首页 / 国际专利分类库 / 电学 / 基本电子电路 / 放大器 / 应用电致发光元件或光电管的放大器
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 突发光接收器、突发光接收器的APD的偏置电压控制方法 CN201380073262.4 2013-05-30 CN104995835A 2015-10-21 野田雅树; 庵原晋; 吉间聪; 野上正道
通过被反向连接的APD接收具有不同强度的突发光信号的突发光接收器,其包括:电流检测电路,其将APD产生的从串联连接在电源和APD之间的电流镜电路输出的光电流作为与光电流成比例的电压进行输出;峰值检测电路,其对电流检测电路的输出电压的峰值进行检测和保持;电阻连接切换电路,其被插入在电流镜电路和APD之间,切换串联电阻与APD的串联连接;以及比较器,其在峰值检测电路的检测电压为规定的阈值以上的情况下,输出使电阻连接切换电路进行将串联电阻与APD串联连接的切换的切换信号。
2 用于光学调制的可调谐纳米线谐振腔 CN200880130883.0 2008-08-26 CN102132190A 2011-07-20 S·V·马泰; A·M·布拉特科夫斯基; W·张; S-Y·王
一种具有可调谐纳米线谐振腔。所述谐振腔包括衬底(114/116/230/330/430/530/630)。衬底能够耦合到光学谐振器结构(110/210/310/410/510/610)。谐振腔还包括形成在该衬底上的多个纳米线(120/220/320/420/520/620)。所述多个纳米线响应于能量的施加而被致动(122/222/322/422/522/623)。
3 突发光接收器、突发光接收器的崩光电二极管的偏置电压控制方法 CN201380073262.4 2013-05-30 CN104995835B 2017-12-05 野田雅树; 庵原晋; 吉间聪; 野上正道
通过被反向连接的崩光电二极接收具有不同强度的突发光信号的突发光接收器,其包括:电流检测电路,其将雪崩光电二极产生的从串联连接在电源和雪崩光电二极之间的电流镜电路输出的光电流作为与光电流成比例的电压进行输出;峰值检测电路,其对电流检测电路的输出电压的峰值进行检测和保持;电阻连接切换电路,其被插入在电流镜电路和雪崩光电二极之间,切换串联电阻与雪崩光电二极的串联连接;以及比较器,其在峰值检测电路的检测电压为规定的阈值以上的情况下,输出使电阻连接切换电路进行将串联电阻与雪崩光电二极串联连接的切换的切换信号。
4 一种具有电磁干扰抑制能的传感放大电路及其制造方法 CN201710121021.2 2017-03-02 CN106656057A 2017-05-10 张小磊
发明公开了一种具有电磁干扰抑制能的传感放大电路及其制造方法,其传感放大电路包括光检测模放大器集成电路,所述光检测模块包括光电二极管、光检测模块的输出引脚和第一环路天线,其中光检测模块的输出引脚的数量为两个,且光电二极管分别与两个光检测模块的输出引脚连接,所述放大器集成电路包括放大器集成电路的输入引脚、电容、晶体管、第二环路天线和放大器输出引脚,其中放大器集成电路的输入引脚的数量为两个,且放大器集成电路的输入引脚与光检测模块的输出引脚相对应,光检测模块的输出引脚与放大器集成电路的输入引脚之间连接有两条交叉设置的键合线。本发明设计合理,有效地抑制电磁干扰,且不会增加硬件成本和体积。
5 计算机保护电路 CN201610713864.7 2016-08-24 CN106253886A 2016-12-21 龚湘潮
发明公开了一种计算机保护电路,涉及计算机设备制造技术领域;有一光电耦合器,所述光电耦合器的初级与外部设备连接,所述光电耦合器的次级与阈值比较器的正输入端连接,所述阈值比较器的负输入端通过电阻与所述光电耦合器的次级连接,所述阈值比较器的负输入端还连接有调节电阻,在所述阈值比较器的负输入端与所述电阻的连线连接有电容,所述阈值比较器的输出端与计算机连接。本发明可以解决外部设备影响计算机正常运行的问题。
6 用于光学调制的可调谐纳米线谐振腔 CN200880130883.0 2008-08-26 CN102132190B 2015-08-05 S·V·马泰; A·M·布拉特科夫斯基; W·张; S-Y·王
一种具有可调谐纳米线谐振腔。所述谐振腔包括衬底(114/116/230/330/430/530/630)。衬底能够耦合到光学谐振器结构(110/210/310/410/510/610)。谐振腔还包括形成在该衬底上的多个纳米线(120/220/320/420/520/620)。所述多个纳米线响应于能量的施加而被致动(122/222/322/422/522/623)。
7 CIRCUIT ARRANGEMENT AND METHOD FOR RECEIVING OPTICAL SIGNALS EP14722633.6 2014-04-30 EP2992628B1 2018-10-31 HIDRI, Ols; GROEPL, Martin; HOELTKE, Holger
In order to further develop a circuit arrangement (CR; CR′) for receiving optical signals (SI) from at least one optical guide (GU), said circuit arrangement (CR; CR′) comprising: at least one light-receiving component (PD) for converting the optical signals (SI) into electrical current signals (IPD), at least one transimpedance amplifier (TA), being provided with the electrical current signals (IPD) from the light-receiving component (PD), at least one automatic gain controller (AG) for controlling the gain or transimpedance (R) of the transimpedance amplifier (TA), at least one integrator (IN) in a feedback path (FP), said integrator (IN) generating a control signal (Vint), at least one voltage-controlled current source (CS), being provided with the control signal (Vint) from the integrator (IN), at least one limiter (LI) acting as a comparator and generating in its output a logic level for positive or negative voltages in its input, and a corresponding method in such a way that a multilevel optical link can be provided, at least one second transimpedance amplifier (TA2) arranged in parallel to the transimpedance amplifier (TA), and at least one automatic offset controller (AO) for setting the voltage (Voffset) for the second transimpedance amplifier (TA2) are proposed.
8 CIRCUIT ARRANGEMENT AND METHOD FOR RECEIVING OPTICAL SIGNALS EP14722633.6 2014-04-30 EP2992628A1 2016-03-09 HIDRI, Ols; GROEPL, Martin; HOELTKE, Holger
In order to further develop a circuit arrangement (CR; CR′) for receiving optical signals (SI) from at least one optical guide (GU), said circuit arrangement (CR; CR′) comprising: at least one light-receiving component (PD) for converting the optical signals (SI) into electrical current signals (IPD), at least one transimpedance amplifier (TA), being provided with the electrical current signals (IPD) from the light-receiving component (PD), at least one automatic gain controller (AG) for controlling the gain or transimpedance (R) of the transimpedance amplifier (TA), at least one integrator (IN) in a feedback path (FP), said integrator (IN) generating a control signal (Vint), at least one voltage-controlled current source (CS), being provided with the control signal (Vint) from the integrator (IN), at least one limiter (LI) acting as a comparator and generating in its output a logic level for positive or negative voltages in its input, and a corresponding method in such a way that a multilevel optical link can be provided, at least one second transimpedance amplifier (TA2) arranged in parallel to the transimpedance amplifier (TA), and at least one automatic offset controller (AO) for setting the voltage (Voffset) for the second transimpedance amplifier (TA2) are proposed.
9 信号を受け取るための回路装置及び方法 JP2016511081 2014-04-30 JP6437530B2 2018-12-12 ヒドリ,オルス; グレープル,マルティン; ヘルトケ,ホルガー
10 バースト光受信器、バースト光受信器のAPDのバイアス電圧制御方法 JP2015501242 2013-05-30 JPWO2014128986A1 2017-02-02 雅樹 野田; 晋 庵原; 聡 吉間; 正道 野上
異なる強度を持つバースト光信号を逆方向接続されたAPDで受信するバースト光受信器であって、電源とAPDの間に直列に接続されたカレントミラー回路から出されたAPDでの光電流を光電流に比例した電圧として出力する電流検出回路と、電流検出回路の出力電圧のピーク値を検波保持するピーク検波回路と、カレントミラー回路とAPDの間に挿入されAPDに直列に直列抵抗を切り換えて接続する抵抗接続切換回路と、ピーク検波回路の検波電圧が所定の閾値以上の場合に、抵抗接続切換回路を、APDに直列抵抗を直列に接続するように切換える切換信号を出力するコンパレータを含む。
11 JPS5712547B2 - JP6896176 1976-06-11 JPS5712547B2 1982-03-11
12 Adjustable nanowire resonant cavity for light modulation JP2011523785 2008-08-26 JP5325299B2 2013-10-23 マサイ,サギ,バーゲス; ブラコヴィスキー,アレクサンダー,エム.; ツァン,ウェンファ; ワン,シー−ユアン
A resonant cavity with tunable nanowire. The resonant cavity includes a substrate. The substrate is coupleable to an optical resonator structure. The resonant cavity also includes a plurality of nanowires formed on the substrate. The plurality of nanowires is actuated in response to an application of energy.
13 JPS5838949B2 - JP1608876 1976-02-18 JPS5838949B2 1983-08-26 BAANAADO KORINZU DE ROOCHI JUNIA; MAURO DE DOMENIKO JUNIA
14 Optical amplifier JP6896176 1976-06-11 JPS52151577A 1977-12-16 FUKUYAMA TOSHIBUMI; ONCHI NORIO
PURPOSE:An optical amplifier which can assure a high S/N is obtained by increasing shield effect and preventing the entry of induced noise from the outside into circuits.
15 Reezadaioodonoshutsuryokuanteikakairo JP1608876 1976-02-18 JPS51107785A 1976-09-24 BAANAADO KORINZU DE ROOCHI JUN; MAURO DE DOMENIKO JUNIA
16 Low distortion single-to-differential wide-band variable gain amplifier for optical communications US14879598 2015-10-09 US09826291B2 2017-11-21 Rahul Shringarpure; Chakravartula Nallani; Georgios Asmanis; Faouzi Chaahoub
An amplifier, a circuit, and an optical communication system are provided. The disclosed amplifier may include a single-to-differential variable gain amplifier having a variable resistor switch that substantially always operates in a triode region at all time. Said another way, the resistor switch is configured to operate in a triode region regardless of whether or not a first portion of an input signal to the variable gain amplifier is larger than a second portion of the input signal. The disclosed scheme helps to keep the variable resistor switch in the triode region in all cases of operation, thereby maintaining the linearity condition and reducing distortion in the variable gain amplifier.
17 LOW DISTORTION SINGLE-TO-DIFFERENTIAL WIDE-BAND VARIABLE GAIN AMPLIFIER FOR OPTICAL COMMUNICATIONS US14879598 2015-10-09 US20170105059A1 2017-04-13 Rahul Shringarpure; Chakravartula Nallani; Georgios Asmanis; Faouzi Chaahoub
An amplifier, a circuit, and an optical communication system are provided. The disclosed amplifier may include a single-to-differential variable gain amplifier having a variable resistor switch that substantially always operates in a triode region at all time. Said another way, the resistor switch is configured to operate in a triode region regardless of whether or not a first portion of an input signal to the variable gain amplifier is larger than a second portion of the input signal. The disclosed scheme helps to keep the variable resistor switch in the triode region in all cases of operation, thereby maintaining the linearity condition and reducing distortion in the variable gain amplifier.
18 Amplified photoconductive gate US10307085 2002-11-29 US06936821B2 2005-08-30 Steven L. Williamson; James V. Rudd; David Zimdars; Matthew Warmuth; Artur Chernovsky
The present invention includes a semiconductor epitaxial structure optimized for photoconductive free space terahertz generation and detection; and amplifier circuits for photoconductively sampled terahertz detection which may employ the optimized epitaxial structures.
19 Amplified photoconductive gate US10307085 2002-11-29 US20030127673A1 2003-07-10 Steven L. Williamson; James V. Rudd; David Zimdars; Matthew Warmuth; Artur Chernovsky
The present invention includes a semiconductor epitaxial structure optimized for photoconductive free space terahertz generation and detection; and amplifier circuits for photoconductively sampled terahertz detection which may employ the optimized epitaxial structures.
20 High voltage amplifier US451815 1982-12-21 US4518924A 1985-05-21 Robert E. Vosteen
A system input is connected to a positive high voltage signal generator and a negative high voltage signal generator, the outputs of which are each connected to an output terminal via a photoconductor. The photoconductors are driven individually by an energizing circuit which has an input the sum of the system input and an attenuated signal fedback from the output terminal. For system inputs above a first predetermined level or below a second predetermined level, the appropriate photoconductor is rendered heavily conductive so that the output consists of the signal developed by the corresponding signal generator, which is proportional to the system input, less the small voltage drop which occurs across the photoconductor. For system inputs between the two predetermined levels, both high voltage signal generators deliver constant output signals and the energizing circuit reduces the conductivity of the appropriate photoconductor to produce the desired system output.
QQ群二维码
意见反馈