首页 / 国际专利分类库 / 电学 / 基本电子电路 / 放大器 / 涉及放大器的索引表 / .该放大器由仿真真空管的装置构成
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 固态的真空管式压缩电路 CN95101252.5 1995-01-18 CN1050718C 2000-03-22 杰克·C·桑德迈耶
用来模仿过偏置乙类推挽真空放大器的压缩现象,以产生出现过零失真时的输出限幅特性的固态放大器。含有至少一对乙类连接的固态装置,各装置有一输入电路和一输出电路。各输出电路的布局可使二输出混合。成对固态装置中的各装置的输入电路中的偏置元件在各装置的输入和输出电路中建立限幅电平的偏移。输入和输出电路中的限幅元件分别对各装置的输入电路和输出电路中的偏移限幅。当输入信号大于输入限幅元件的限幅值时充电元件使输入电路中的偏移过偏置。
2 固态的真空管式压缩电路 CN95101252.5 1995-01-18 CN1111416A 1995-11-08 杰克·C·桑德迈耶
用来模仿过偏置乙类推挽真空放大器的压缩现象,以产生出现过零失真时的输出限幅特性的固态放大器。含有至少一对乙类连接的固态装置,各装置有一输入电路和一输出电路。各输出电路的布局可使二输出混合。成对固态装置中的各装置的输入电路中的偏置元件在各装置的输入和输出电路中建立限幅电平的偏移。输入和输出电路中的限幅元件分别对各装置的输入电路和输出电路中的偏移限幅。当输入信号大于输入限幅元件的限幅值时充电元件使输入电路中的偏移过偏置。
3 利用多反馈路线提供增益的仪器 CN200680001425.8 2006-02-16 CN101091308B 2010-05-19 黄拔贡; 刘美英
发明公开一种关于放大器的仪器,它包括一个有驱动模件(120)的前置输入级(110),多反馈端口(102),带有改良信号耦合的倒相级(130),分布式负反馈网络(300)及带有不对称输出元件的输出级(150)。该设备还包括使用负反馈的平衡调整方法,在这里,输出级提供多重负反馈和预先知道的输出阻抗,对每一个输出元件的单独的偏压控制和信号驱动。实施一个具有对偶电变压器(230)的电源(250),可以为输出元件提供补偿偏压。在优化方案中,设备也包括增加回转率的构件,分布多重负反馈的构件,减少相移的构件,自举至一上部输出元件的构件,调整反馈差量的构件,驱动高压和电流驱动信号的构件。扬声器短路保护,最小化输出端口处的致命直流输出方法,获得适合的高压和偏压电路,以及使所有元件各自熔断,并提供故障输出元件的说明的输出级。
4 利用多回输路线提供增益的仪器 CN200680001425.8 2006-02-16 CN101091308A 2007-12-19 黄拔贡; 刘美英
发明公开一种关于放大器的仪器,它包括一个有驱动模件(120)的前置输入级(110),多回输端口(102),带有改良信号耦合的倒相级(130),分布式负回输(300)及带有不对称输出元件的输出级(150)。该设备还包括使用负回输的平衡调整方法,在这里,输出级提供多重负回输和预先知道的输出阻抗,对每一个输出元件的单独的偏压控制和信号驱动。实施一个具有对偶电变压器(230)的电源(250),可以为输出元件提供补偿偏压。在优化方案中,设备也包括增加回转率的方法,提供分布式负回输的手段,来减少相位移动,自举上部输出元件的方法,对回输的差量调节方法,驱动高压和电流驱动信号的方法。扬声器短路保护,最小化输出端口处的致命直流输出方法,获得适合的高压和偏压电路,以及使所有元件各自熔断,并提供故障输出元件的说明的输出级。
5 模仿真空管失真的多级固态放大器 CN95101119.7 1995-01-10 CN1048125C 2000-01-05 杰克·C·桑德迈耶; 老吉姆斯·W·布朗
一种多级固态放大器利用连接在每个互相串连的放大级之间的电路中的削波装置,模仿与多级真空管放大器中的栅极电流相关连的失真。在一个特定的实施例中,每一级都含有一个场效应晶体管(FET),而且削波装置是一个二极管。在另一个实施例中,每一级都含有一对以达林顿方式连接的晶体管。一个输入二极管和一个多级偏置电路模仿真空管电路的输入端。
6 模仿真空管失真的多级固态放大器 CN95101119.7 1995-01-10 CN1111042A 1995-11-01 杰克·C·桑德迈耶; 老吉姆斯·W·布朗
一种多级固态放大器利用连接在每个互相串连的放大级之间的电路中的削波装置,模仿与多级真空管放大器中的栅极电流相关连的失真。在一个特定的实施例中,每一级都含有一个场效应晶体管(FET),而且削波装置是一个二极管。在另一个实施例中,每一级都含有一对以达林顿方式连接的晶体管。一个输入二极管和一个多级偏置电路模仿真空管电路的输入端。
7 Multi-stage solid state amplifier to reproduce the electron tube distortion JP222795 1995-01-10 JP2891326B2 1999-05-17 JATSUKU SHII SONDAAMAIYAA; JEEMUZU DABURYUU BURAUN SHINIA
8 POWER AMPLIFIER AND INPUT SIGNAL ADJUSTING METHOD US15067550 2016-03-11 US20160268986A1 2016-09-15 Yohei OTANI; Masao NORO
A power amplifier includes a class-D amplifier and an input signal supplier. The class-D amplifier includes an input portion and a switching device. The switching device is switched according to an input signal that is input to the input portion so that a current is supplied to a load from a power source via the switching device. The input signal supplier supplies the input signal to the input portion of the class-D amplifier, calculates a virtual output voltage to be output from a virtual power source having a prescribed internal impedance characteristic when a current to flow through the load is output from the virtual power source, and adjust an amplitude of the input signal according to the virtual output voltage.
9 Multiple-Input and Multiple-Output Amplifier US12096701 2006-12-19 US20080272840A1 2008-11-06 Frederic Broyde; Evelyne Clavelier
The invention relates to an amplifier capable of producing a plurality of currents at its output terminals, these currents being controlled by a plurality of input voltages. A multiple-input and multiple-output amplifier of the invention includes 4 signal input terminals, 4 signal output terminals, 4 active sub-circuits and a feedback network. Each active sub-circuit has a sub-circuit input terminal connected to one of the signal input terminals, a sub-circuit output terminal connected to one of the signal output terminals and a sub-circuit common terminal. The feedback network has terminals connected to the sub-circuit common terminal of each active sub-circuit. The feedback network presents, in a known frequency band, an impedance matrix producing a negative feedback such that the transfer admittance matrix of the multiple-input and multiple-output amplifier approximates a given admittance matrix.
10 Communication Method for Vacuum Tube Replacement Devices US11876720 2007-10-22 US20080260183A1 2008-10-23 Brett A. Hertzberg; Douglas H. Roberts
Methods are provided for solid-state implementation of a vacuum tube replacement device (VTRD) that includes a communication interface. The communication interface enables the VTRD to command or retrieve information regarding VTRD performance, function, and status. A VTRD may communicate with other VTRDs in a target amplifier retrofitted with compatible VTRDs and to an external user interface for programming or query/response. The methods presented for the vacuum tube replacement device system(s) are equally useful for non-vacuum tube systems such as audio amplifier circuits.
11 Indicators for vacuum tube replacement devices US11203077 2005-08-12 US20070035408A1 2007-02-15 Douglas Roberts; Brett Hertzberg
A vacuum tube replacement device includes an indicator means. The indicator means can be arranged to provide audible and/or visual indication of system performance, function, status, or any other desired indication. The vacuum tube replacement device is pin-for-pin compatible with standard vacuum tube circuit pin configurations. The replacement device may be a solid-state tube emulator device, a traditional glass envelope vacuum tube device, or some other hybrid device. The visual indicator means is equally useful for non-vacuum tube replacement devices such as audio amplifier circuits.
12 Output signal converter for tube amplifiers US09200102 1998-11-24 US06175271B1 2001-01-16 Fumio Mieda; Yasuhiko Mori; Hirofumi Mitoma
The output signal converter for a tube amplifier includes semiconductor devices for amplifying or attenuating an output signal of the tube amplifier while maintaining output properties of the tube amplifier. The output signal converter in preferred embodiments has an output transformer (1) connected to the tube amplifier, a current amplifier and a voltage amplifier serially connected with each other via a node, and a speaker (4). The current amplification factor (Ac) of the current amplifier (2) and the voltage amplification factor (Av) of the voltage amplifier (3) are related according to the following equation: Ac*Av=−k, wherein k is a constant.
13 Variable control of electronic power supplies US758341 1996-12-03 US5909145A 1999-06-01 David G. Zimmerman
Sag of a power signal delivered to of an amplifier is controlled. The maximum amount of sag is limited to limit crossover distortion. A measuring circuit monitors an observed signal to generate a measured signal. A sag control circuit receives the measured signal and one or more input control signals, and in response generates a sag control signal. A regulator circuit receives the sag control signal and a raw power supply signal and in response generates a regulated DC power supply signal for the amplifier. The regulator circuit decreases the maximum power available to the amplifier as the sag control signal magnitude increases, so as to increase distortion and compression in the output signal (e.g., and achieve a "warm", "airy" or "forgiving" sound quality resembling or improving the sound of a vacuum tube amplifier).
14 Variable control of electronic power supplies US559549 1995-11-16 US5635872A 1997-06-03 David G. Zimmerman
A regulated power supply control system with adjustable operating point and adjustable dynamic behavior for use with electronic power supply circuits, such as musical instrument amplifiers. The control system includes a measurement circuit (20) that generates a measured signal (22) based on an observed signal (18) in an amplifier (10); a sag control circuit (24) that generates a sag signal (32) based on the measured signal (22); a referenced circuit (34) that generates a static reference signal (38); and a regulator (44) that uses the static reference signal (38) and sag signal (32) to generate a regulated power supply output (14) that is used by the amplifier (10). The sag control circuit (24) permits adjustment of the sag signal 32 by a user-operated sag magnitude control (26), sag rate control (28), and sag recovery rate control (30).
15 Solid state amplifier simulating vacuum tube distortion characteristics US452787 1989-12-19 US5032796A 1991-07-16 Jerrold S. Tiers; Thomas E. Kieffer
A preamplifier for audio frequecy electrical signals generated by a musical instrument such a guitar having distortion characteristics simulating those of a vacuum tube amplifier. A solid state amplifier has an input for receiving electrical signals generated by the musical instrument and has an output for providing an output signal. Circuitry asymmetrically clips the output signal to provide as the output signal a nonlinear asymmetrically clipped signal having harmonic content which varies as a function of the amplitude and duration of the received electrical signals. The clipped signal has musically desirable harmonic overtones and produces different tonal responses simulating the characteristics of an overdriven vacuum tube amplifier.
16 Emulated guitar loudspeaker US378575 1989-01-03 US4937874A 1990-06-26 R. Aspen Pittman; Marshall D. Buck
Circuitry is provided for simulating and emulating the sounds of a loudspeaker driven by a classic rock and roll guitar amplifier in the form of an electrical signal which, when input to a recording console or used to drive high fidelity headphones or a high quality monitor amplifier and monitor loudspeaker, accurately reproduces such sounds. The circuitry is incorporated at the output of a classic tube-type rock and roll guitar amplifier, and consists of three basic modules: a load impedance module (FIG. 3) designed to offer to the tube amplifier output a load impedance as a function of frequency (FIG. 1) which is modeled after and nearly identical (in both real and imaginary components) to the impedance of a classic rock and roll guitar speaker; a highpass filter circuit (24) which emulates the low frequency resonance and rolloff characteristics (FIG. 7) of a classic rock and roll open-back guitar speaker cabinet; and further filtering circuits (26, 30, 32, 34, 36, 40) which emulate the mid and high frequency characteristics (FIG. 7) of a classic rock and roll guitar loudspeaker. Electrical outputs (50) are provided for driving a recording mixer, headphones, a speaker, and an external power amplifier.
17 Vacuum tube equivalent of the semiconductor device JP50446794 1993-06-24 JP3364493B2 2003-01-08 エリック ケー プリッチャード
18 Vacuum tube amplifier equivalent of a semiconductor device JP50326788 1988-03-23 JP2834167B2 1998-12-09 PURITSUCHAADO ERITSUKU KEE
19 Multistage solid-state amplifier reproducing electron tube distortion JP222795 1995-01-10 JPH07263989A 1995-10-13 JIYATSUKU SHII SONDAAMAIYAA; JIEEMUZU DABURIYUU BURAUN SHIN
PURPOSE: To simulate an electron tube sound well in conformity with an input/ output ratio characteristic of an existing electron tube circuit very excellently by driving a diode which has a forward voltage clipping value of a specific voltage value in a general solid-state device. CONSTITUTION: Respective amplification stages 114, 116, and 118 are provided with diodes 162, 164, and 166 in parallel to reference voltage resistances 146, 152, and 158. Consequently, the diodes 16 2, 164, and 166 have their cathode sides grounded and their anode sides coupled with connection points between voltage dividing resistances 144 and 146, 150 and 152, and 156, and 158 of the respective stages. The diodes 162, 164, and 166 conduct forward, and consequently a clipping level of, for example, +0.5 V is generated with a gate amplitude, thereby reproducing distortion accompanying the grid conduction of the electron tube amplifier. Therefore, the solid-state multistage preamplifier 110 actualizes the distortion of the electron tube circuit by using a low-level clipping device such as the diodes 162, 164, and 166. COPYRIGHT: (C)1995,JPO
20 JPH01502873A - JP50326788 1988-03-23 JPH01502873A 1989-09-28
QQ群二维码
意见反馈