序号 | 专利名 | 申请号 | 申请日 | 公开(公告)号 | 公开(公告)日 | 发明人 |
---|---|---|---|---|---|---|
241 | Pin with cold plate | JP2012532060 | 2009-12-17 | JP2013506996A | 2013-02-28 | ロン,サイ−チェン; スミス,ドナルド,リン |
コールドプレートには、入口、出口、台座、およびUdを有するエンクロージャーが含まれる。 この入口と出口は流体の通路になっているため、流体は入口から入ってエンクロージャーを通過して出口に到達することができる。 台座は台座プレートから形成され、台座プレートにはエンクロージャーの内部に向いたアイランド部が含まれる。 複数のピンは、アイランド部から蓋に向って伸びる。 これらのピンは、らせん形状にすることができる。 その場合、ピンの横断面はピンの長さに沿って変化する。
【選択図】図3 |
||||||
242 | Monitoring method of cryo pump, and a cryo pump | JP2009167436 | 2009-07-16 | JP4912438B2 | 2012-04-11 | 敏之 木村 |
243 | Cryopump system and control method thereof | JP2010211282 | 2010-09-21 | JP2012067633A | 2012-04-05 | ANDO MASAMICHI |
PROBLEM TO BE SOLVED: To further uniformly share a load between a plurality of compressors of a cryopump system.SOLUTION: This cryopump system 1000 includes a plurality of cryopumps 10, a plurality of compressor units 102 and 104 respective operated in parallel in response to control output for supplying working gas to the plurality of cryopumps 10 and a cryopump controller 100 for determining the control output to the plurality of respective compressor units 102 and 104. The cryopump controller 100 adjusts a preset value used for determining the control output on at least one compressor unit 102 and 104 so as to level an operation state of the respective compressor units 102 and 104. | ||||||
244 | Cold trap and vacuum exhaust device | JP2010035043 | 2010-02-19 | JP2011167647A | 2011-09-01 | TANAKA HIDEKAZU |
PROBLEM TO BE SOLVED: To provide a cold trap which enables to restore an exhaust target volume to a desired degree of vacuum for a short time, and a vacuum exhaust device. SOLUTION: The cold trap 210 is provided with a refrigerator 222 and a cold panel 220 connected thermally to the refrigerator 222 and cooled. A rough surface 242 is formed on the cold panel 220. The cold trap 210 is, for example, arranged at an exhaust gas flow passage 214 connecting a vacuum chamber 216 to a turbo-molecular pump 212 and freezes on the surface of the cold panel 220 a part of gas sucked to the turbo-molecular pump 212 through the exhaust gas flow passage 214 from the vacuum chamber 216 and discharged, to trap. COPYRIGHT: (C)2011,JPO&INPIT | ||||||
245 | Cryopump and method for monitoring cryopump | JP2009167436 | 2009-07-16 | JP2011021550A | 2011-02-03 | KIMURA TOSHIYUKI |
<P>PROBLEM TO BE SOLVED: To monitor an operational status suitable for vacuum processing in a vacuum device to which the cryopump is attached. <P>SOLUTION: In a cryopump, during a control of a first stage cryopanel to a target temperature, a control part performs: first determination determining whether or not a temperature of a second stage cryopanel is increased higher than a warning temperature set lower than an upper limit temperature of the second stage cryopanel set in a vacuum device; and second determination determining whether the temperature of the second stage cryopanel is continuously increased for more than a set time within a temperature range set not more than the warning temperature. During the control to the target temperature, the control part may perform third determination determining whether the a state in which the temperature of the second stage cryopanel during exhaust operation is separated from a minimum achieving temperature of the second stage cryopanel measured in the beginning of operation of the cryopanel, is continued for more than a duration time set longer than the set time. <P>COPYRIGHT: (C)2011,JPO&INPIT | ||||||
246 | Method of operating a continuous processing trap apparatus and the trap device | JP2001008325 | 2001-01-16 | JP4046474B2 | 2008-02-13 | 清司 柳澤; 典彦 野村; 伸治 野路 |
247 | Vacuum device | JP2006523540 | 2004-07-14 | JP2007502960A | 2007-02-15 | シュナッケ エルンスト; シラー ディルク; ディーツ ホルガー |
本発明は真空装置に関し、該真空装置は複数のクライオポンプ(10)、殊に互いに並列的に接続され複数のクライオポンプを備えている。 さらに少なくとも1つの圧縮装置(16)を設けてあり、該圧縮装置は媒体供給管路(12)を冷却装置(10)に接続している。 媒体戻り管路(14)は、同じく圧縮装置(16)及びクライオポンプ(10)に接続されている。 媒体供給管路(12)と媒体戻り管路(14)との間に、媒体のための貯蔵容器(20)を配置してある。 さらに媒体供給管路内に圧力測定装置(30)を設けてある。 圧力測定装置は制御装置(32)を介して供給弁(26)に接続されている。 クライオポンプ(10)に生じている圧力差をできるだけ一定に保つために、媒体供給管路(12)内の圧力が所定の閾値を超えた場合に、供給弁(26)は開かれるようになっており、その結果、媒体は貯蔵容器(20)内に流れ込む。 | ||||||
248 | Self-cleaning low temperature refrigeration system | JP2005017975 | 2005-01-26 | JP2005114354A | 2005-04-28 | LITTLE WILLIAM A |
<P>PROBLEM TO BE SOLVED: To remove residual oil and other contaminants from a refrigerant stream flowing to low temperature stages of a cryogenic refrigerator. <P>SOLUTION: A stream of vapor and liquid refrigerant coming from an air-cooled condenser is injected into a cyclone chamber 32 through an inlet tube 34. While the liquid drains down a conical section 36 and out through a liquid line 38, the vapor phase moves up into a packing of metal platelets 42 which is cooled by a returning stream of cold vapor passing through a tube 48 wrapped around a column. A portion of the vapor condenses on the platelets and is maintained in equilibrium with the vapor. Since high molecular weight contaminants are more soluble in the liquid phase, they are carried down the column with the drops of condensate and are swept out with the liquid fraction through the liquid line 38. <P>COPYRIGHT: (C)2005,JPO&NCIPI | ||||||
249 | Operation method and system for multisystem refrigerator, and refrigerating device | JP2001236393 | 2001-08-03 | JP2003049770A | 2003-02-21 | FUNAYAMA MAKOTO; TANAKA HIDEKAZU; YAMAMOTO HISASHI; AOKI KAZUTOSHI |
PROBLEM TO BE SOLVED: To equilibrate performances between refrigerators without observation of valve timing and via a simple structure. SOLUTION: When gas compressed in a single compressor 10 is supplied to a plurality of refrigerators 31 to 33 via valves 21 to 23 arranged for the refrigerators respectively, inverters 61 to 63 slightly stagger opening/closing periods of the valves respectively. COPYRIGHT: (C)2003,JPO | ||||||
250 | Cryogenic water pump | JP50382494 | 1993-05-18 | JP3305717B2 | 2002-07-24 | ダグラス・エフ エイトケン,; ロランド・ピー グラハム,; ロバート・デイ ブラツドフオード,; マニング,カレン・ジエイ; スチーブン・エイ ミシヤウド,; フイリツプ・エイ レツサード, |
251 | Freeze separation of gas components from a gas mixture | JP2000520214 | 1998-11-05 | JP2001522982A | 2001-11-20 | ハックフォルト・ヘルムート |
(57)【要約】 【課題】 本発明は凍結分離によってガス混合物〜ガス成分を分離する方法および装置に関する。 【解決手段】 分離するべきガス成分はガス混合物中の他のガス成分に比較して最も低い蒸気圧を有している。 運転温度は分離するべきガス成分が実質的に完全に凍結分離される様に選択する。 この運転温度において支配的である、他のガス成分の分圧は運転温度での他のガス成分の蒸気圧よりも低く維持する。 分離するべき成分の凍結分離の後に他のガスはポンプ搬出する。 装置は少なくとも2つの冷却容器を装備している。 ガス混合物は各冷却容器で所定の分圧を調整するようにこれら冷却容器に交互に供給される。 | ||||||
252 | Liquid cooling trap | JP52869797 | 1997-02-07 | JP2001519709A | 2001-10-23 | エス ハウシュルツ デーナ; グー ヨウファン |
(57)【要約】 気相化学反応システムにおける凝縮可能な蒸気を、効果的にかつ効率良く収集するための液体冷却捕捉器(30)は、2段より成る。 第1段は捕捉器の入口領域(80)を含み、捕捉器の入口を詰まらせるおそれのある凝縮とその結果の固体の付着を避けるために、大きな空間を有し、非常に低効率の熱交換器となるよう意図的に設計されている。 第2段(112)はより効率の良い熱交換器より成り、凝縮と付着をより大きな表面積とより長い流路にわたって効率よく広げる。 第2段(112)は、捕捉器の第1段の後に残存する凝縮可能な蒸気の量がいかに少なかろうとも、それを一掃し除去するための、非常に効率のよい熱交換器である。 流れる凝縮可能な蒸気が凝縮しうる表面を増大させることによって、捕捉器の流れ伝導性を大きく低下させることなく、捕捉器全体としての効率を高めるために、第2段(112)は、冷却コイル管(120)および冷却円錐(146)またはフィン(154)を備えている。 | ||||||
253 | Method for recovering exhaust gas and device therefor | JP2000074783 | 2000-03-16 | JP2001259356A | 2001-09-25 | HAYASHI KENJI; NAGATA JUNICHI; FUNAHASHI SHINICHI |
PROBLEM TO BE SOLVED: To provide a method for recovering an exhaust gas and a device therefor capable of recovering a large volume of volatile organic compounds such as a solvent in the exhaust gas at a low cost and efficiency and recycling the recovered volatile organic compound. SOLUTION: The method comprises a process consisting of the first step of absorbing the volatile organic compound gas in the exhaust gas from an emission source 10 in water by a scrubber 14, the second step of freeze- concentrating the water containing the volatile organic compound obtained from said first step through a freeze concentrator 18 and separating the water containing a high level of the organic compound from ice, the third step of utilizing cold of ice obtained from the second step through a heat-exchanger 36 and the fourth step of recycling the water containing the high level of the volatile organic compound. It is preferable that the fourth step uses a distiller 22 in separating the volatile organic compound and the water, and further preferable that the fifth step to supply the separated water in the fourth step to the first step is added to the process described above. | ||||||
254 | Cryogenic freezing apparatus | JP2000309235 | 2000-10-10 | JP2001194018A | 2001-07-17 | OKUMURA NOBUAKI; HAMASHIMA TAKANORI |
PROBLEM TO BE SOLVED: To provide a cryogenic freezing apparatus wherein the degree of a vacuum in a vacuum heat insulation tank is kept unchanged and stabilized over a long period of time without causing the cost-up of the apparatus and workability in operation is improved. SOLUTION: An adsorption panel 51 and a hydrogen storing alloy 54 are disposed in a vacuum heat insulation tank 10, and most parts of molecules having relatively high solidifying points other than hydrogen molecules among molecules in the vacuum heat insulation tank 10 are adsorbed with the adsorption panel and the hydrogen molecules are adsorbed with the hydrogen storing alloy 54. COPYRIGHT: (C)2001,JPO | ||||||
255 | Trap device | JP5061099 | 1999-02-26 | JP2000249058A | 2000-09-12 | HORIE KUNIAKI; ABE YUJI; NAKADA TSUTOMU; ARAKI YUJI |
PROBLEM TO BE SOLVED: To reliably capture a low vapor pressure component in exhaust gas and to prevent re-dispersion of the captured substance. SOLUTION: This trap device 30 is provided with a trap container 36 positioned in the downstream side of a vacuum processing chamber process a substrate and a low vapor pressure component in exhaust gas introduced in the trap container 36 is stacked in the trap container 36 for removal. A cooling device 50 is provided for cooling exhaust gas to temperature lower than a condensation temperature of an easily liquefiable gas component contained in the exhaust gas. | ||||||
256 | Cycle cryopump system stop for the first group of gas | JP53272797 | 1997-03-12 | JP2000506584A | 2000-05-30 | ロッツ,フランシス,ティー.; ロングスワース,ラルフ,シー. |
(57)【要約】 第一群気体クライオポンプ・システムは、混合冷媒を用いた圧縮機式絞りサイクル冷凍機を含む。 低温冷媒が、真空室内に設置されたクライオポンプ面を通って流れ、その表面で水蒸気は凍結する。 冷媒は、その後、熱交換器内を、圧縮機からの冷媒流と交差して通過する。 熱交換器に入り、熱交換器を出る冷媒流は、実質的に室温の非断熱ライン通る。 露出した冷却ラインは、全て排除されている。 絞り装置とクライオポンプの低温面は、一体的なユニットを形成し、中間ラインを置かずに、直接、熱交換器の流経路と接続する。 圧縮機/後部冷却器ユニットは、熱交換器およびクライオポンプ面から、都合に応じた距離をとって設置することができ、熱交換器は、クライオポンプ面と直接的に隣接するよう真空室の外側の別個のハウジング内に設置される。 熱交換器のハウジングは、真空室の真空と通じていてもよいし、隔絶されていてもよい。 選択された混合冷媒は、制限された、選択可能な温度範囲の間で、広い範囲の冷却容量を提供する。 従って、選択された温度範囲の中で、いくつかの気体が、その他の気体を除外して、選択的に集められる。 霜取り運転の間、排水皿が、クライオポンプ面から落ちる水滴を集める。 | ||||||
257 | Gas processing apparatus and method for suing the same | JP1966498 | 1998-01-30 | JPH11219936A | 1999-08-10 | SEKINE MAKOTO; HAYASAKA NOBUO; OKUMURA KATSUYA |
PROBLEM TO BE SOLVED: To efficiently recover gas exhausted from a chamber or the like at low cost. SOLUTION: This apparatus is provided with a processing container 1 to which gas to be used for a prescribed processing is introduced, a piping system 3 for exhausting gas from the processing container 1, exchanging means 17 for exchanging a cooling trap 7 arranged in the middle of the piping system 3 with a cold trap 8 saved from the piping system, regeneration means 18 for removing gas trapped in the cold trap 8 saved from the piping system 3, and regenerating the cold trap, and recovery means 12 for recovering the gas removed from the cold trap 8 by the regenerating means 18. COPYRIGHT: (C)1999,JPO | ||||||
258 | In application to increase how and separation process that a high degree of freezing of the pressure of the steam due to absorption | JP50639691 | 1991-02-26 | JP2930414B2 | 1999-08-03 | CHENGU CHENNEN |
This invention introduces an absorption vapor pressure enhancement operation. In the process, a mass of solvent vapor is absorbed into an absorbing solution under a first pressure and an equivalent amount of second vapor is produced under a second pressure that is substantially higher than the first pressure. The pressure enhancement is accomplished by the dilution of the absorbing solution. A vapor pressure enhancement operation (98, 99) applied to a low pressure vapor is functionally equivalent to compressing a low pressure vapor. By using a multiple stage pressure enhancement operation (98, 99), a very high level of temperature lifting of heat can be accomplished. The process can be adopted in processes in which low pressure vapors are generated. Examples are freeze drying processes and multiple phase transformation processes such as Vacuum Freezing Processes, Eutectic Freezing Processes and Distillative Freezing Processes. | ||||||
259 | Cryo-slamming device | JP9862489 | 1989-04-18 | JP2608953B2 | 1997-05-14 | カーメン、ピウノ; ジョン、ジー、ライナー; スティーブン、エー、リブシー; フランク、ギブソン; マーク、ザルツバーグ |
A method and apparatus for ultrarapid cooling of tissue samples against a chilled cryogenic surface. The cryogenic surface (20) is enclosed in a high vacuum chamber (21) during cooling of the cryogenic surface. Dry non-condensable room temperature gas is introduced from an external source (50) to raise the chamber pressure just prior to slamming or plunging a sample against the cryogenic surface. The cryogenic surface is heated for regeneration or cleaing purposes between each successive sample. | ||||||
260 | Steam cryopump | JP28267095 | 1995-10-04 | JPH08226382A | 1996-09-03 | DEERU JIEI MISHIMAA |
PROBLEM TO BE SOLVED: To complete a cycle including defrosting, a pause and re-refrigeration by providing a freezing surface made of one coil, a conductive heat exchanger connected to the outlet of the coil, first and second refrigerant paths and a valve means. SOLUTION: This steam cryopump is provided with a freezing surface 23 made of one coil provided in the work space of a vacuum chamber, and a conductive heat exchanger 17 connected to the outlet of the coil. A first refrigerant path has a coil, and heat exchangers 11 and 15 for cooling refrigerant from the conductive heat exchanger 17, and a second refrigerant path has a high temperature heat exchanger 6 for heating refrigerant from the conductive heat exchanger 17. The coil, the conductive heat exchanger 17 and the first and the second refrigerant path are selectively connected by a valve means 26. Thus, the freezing surface 23 sets atmospheric pressure at the vacuum changer cyclically, always enables internal cooling, and preparation is made for quickly re-cooling a cooling surface during each defrosting cycle and a cryoexhaust cycle following a pause. COPYRIGHT: (C)1996,JPO |