積層する。
【選択図】なし
88 Heat treatment polymer powder JP2013530411 2011-09-27 JP2013543457A 2013-12-05 クリストファー・エイ・バーテロ; マヌエル・エイ・ガルシア−ライナー; アンソニー・デカーマイン; スコット・エフ・デフェリス
本発明は、最も高い融解結晶形の含量を増加させるための、多形半結晶性又は結晶形成ポリマーの熱処理に関する。 こうした熱処理により、高温での粉体流動性が求められる用途のための、一貫した、均一の融解範囲を有し、粉体流動性及び粉末粒度の耐久性が改善されたポリマー粉末が得られる。 粉体特性の改善に加えて、上記の粉末から製造される物品は、外観及び機械的性質のいずれにおいても、優れた物理的性質を呈示する。 従って、本発明は、記載の方法によって製造されるポリマー粉末及び物品も含む。
89 Electrical device JP2011179362 2011-08-19 JP2012064571A 2012-03-29 TAKEMURA YASUHIKO; MORIWAKA YOSHIE
PROBLEM TO BE SOLVED: To increase the conductivity of an electrode including an active material particle and the like used for a battery.SOLUTION: Two-dimensional carbon including 1 to 10 sheets of graphene is used for a conductive assistant instead of the conventionally used conductive assistant including graphite particles, acetylene black, carbon fiber, or the like which has just one-dimensional expansion at most. Since the conductive assistant with two-dimensional expansion can increase the probability of contact with an active material particle or another conductive assistant, the conductivity can be improved.
90 JPS6026699B2 - JP12503481 1981-08-10 JPS6026699B2 1985-06-25 YAMAGUCHI TETSUO
91 Method of vulcanizing rubber hose with reinforcing thread therein JP21336882 1982-12-07 JPS59104922A 1984-06-18 CHIYOUKAI HIROKI; HONNA SHIROU; NAKAMURA YASUTAKA; KITAYAMA HIROSHI
PURPOSE:To prevent steam from entering a rubber hose with reinforcing threads therein thereby preventing the reinforcing threads from being deteriorated by heat and humidity, by fitting clamping devices having an inner diameter smaller than the outer diameter of said hose onto the opposite ends of the hose when the hose is vulcanized directly with steam in an autoclave. CONSTITUTION:When the rubber hose 8 with reinforcing threads therein is vulcanized by blowing steam 22 directly into the autoclave 20, the clamping devices (preferably of an ethylene-propylene-diene type rubber, styrene-butadiene type rubber, nitrile-butadiene type rubber, etc.) 30 having an inner diameter smaller than the outer diameter of the hose 8 are fitted onto the opposite ends of the hose 8 so that the cover rubber layer 14 and the inner rubber layer 10 of the hose 8 are brought in firm contact with each other. It is also possible that after the opposite ends of the hose 8 are covered with caps 32 each having an opening with an inner diameter approximately similar to the inner diameter of the hose 8, the clamping devices 30 are fitted thereon.
92 Cutting method of rubber molding and holder therefor JP16468182 1982-09-21 JPS5954540A 1984-03-29 TSUKADA FUKUJIROU; TAKENO YOSHINAO
PURPOSE:To produce a large number of products with a high accuracy in a short time by a method in which rubber products are fitted into and held on plural fixing parts drilled in a holder, and the rubber products are cut with the holder. CONSTITUTION:Rubber moldings 3 are fitted into and held on plural fixing parts axially drilled in a holder 1 of a thick cylinder form with a rotary fitting face 6 through notches 8 through which the rubber moldings are inserted. The rotary fitting face 6 is pushed into the fitting part 10 of a rotator 4, the holder 1 is supported on the rotator, a cutter is sent toward the right angle to the axis as the rotator 4 turns, and plural rubber moldings with the holder 1 are sliced. The cutting of the rubber moldings can thus be attained.
93 Continuous molding method for rubber tube JP12503481 1981-08-10 JPS5825947A 1983-02-16 YAMAGUCHI TETSUO
PURPOSE:To improve operation efficiency sharply by cutting a rubber pipe not vulcanized, which is molded continuously by means of an extrusion molding machine, at every predetermined length and putting each pipe in dies, to carry them successively into a vulcanizing chamber and press-vulcanizing them. CONSTITUTION:A rubber tube not vulcanized is extruded from an extrusion molding machine, and cut by means of a fixed-size cutter. The rubber tube not vulcanized cut in prescribed length is charged into a recess 12, and encased into a cope 15 and a drag 11 (they function as the die 18). The die 18 is carried into the vulcanizing chamber 21 by means of a conveyor 20, and vulcanized. Holding frames 24 in the vulcanizing chamber 21 complete vulcanization while being turned in the counterclockwise direction, and discharge the die 18 from a carry-out port 27. The die 18 is opened, and the rubber tube vulcanized is extracted.
94 COMPOSITE OF METAL ALLOY AND CERAMIC RESIN AND METHOD FOR PREPARING SAME PCT/KR2014006357 2014-07-15 WO2015009010A1 2015-01-22 LEE EUN KYUNG; CHO YONG WAN
Disclosed is a composite of a metal alloy and a ceramic resin. The composite of a metal alloy and a ceramic resin of the present invention comprises: a metal alloy having groove and protrusion undercuts which have an average surface roughness of 80-150 μm and which are formed by removing grease on a surface of the metal alloy using a surfactant and by etching the degreased surface using an aqueous solution of at least one acid selected from hydrochloric acid, sulfuric acid, nitric acid, and formic acid; and a ceramic resin material containing 30-70 wt% of at least one resin selected from polypropylene, polyamide, polyphenylene sulfide, polyacetyl, polycarbonate, polyester, and polyphenylene oxide, 20-60 wt% of silicon carbide, 5-7 wt% of an inorganic filler, and 3-5 wt% of a dispersant, wherein the ceramic resin material is integrated with the surface of the metal alloy having the groove and protrusion undercuts by means of injection molding. Due to the integration of the ceramic resin having a heat radiation function and the metal alloy, the present invention can be used for various electronic products, home appliances, medical devices, automotive structural parts, vehicle-mounted products, construction material parts, and other structural parts, exterior parts, LED lighting devices, and the like.
95 VORRICHTUNG ZUM FILTERN EINER KUNSTSTOFFSCHMELZE EP15732167.0 2015-06-29 EP3164257B1 2018-05-09 POHL, Harald; STEINMANN, Markus
96 SYSTEMS AND METHODS FOR MANUFACTURING BULKED CONTINUOUS FILAMENT EP15861579 2015-11-17 EP3220782A4 2018-04-04 CLARK THOMAS R
A method of recycling polymers and other plastics comprises: (A) grinding recycled PET bottles (or other suitable recycled polymer) into a group of flakes; (B) washing the flakes; (C) identifying and removing impurities, including impure flakes, from the group of flakes; (D) passing the group of flakes through an MRS extruder while maintaining the pressure within the MRS portion of the MRS extruder below about 5 millibars; (E) passing the resulting polymer melt through at least one filter having a micron rating of less than about 50 microns; and (F) preparing the polymer melt for recycling into a new product. In various embodiments, the above process may be utilized in the recycling of, for example, polytrimethylene terephthalate (PTT), polypropylene, polyvinyl chloride (PVC), high-density polyethylene (HDPE), polystyrene (PS), expanded polystyrene (EPS), or any other suitable polymer or plastic
97 GEL PULVERIZATION DEVICE, METHOD FOR MANUFACTURING POLYACRYLIC ACID (POLYACRYLATE) SUPERABSORBENT POLYMER POWDER, AND SUPERABSORBENT POLYMER POWDER EP14839332 2014-08-28 EP3040361A4 2017-07-12 TORII KAZUSHI; OMORI KOHEI; TANAKA NOBUYA; SAKAMOTO SHIGERU; TADA KENJI; SATO HIRONORI
Provided is a water absorbent resin that is useful to sanitary materials such as a disposable diaper, a sanitary napkin, and a blood absorbent for medical use each having a higher liquid permeability and a higher water absorbing speed. Further provided is a water absorbent resin powder that is useful to sanitary materials such as a disposable diaper, a sanitary napkin, and a blood absorbent for medical use each having increased in absorbency of a liquid and in heat retaining property. A gel grinding device (100) to be used to produce a water absorbent resin, includes: a screw (11); a feed opening (14); an extrusion opening (16); a porous plate (12); and a barrel (13), the barrel (13) including a return preventing member (19) provided on an inner surface thereof, and the return preventing member (19) satisfying at least one of specific parameters.
98 EXTRUDER SYSTEM FOR ADDITIVE MANUFACTURING EP16165142.7 2016-04-13 EP3081364A1 2016-10-19 MESHORER, Yishai; VASILEVSKI, Alexander

An extruder system (100) for additive manufacturing is disclosed. The extruder system comprises: a heatable elongated barrel (24) having a nozzle (12) at a tip (122) thereof; and an extrusion screw (20) mounted coaxially and rotatably in the barrel, such that upon rotation of the screw in the barrel an additive manufacturing building material is advanced in the barrel towards the tip; the screw having therein an axial bore (11) configured for receiving at least one elongated mechanical member (13) for controllably varying at least one of an amount and a type of material extruded through the nozzle.

99 HEAT TREATED POLYMER POWDERS EP11831268 2011-09-27 EP2627687A4 2016-09-07 BERTELO CHRISTOPHER A; GARCIA-LEINER MANUEL A; DECARMINE ANTHONY; DEFELICE SCOTT F
The invention relates to heat treatment of polymorphic semicrystalline or crystallizable polymers to increase the content of the highest melting crystalline form. Such heat treatment results in a polymer powder that has a consistent, uniform melting range, improved flow and improved durability of the powder particle size for applications that require powder flow at elevated temperatures. In addition to improved powder properties, the articles produced from the powders also exhibit better physical properties in both appearance and in mechanical properties. Thus the invention also includes polymer powders and articles produced by the described processes.
100 COMPOSITE OF METAL ALLOY AND CERAMIC RESIN AND METHOD FOR PREPARING SAME EP14792367 2014-07-15 EP2930017A4 2015-10-28 LEE EUN KYUNG; CHO YONG WAN
Disclosed is a metal alloy-and-ceramic resin composite. The metal alloy-and-ceramic resin composite includes: a metal alloy, in which recess and protrusion undercuts are formed to provide an average surface roughness of 80 µm to 150 µm by degreasing a surface thereof using a surfactant, and etching the degreased surface using an aqueous solution of at least one acid selected from hydrochloric acid, sulfuric acid, nitric acid, and formic acid; and a ceramic resin including 30 wt% to 70 wt% of at least one resin selected from polypropylene, polyamide, polyphenylene sulfide, polyacetylene, polycarbonate, polyester, and polyphenylene oxide, 20 wt% to 60 wt% of silicon carbide, 5 wt% to 7 wt% of inorganic filler, and 3 wt% to 5 wt% of a dispersing agent. The ceramic resin is integrated on the surface of the metal alloy which is formed with the recess and protrusion undercuts, through injection molding. According to the present invention, since the metal alloy-and-ceramic resin composite is formed by integrating the ceramic resin having a heat dissipation function and the metal alloy, the metal alloy-and-ceramic resin composite can be usefully utilized in LED lighting apparatuses, as well as in various electronic devices, home appliances, medical devices, vehicle structure components, vehicle-mounted components, building material components, and other structure components, and exterior components.
QQ群二维码
意见反馈