序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 量子鍵配送で使用するための方法および装置 JP2012531490 2010-09-28 JP5784612B2 2015-09-24 エイリング,ステイーブン・ジエラード; ワイズマン,サイモン・ロバート; ローワンス,ブライアン・シンクレア
182 強度モニタリングのためのシステム及び方法 JP2013215133 2013-10-15 JP5738955B2 2015-06-24 マルコ・ルカマリーニ; ジェームズ・ダインズ; ジリアン・ユアン; アンドリュー・ジェームズ・シールズ
183 量子通信ネットワークのエンタングルメント生成源を同期させる方法及び装置 JP2014532420 2012-09-28 JP2014534455A 2014-12-18 セバスチャン タンジリ; ヴァージニア ダウリア; オリヴィエ アリバート; アントニー クリストフ ミカエル マルタン; ローラン ラボンテ
一態様によれば、本発明は、量子通信ネットワークにおいて、エンタングルメント生成源(141,142)の光ポンピングを同期させる同期装置(20)に関し、本装置は、前記エンタングルメント生成源に共通の光クロックを提供するために、全てのエンタングルメント生成源と平行に分配される通信波長の光パルス(I1,I2)を放出できるパルス光源(21)を含み、各エンタングルメント生成源に、分配された光パルスの周波数を変換する装置(243,253)を含むことで、エンタングルメント生成源を光ポンピングしてエンタングル光子のペアを生成するのに適した波長で光パルスを生成することができる。
184 A method of generating a secret communications system and the shared secret information JP2005237284 2005-08-18 JP5384781B2 2014-01-08 章雄 田島; 聡寛 田中; 和佳子 前田; 成五 高橋
185 System and method for quantum teleportation JP2013104030 2013-05-16 JP2013254201A 2013-12-19 STEVENSON RICHARD MARK; MARTIN BRIAN WARD; BENNETT ANTHONY JOHN; JOANNA KRYSTYNA SKIBA-SZYMANSKA; ANDREW JAMES SHIELDS
PROBLEM TO BE SOLVED: To provide a system and method for quantum teleportation of a quantum state of an input photon.SOLUTION: The system includes: a light emitting diode 1 to produce a polarization-entangled photon pair; a beam splitter to direct one photon of the entangled photon pair along a first path and the other photon along a second path; an input for the input photon; a measurement unit 9 to perform joint measurement on the input photon with the one of the photons of the photon pair directed along the first path; a timing unit configured to measure a first delay, the first delay being the delay between the input photon and the photon of the photon pair as the input photon and the photon of the entangled photon pair pass through the joint measurement unit, a second delay being the delay time between the two photons as they exit the light emitting diode; and a controller to determine that a teleportation measurement is valid if the first delay is within a first predetermined timing window and the second delay is within a second predetermined timing window.
186 Condenser and the single-photon generator JP2006273371 2006-10-04 JP5241090B2 2013-07-17 一矢 竹本
187 Messenger with a single photon source and related methods of high probability JP2012528027 2010-09-02 JP2013509600A 2013-03-14 エー.ピータース ニコラス; イー.チャプラン トーマス
A system and method is provided for a source for a heralded single photon comprising a correlated photon-pair generator that provides bursts of multiple photon pairs that may be odd or even in number of pairs, one of each pair having a first but not a second characteristic and the other of each pair having the second but not the first characteristic; a first optical path for photons of pairs having the first characteristic; a second optical path for photons of pairs having the second characteristic; a two-photon absorber in the first optical path that, for each burst of photons, reduces the number of first characteristic photons in the first path to zero or one, depending on whether the number of photon pairs in the burst is even or odd; a photon detector in the second path having a heralding signal output to indicate when the number of photons in the burst is odd; and an optical switch coupled to the output of the second optical path and connected to operate in response to the heralding signal.
188 Method and apparatus for use in quantum key distribution JP2012531490 2010-09-28 JP2013506373A 2013-02-21 エイリング,ステイーブン・ジエラード; ワイズマン,サイモン・ロバート; ローワンス,ブライアン・シンクレア
量子鍵配送(quantum key distribution、QKD)で使用するための方法および装置が説明される。 量子QKD信号がソース(101)で生成され、光ファイバネットワークを通りエンドポイント(105)に送信され、鍵が古典的QKDチャネル上での通信で合意される。 古典的QKDチャネルは、鍵が配送されソースとエンドポイントの間の中間のノード(104)で処理されることができるネットワークに関連する追加情報を含む。
189 Quantum communication system JP2012136553 2012-06-18 JP2013013073A 2013-01-17 ZHILIANG YUAN; JAMES DYNES; ANDREW JAMES SHIELDS
PROBLEM TO BE SOLVED: To provide a quantum communication system equipped with one receiver and multiple transmitters.SOLUTION: A quantum communication network comprises: one receiver 21 and multiple transmitters 23-23. The receiver 21 is equipped with a detector sub-system which is equipped with at least one detector. When the multiple transmitters each emit multiple radiation pulses, the detector detects multiple optical pulses. Further, a quantum communication system is equipped with a timing control module which controls the number of optical pulses received by the detector sub-system such that just one optical pulse from one transmitter will arrive at the detector sub-system at any time point. The timing control module also makes the transmitter having transmitted the pulse being identified.
190 Communication system and method JP2012114907 2012-05-18 JP2013013068A 2013-01-17 JAMES DYNES; ZHILIANG YUAN; ANDREW W SHARPE; ANDREW JAMES SHIELDS
PROBLEM TO BE SOLVED: To provide a communication system which improves intensity of a signal of a single photon transmitted in communication using a plurality of single photons, and enables standard classical clock recovery techniques.SOLUTION: A communication system comprises: an emitter of weak light pulses; a detector capable of detecting a plurality of single photons; and a source of a clock signal. The emitter and detector are synchronized using the clock signal. The system further comprises: a frequency divider for the clock signal to produce a reduced frequency clock signal; a clock regenerator for regenerating the original clock signal from the reduced frequency clock signal; and a communication channel configured to communicate the clock signal between the emitter and the detector. The clock signal is reduced before sending through the channel and reconstructed after it has exited from the channel.
191 Generating apparatus and method for generating the polarization entangled photon pairs JP2011518496 2010-06-03 JP5099393B2 2012-12-19 亮介 清水; 圭一 枝松
192 Quantum repeater, as well as a system and method for generating a prolonged entanglement JP2012508913 2009-10-26 JP2012532475A 2012-12-13 ムンロ・ウィリアム; ハリソン・キース・アレクサンダー; スピラー・ティモシー; 香絵 根本
A method and apparatus (70) are provided for creating an entanglement between two qubits situated in spaced nodes (71, 72) and coupled by an optical channel (75). One node (71) supports a plurality of qubits (73) and is arranged to pass a respective light field through each qubit and on into the optical channel (75), so as to produce a train (78) of closely-spaced light fields on the optical channel (75). The other node (72) supports a target qubit (74) and is arranged to receive the light-field train (78), to allow each successive light field to pass through, and potentially interact with, the target qubit (74) while the latter remains un-entangled, and to thereafter measure each light field to determine whether the latter has been successfully entangled. Upon the second node (72) determining that the target qubit (74) has become entangled, it inhibits the interaction of further light fields with the target qubit.
193 Passive optical network system and optical line terminator device JP2008235982 2008-09-16 JP5097655B2 2012-12-12 真央 新部; 徹 加沢; 健 清瀬; 良祐 西野
In a passive optical network system in which signals from a master station to plural slave stations are time-division multiplexed and transmitted, the slave stations different in transmission speed are mixedly contained. The master station (OLU) performs ranging for each transmission speed, and grasps all the slave stations different in transmission speed for each transmission speed, and generates a frame including signals of a suitable transmission speed corresponding to each slave station. When the frame is generated, in a downstream signal in which signals of plural transmission speeds are mixed, a dummy signal is set at a place where the transmission speed is changed, and a time necessary to follow a change in level of a received signal due to a change in optical level caused when the transmission speed is changed is secured. Thereby, each ONU avoids a reception error occurring in the time necessary to follow.
194 Quantum repeater JP2008526233 2006-08-11 JP5082039B2 2012-11-28 ムンロ,ウィリアム,ジェイ; 香絵 根本; ヴァン・ルック,ピーター; 喜久 山本
195 Quantum cryptographic communication device, quantum cryptographic communication method, and quantum cryptographic communication system JP2010226628 2010-10-06 JP2012080496A 2012-04-19 UKITA SHOICHI; KAWAMOTO YOHEI; TANAKA TAKESHI
PROBLEM TO BE SOLVED: To make it possible for a quantum cryptographic communication device to be mountable on a portable electronic apparatus and the like and perform quantum cryptographic communication.SOLUTION: A polarization state of an optical pulse generated by a light source unit 21 is randomly switched to either of a plurality of polarization bases predetermined under control of a control unit 26 by a polarization modulation unit 22 using a variable wavelength board such as a liquid crystal retarder. An optical unit 31 allocates the optical pulse after polarization modulation for each polarization base. A reception unit 32 detects, for each polarization base, the allocated optical pulse for each polarization base. A control unit 36 generates a common key from a detection result of the reception unit 32. The use of the liquid crystal retarder enables the polarization modulated optical pulse to be emitted from the transmission side to the reception side by a simple configuration, thereby a cryptographic communication device can be miniaturized.
196 位相変調装置及び送信装置及び受信装置及び位相変調方法 JP2010529557 2008-09-22 JPWO2010032326A1 2012-02-02 毅 西岡; 裕一 石塚
2連光パルスの高速位相変調時において、精度の高い位相変調を実現する位相変調装置を提供することを目的とする。位相変調装置が備える位相変調器105は、信号光パルスSPと参照光パルスRPとの時間差付き2連光パルスが通過する際に、この2連光パルスに対して、電気パルスの印加電圧に比例した位相変調を施す。その結果、位相変調されたSP´とRP´が出される。変調信号生成器106は、例えば4値のデータ信号の入力に応じて、予め定められたバイアスの電気パルスをトリガ信号の入力タイミングで出力する。変調信号生成器106は、1回のトリガ信号の入力に対して、時間差のある、極性が正反対の2連電気パルスを出力する。この2連電気パルスの時間差は位相変調器105を通過する2連光パルスの時間差に対応している。
197 Multiplexing communication system and a method for cross-talk removal JP2005240782 2005-08-23 JP4784202B2 2011-10-05 和佳子 前田; 聡寛 田中; 章雄 田島
198 Quantum communication devices and quantum communication systems and quantum communication method JP2008527629 2006-08-04 JP4775919B2 2011-09-21 アレクサンドル ソージャエフ; 淳一 安部; 繁樹 竹内; 毅 西岡; 俊夫 長谷川
199 光子対生成装置および光子対生成方法 JP2010510130 2009-04-28 JPWO2009133877A1 2011-09-01 悟郎 大畠; 寿樹 岡; 一 石原
ハイパーパラメトリック散乱によって相関光子対を生成する光子対生成装置において、光整形部が、同じ波長の光ビームを、光共振器に対して互いに異なる2つの方向から照射するとともに、光共振器が、相関光子対として、互いに波長の異なる2個の相関光子をそれぞれ同一の方向に出射するように構成されている。これにより、相関光子対の生成をより簡素な構成で実現することを可能とする光子対生成装置を提供することができる。
200 The light source device, and a communication device JP2010013669 2010-01-25 JP2011155320A 2011-08-11 UKITA SHOICHI
<P>PROBLEM TO BE SOLVED: To provide a compact light source device usable for quantum cipher communication. <P>SOLUTION: This light source device 1 is equipped with: a first reflector 111 having a reflection rate of R<SB>1</SB>; a second reflector 112 arranged oppositely to the first reflector and having a reflection rate of R<SB>2</SB>(R<SB>2</SB><R<SB>1</SB>); a laser medium disposed between the first and second reflectors; and an excitation source for exciting the laser medium. The reflection rate R<SB>1</SB>is set so that the photon number of the laser beam having penetrated the first reflector is one per pulse. <P>COPYRIGHT: (C)2011,JPO&INPIT
QQ群二维码
意见反馈