序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Synchrotron injector system and operating method for drift tube linear accelerator US15553410 2015-07-10 US10051722B2 2018-08-14 Kazuo Yamamoto; Sadahiro Kawasaki; Hiromitsu Inoue
When accelerating first ions, radio frequency power is fed to a drift tube linear accelerator so that the phase difference between an accelerating half cycle for accelerating the first ions in one of the plurality of drift tube gaps and the accelerating half cycle for accelerating the accelerated first ions reaching the next drift tube gap is set to a first accelerating cycle phase difference; and when accelerating second ions having a charge-to-mass ratio lower than the first ions, the radio frequency power is fed to the drift tube linear accelerator so that the phase difference between an accelerating half cycle for accelerating the second ions in the one drift tube gap and the accelerating half cycle for the accelerated second ions reaching the next drift tube gap is set to a second accelerating cycle phase difference that is larger than the first accelerating cycle phase difference.
142 Particle beam irradiation system US15154090 2016-05-13 US09937363B2 2018-04-10 Kenichi Takizawa; Hidehito Asano
An irradiation apparatus attached to a rotary gantry includes a middle housing unit and a lower housing unit. Touch sensor apparatuses are attached to a middle housing unit, and touch sensor apparatuses are attached to a lower housing unit. The touch sensor apparatus includes a cover, a pair of cover support apparatuses for attaching the cover to a support member of the middle housing unit, and a sensor unit attached to each cover support apparatus. When the cover comes into contact with a bed and moves toward the support member during rotation of the irradiation apparatus, a link such as a cover support apparatus activates the sensor unit, and a contact signal is output. The touch sensor apparatuses also function in the same manner.
143 SYNCHROTRON INJECTOR SYSTEM AND OPERATING METHOD FOR DRIFT TUBE LINEAR ACCELERATOR US15553410 2015-07-10 US20180092197A1 2018-03-29 Kazuo YAMAMOTO; Sadahiro KAWASAKI; Hiromitsu INOUE
When accelerating first ions, radio frequency power is fed to a drift tube linear accelerator so that the phase difference between an accelerating half cycle for accelerating the first ions in one of the plurality of drift tube gaps and the accelerating half cycle for accelerating the accelerated first ions reaching the next drift tube gap is set to a first accelerating cycle phase difference; and when accelerating second ions having a charge-to-mass ratio lower than the first ions, the radio frequency power is fed to the drift tube linear accelerator so that the phase difference between an accelerating half cycle for accelerating the second ions in the one drift tube gap and the accelerating half cycle for the accelerated second ions reaching the next drift tube gap is set to a second accelerating cycle phase difference that is larger than the first accelerating cycle phase difference.
144 ULTRA-COMPACT MASS ANALYSIS DEVICE AND ULTRA-COMPACT PARTICLE ACCELERATION DEVICE US15329153 2015-07-29 US20170330739A1 2017-11-16 Takashi HOSAKA
A mass analyzer includes a main substrate, an upper substrate adhered to the main substrate, and a lower substrate. A mass analysis room (cavity) is formed in the main substrate and penetrates from an upper surface of the first main substrate to a lower surface of the first main substrate. A vertical direction (Z direction) to the main substrate by the upper substrate, both sides of the lower substrate, a travelling direction (X direction) of charged particles and a right angle to the Z direction by the main substrate, and both sides of a right-angled direction (Y to Z direction) and the X direction by a side surface of the main substrate are surrounded. A central hole is open in the side plate of the main substrate that the charged particles enter. The charged particles enter the mass analysis room through the central hole formed in the first main substrate.
145 Synchrotron injector system, and synchrotron system operation method US15024737 2013-11-26 US09661735B2 2017-05-23 Kazuo Yamamoto; Sadahiro Kawasaki; Hiromitsu Inoue
A synchrotron injector system comprising a first ion source which generates a first ion, a second ion source which generates a second ion having a smaller charge-to-mass ratio than a charge-to-mass ratio of the first ion, a pre-accelerator having the capability to enable to accelerate both the first ion and the second ion, a low-energy beam transport line which is constituted in such a way to inject either the first ion or the second ion into the pre-accelerator, and a self-focusing type post-accelerator which accelerates only the first ion after acceleration which is emitted from the pre-accelerator.
146 ENERGY RECOVERY LINAC FOR RADIOISOTOPE PRODUCTION WITH SPATIALLY-SEPARATED BREMSSTRAHLUNG RADIATOR AND ISOTOPE PRODUCTION TARGET US15143383 2016-04-29 US20170076830A1 2017-03-16 David R. Douglas; Rolland Paul Johnson; Andrew Kimber; Vasiliy S. Morozov; Amy Sy; Geoffrey A. Krafft
A method and electron linac system for production of radioisotopes is provided. The electron linac is an energy recovery linac (ERL) with an electron beam transmitted through a thin bremsstrahlung radiator. Isotopes are produced through bremsstrahlung photon interactions in an isotope production target that is spatially separated from the bremsstrahlung radiator. The electron beam does not pass through the isotope production target. The electron beam energy is recollected and reinjected into the linac accelerating structure. The reduction of material in the beam by removing the isotope production target and making the radiator thin is the essential aspect of the invention because large spreads in energy and transverse scattering angles caused by material in the beam preclude efficient energy recovery. The method described here can reduce the cost of energy to produce a quantity of radioisotope by more than a factor of 3 compared to a non-ERL bremsstrahlung method.
147 LINEAR ACCELERATOR ACCELERATING MODULE TO SUPPRESS BACK-ACCELERATION OF FIELD-EMITTED PARTICLES US15260101 2016-09-08 US20170071054A1 2017-03-09 Stephen V. Benson; Frank Marhauser; David R. Douglas; Lucas J. P. Ament
A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.
148 PARTICLE BEAM IRRADIATION SYSTEM US15154090 2016-05-13 US20160332002A1 2016-11-17 Kenichi TAKIZAWA; Hidehito ASANO
An irradiation apparatus attached to a rotary gantry includes a middle housing unit and a lower housing unit. Touch sensor apparatuses are attached to a middle housing unit, and touch sensor apparatuses are attached to a lower housing unit. The touch sensor apparatus includes a cover, a pair of cover support apparatuses for attaching the cover to a support member of the middle housing unit, and a sensor unit attached to each cover support apparatus. When the cover comes into contact with a bed and moves toward the support member during rotation of the irradiation apparatus, a link such as a cover support apparatus activates the sensor unit, and a contact signal is output. The touch sensor apparatuses also function in the same manner.
149 Linear accelerator US14694567 2015-04-23 US09474144B2 2016-10-18 Janusz Harasimowicz; Ian Shinton
A linear accelerator is disclosed, having a series of interconnected cavities through at least some of which an rf signal and an electron beam are sent, comprising at least one variable coupler projecting into the a cavity of the series, a control apparatus adapted to interpret an electrical signal from the coupler and derive diagnostic information as to the electron beam therefrom, wherein the control apparatus is further adapted to vary the interaction of the at least one coupler with the rf signal in dependence on the diagnostic information. Thus, the accelerator properties can be adjusted by encouraging or inciting an Higher-Order Mode (“HOM”) having a desired effect such as bunching and/or deflecting. The coupler could be rotateable, and partially or fully retractable, to allow its influence to be adjusted and/or for it to be removed from service when not needed. Several such probes could be available, approaching the cavity from different directions or at different locations, or approaching different cavities. The coupler can be asymmetric, in order to exert an appropriate influence on the cavity and provoke a useful HOM. For example, it can be elongate with at least one directional deviation, such as a hockey stick. Generally, however, the appropriate shape for the coupler will be dependent on the shape of the cavity with which it is working and the specific HOMs that are to be excited.
150 Cargo inspection system US14460112 2014-08-14 US09279901B2 2016-03-08 Alan Akery
The present invention is a cargo inspection system, employing a radiation source, capable of scanning vehicles and/or cargo in a wide range of sizes, including conventional imaging areas as well as taller and bulkier enclosures at sufficiently optimal efficacy and overall throughput. In one embodiment, the present invention is a multiple pass inspection method for inspecting vehicles and their cargo, comprising a first pass scan, wherein said first pass scan includes moving a radiation source at a suitable scanning distance, rotating a radiation source at a suitable scanning angle, and moving said radiation source along an object under inspection.
151 Electron linac for medical isotope production with improved energy efficiency and isotope recovery US13248209 2011-09-29 US09129714B2 2015-09-08 John Noonan; Dean Walters; Matt Virgo; John Lewellen
A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.
152 Separated-orbit bisected energy-recovered linear accelerator US14503554 2014-10-01 US09125287B2 2015-09-01 David R. Douglas
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
153 Energy switch assembly for linear accelerators US12568621 2009-09-28 US08760050B2 2014-06-24 Stephen Mohr; Christopher Patane; David H. Whittum
An energy switch assembly includes probe components that can undergo and survive elevated temperatures of a bake-out procedure, and drive components that have capabilities of continuous positioning a probe throughout the stroke of the probe. The drive components can be removable from the probe components and replaceable without breaking the vacuum of the accelerator guide assembly.
154 RF GENERATOR US14115515 2011-10-13 US20140077729A1 2014-03-20 Oliver Heid; Timothy Hughes
An RF generator has a hollow conductor having a conductive wall. The wall has a first slot, over which a first solid-state switch is arranged in order to apply a radiofrequency electrical voltage through the first slot.
155 Multiple Pass Cargo Inspection System US13897365 2013-05-18 US20140001358A1 2014-01-02 Alan Akery
The present invention is a cargo inspection system, employing a radiation source, capable of scanning vehicles and/or cargo in a wide range of sizes, including conventional imaging areas as well as taller and bulkier enclosures at sufficiently optimal efficacy and overall throughput. In one embodiment, the present invention is a multiple pass inspection method for inspecting vehicles and their cargo, comprising a first pass scan, wherein said first pass scan includes moving a radiation source at a suitable scanning distance, rotating a radiation source at a suitable scanning angle, and moving said radiation source along an object under inspection.
156 Ion acceleration system for medical and/or other applications US12521724 2006-12-28 US08405056B2 2013-03-26 Ugo Amaldi; Saverio Braccini; Giulio Magrin; Peter Pearce; Riccardo Zennaro
The ion acceleration system or complex (T) for medical and/or other applications is composed in essence by an ion source (1), a pre-accelerator (3) and one or more linear accelerators or linacs (6, 8, 10, 13), at least one of which is mounted on a rotating mechanical gantry-like structure (17). The isocentrical gantry (17) is equipped with a beam delivery system, which can be either ‘active’ or ‘passive’, for medical and/or other applications. The ion source (1) and the pre-accelerator (3) can be either installed on the floor, which is connected with the gantry basement, or mounted, fully or partially, on the rotating mechanical structure (17). The output beam can vary in energy and intensity pulse-by-pulse by adjusting the radio-frequency field in the accelerating modules of the linac(s) and the beam parameters at the input of the linear accelerators.
157 Multiple Pass Cargo Inspection System US13433270 2012-03-28 US20120273684A1 2012-11-01 Alan Akery
The present invention is a cargo inspection system, employing a radiation source, capable of scanning vehicles and/or cargo in a wide range of sizes, including conventional imaging areas as well as taller and bulkier enclosures at sufficiently optimal efficacy and overall throughput. In one embodiment, the present invention is a multiple pass inspection method for inspecting vehicles and their cargo, comprising a first pass scan, wherein said first pass scan includes moving a radiation source at a suitable scanning distance, rotating a radiation source at a suitable scanning angle, and moving said radiation source along an object under inspection.
158 Multiple pass cargo inspection system US12952180 2010-11-22 US08170177B2 2012-05-01 Alan Akery
The present invention is a cargo inspection system, employing a radiation source, capable of scanning vehicles and/or cargo in a wide range of sizes, including conventional imaging areas as well as taller and bulkier enclosures at sufficiently optimal efficacy and overall throughput. In one embodiment, the present invention is a multiple pass inspection method for inspecting vehicles and their cargo, comprising a first pass scan, wherein said first pass scan includes moving a radiation source at a suitable scanning distance, rotating a radiation source at a suitable scanning angle, and moving said radiation source along an object under inspection.
159 Microwave system for driving a linear accelerator US11641224 2006-12-19 US08040189B2 2011-10-18 Paul H. Leek
A microwave system for driving a linear accelerator is provided. The inventive microwave system employs a plurality of magnetrons, at least one pulse generator to energize the magnetrons, means for synchronizing outputs from the magnetrons, and at least one waveguide for transmitting synchronized outputs or power from the magnetrons to a linear accelerator. The linear accelerator that is driven by the inventive microwave system demonstrates increased efficiency and dependability, higher energy and power outputs, as well as, different energy outputs that can take the form of successive pulses that alternate between at least two different energy levels.
160 ACCELERATOR PACK, SPECIFICALLY FOR LINEAR ACCELERATION MODULES US12988370 2008-07-18 US20110089871A1 2011-04-21 Vittorio Giorgio Vaccaro
An accelerator pack, specifically for linear accelerator modules cascade-connected to a proton-emitting cyclotron, specially adapted for use in cancer therapies. Such a technique is named PT. The pack displays an accelerating cavity of improved efficiency in virtue of its shape, which provides for making a portion of accelerating cavity on both faces of the pack. Furthermore, the pack also contains a coupling cavity portion. In such a manner, the volume of the accelerating cavity is increased as compared to that of the packs of the known accelerator modules.
QQ群二维码
意见反馈