首页 / 国际专利分类库 / 电学 / 基本电子电路 / 调制 / 幅度调制 / .有机械或声激励部分的调制器
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 System and method for tire pressure monitoring with automatic tire location recognition US10217776 2002-08-12 US06725712B1 2004-04-27 Ronald O. King; Qingfeng Tang; John S. Nantz; Christoph Sanowski
In a system for remote monitoring of tire pressure in a vehicle having front tires including a right tire and a left tire, and rear tires including a right tire and a left tire, a system and method are provided for automatically identifying tire location. A transmitters mounted in each tire transmits tire information signals conveying tire pressure data, and associated tire temperature data and tire rotation direction data. A vehicle mounted controller determines whether pressure data conveyed by tire information signals is associated with a front tire or a rear tire based on the associated temperature data, and whether pressure data is associated with a right tire or a left tire based on the associated rotation direction data.
22 System and method for tire pressure monitoring including tire location recognition US10164339 2002-06-05 US06668636B2 2003-12-30 John S. Nantz; Qingfeng Tang; Ronald O. King; Riad Ghabra; Keith Walker; Thomas Bejster; Bruce Conner; Qing Li; Art Turovsky
In a system for remote monitoring of vehicle tire pressure, a system and method for identifying tire location. A tire pressure monitor for each tire includes a sensor for sensing tire pressure, a transmitter for transmitting a signal representative of the sensed tire pressure, and a sensor for sensing an impact to the tire and for actuating the transmitter to transmit a tire pressure signal in response. A receiver for mounting on the vehicle receives the tire pressure signals. A controller for mounting on the vehicle communicates with the receiver and is for use in conveying tire pressure and location information to a user. When the vehicle is stationary, each tire is struck in a preselected sequence so that each received tire pressure signal is automatically associated with one of the plurality of tire locations.
23 Device for modulating and/or amplifying electric signals US41389854 1954-03-03 US2920276A 1960-01-05 HEINRICH JONKER GERARD; MEYER CLUWEN JOHANNES
24 Mechanically coupled electromechanical and magnetomechanical transducers US38057453 1953-09-16 US2834943A 1958-05-13 GRISDALE RICHARD O; ROWEN JOHN H
25 Modulators US24910751 1951-10-01 US2713150A 1955-07-12 BEARINGER VAN W
26 라디오 주파수 전송을 위한 공진 파워 컨버터 및 방법 KR1020047013854 2003-03-04 KR100782224B1 2007-12-05 노스워씨스티븐알; 노스워씨로스더블유
본 발명은 신호 및 파워 변환을 위한 개선된 장치 및 방법을 제공함으로써 상기 요구를 만족시킨다. 본 발명의 제1태양에서, RF신호의 공진 파워 변환을 위한 개선된 장치가 개시디어 있다. 이 장치는 일반적으로 다수의 펄스를 발생시키는데 적합한 펄스입력소스; 이 펄스입력소스에 작동가능하게 결합된 공진기; 및 공진기의 출력에 작동가능하게 결합되고 다수의 RF 신호를 전송하는데 적합한 전송매체를 포함한다. 일실시형태에서, 공진기는 실질적으로 캐리어 주파수에서 또는 그 근처에서 공진주파수를 가지며, 그의 계속적인 전송을 위한 다수의 발생된 펄스의 적어도 일부분의 선택적 보강을 통해 에너지를 효율적으로 저장하는데 적합하다. 공진, 컨버터, 라디오주파수, 전송
27 라디오 주파수 전송을 위한 공진 파워 컨버터 및 방법 KR1020047013854 2003-03-04 KR1020040105752A 2004-12-16 노스워씨스티븐알; 노스워씨로스더블유
본 발명은 신호 및 파워 변환을 위한 개선된 장치 및 방법을 제공함으로써 상기 요구를 만족시킨다. 본 발명의 제1태양에서, RF신호의 공진 파워 변환을 위한 개선된 장치가 개시디어 있다. 이 장치는 일반적으로 다수의 펄스를 발생시키는데 적합한 펄스입력소스; 이 펄스입력소스에 작동가능하게 결합된 공진기; 및 공진기의 출력에 작동가능하게 결합되고 다수의 RF 신호를 전송하는데 적합한 전송매체를 포함한다. 일실시형태에서, 공진기는 실질적으로 캐리어 주파수에서 또는 그 근처에서 공진주파수를 가지며, 그의 계속적인 전송을 위한 다수의 발생된 펄스의 적어도 일부분의 선택적 보강을 통해 에너지를 효율적으로 저장하는데 적합하다.
28 멤스 진폭 변조기 및 이를 포함하는 멤스 자계 센서 KR1020130099298 2013-08-21 KR1020150021850A 2015-03-03 지칠영; 고용준; 권승화; 서상원; 김철; 서정기; 전도한; 최완섭
본 발명은 자계가 흐르는 영역에 배치되어 진폭을 변조하는 진폭 변조기로서, 기판; 상기 기판으로부터 공급되는 제1 주파수 신호 및 제2 주파수 신호를 수신하고, 상기 자계에 의해 공진 운동하는 제1 구동전극; 및 상기 제2 주파수 신호를 수신하고, 상기 제1 구동전극과 상기 자계에 의해 공진 운동하는 제2 구동전극을 포함하며, 상기 제1 구동전극과 상기 제2 구동전극의 공진 운동에 의해 상기 제1 주파수 신호와 제2 주파수 신호를 진폭 변조한 변조 신호를 생성하는 진폭 변조기를 제공한다. 따라서, 자계에 따른 기계적인 공진에 의해 캐리어 신호가 변조된 신호를 출력하므로 복잡한 회로 구성이 없이 진폭 변조가 가능하다. 또한, 상기 멤스 소자는 절연층이 포함되지 않는 단일 구조체로서, 하나의 구조체에 단일 신호를 인가하여 구동이 단순하고, 양 단의 구동 전극이 모두 구동하여 가변 커패시턴스의 변화량이 2배로 커짐으로 센서능이 향상된다.
29 Tunable thin film bulk acoustic resonator is integrated apparatus for performing amplitude modulation and phase modulation JP2007042874 2007-02-22 JP4648911B2 2011-03-09 エラ ユハ
30 Equipment and improved methods to detect the resonance frequency JP2003587006 2003-04-15 JP4126434B2 2008-07-30 ヴィクトール アレクサンドルヴィッチ カリニン; ジョン ピーター ベックレイ
31 Resonant power converter for radio-frequency transmission and method JP2008024851 2008-02-05 JP2008125127A 2008-05-29 NORSWORTHY STEVEN R; NORSWORTHY ROSS W
<P>PROBLEM TO BE SOLVED: To provide an improved method and apparatus for signal and power conversion. <P>SOLUTION: A resonant power converter (220) for ultra-efficient radio frequency transmission and associated methods are disclosed. In one embodiment, the converter is digitally actuated and uses a combination of a noise-shaped encoder (222), a charging switch (224), and a high-Q resonator (204) coupled to an output load (206), typically an antenna or transmission line. Energy is stored in the electric and magnetic fields of the resonator, which in turn, delivers power to the load (206), with very little wasted energy in the process. Active power amplifier is not required. The apparatus (220) can be used in an arbitrary RF signal application (wireless or others), including, for example cellular handsets, local- or wide-area network transmitters, or even radio base-stations. <P>COPYRIGHT: (C)2008,JPO&INPIT
32 Equipment and improved methods to detect the resonance frequency JP2003587006 2003-04-15 JP2005528595A 2005-09-22 ヴィクトール アレクサンドルヴィッチ カリニン; ジョン ピーター ベックレイ
一つ以上の電気的共振構造体(11、21)の共振周波数を単一のチャネルを介して探知する装置が、この又は各共振構造体(11、21)と結合しており、この結合された共振構造体の考えられる共振周波数を包含する可変周波数の励起信号を出する可変周波数発振器(13、23)を備える。 この又は各可変周波数発振器(13、23)を前記共振構造体に接続するカプリング手段(2)が装備される。 同期検出器を成すIミクサ(15、25)が、各々の発振器に対して装備されており、各Iミクサ(15、25)の第一の入力(15a、25a)がそれと結合されている発振器(13、23)に接続され、第二の入力(15b、25b)がカプリングデバイス(2)に接続されていて、この又は各Iミクサ(15、25)が、結合している可変周波数発振器(13、23)からの励起信号を、この又は各励起信号に応答して共振構造体が発生した応答信号と混合する。 この又は各Iミクサ(15、25)の出力はフィルタリングされて、この励起信号と応答信号の積和が除去され、これで、その信号の振幅変調成分だけを残し、次に、この成分を制御ループ中で処理して、この又は各共振構造体の共振周波数を探知する。
33 Radio frequency transmission resonant power converter and method JP2003575570 2003-03-04 JP2005519566A 2005-06-30 ノースワージィ、スティーヴン、アール.; ノースワージィ、ロス、ダブリュー.
非常に効率的な無線周波数伝送用の共振電変換器(220)と、関連する方法とを開示する。 1つの例示の実施の形態では、本発明はディジタル駆動であって、ノイズシェーピング符号器(222)と、充電スイッチ(224)と、一般にアンテナまたは伝送線である出力負荷(206)に結合する高Q共振器(204)との組合せを用いる。 共振器の電界及び磁界内にエネルギーを蓄積して負荷(206)に電力を与える。 この過程で失われるエネルギーは非常に小さい。 アクティブな電力増幅器は必要ない。 この装置(220)は、例えば携帯電話、ローカル・エリア・ネットワークやワイド・エリア・ネットワークの送信機、無線局などの文字通り任意のRF信号アプリケーション(無線その他)に用いることができる。
34 Device containing controllable thin-film bulk acoustic resonator for amplitude and phase modulation JP26902497 1997-10-01 JPH10126160A 1998-05-15 ELLA JUHA
PROBLEM TO BE SOLVED: To provide a low-frequency amplitude modulator or a low-frequency phase modulator by using a controllable BAW(bulk acoustic wave) resonator, which shifts the resonance frequency according to the applied voltage. SOLUTION: A BAW resonator 102 consisting of a piezoelectric layer and protective layer electrodes, etc., is constructed on a substrate by means of a prescribed material and process. Then the resonator 102 is built into an amplitude modulation circuit 91 as a modulator. When the modulating low-frequency signal, which is produced by an oscillator 96 is filtered by an LPF 98 and an RF choke 100 and applied between the electrodes 102a and 102b of the resonator 102, an electric field is generated on a piezoelectric layer 102c and vibration time-wise varying according to the signals is produced. A prescribed RF carrier signal that is produced by an oscillator 90 is filtered and applied to the resonator 102. The carrier signal is attenuated by the resonance frequency, as well as the impedance caused by the low-frequency signal of the resonator 102. Then the amplitude modulation is carried out. In a phase modulation mode, the oscillation frequency of the oscillator 90 is set almost equal to the parallel resonance frequency of the resonator 102. Then the phase shift is carried out.
35 SIGNAL PROCESSOR US15570986 2016-07-12 US20180224487A1 2018-08-09 Yukihiro TADOKORO; Hiroya TANAKA
To realize a compact device that detects phase or controls phase or an amplitude with high sensitivity, a signal controller includes: a linear conductor having a first end fixed to a negative electrode and a second end serving as a free end; a positive electrode facing the free end with a small gap therebetween; a first signal source that applies a voltage between the negative electrode and the positive electrode, the voltage applied being variable; a driving electrode that applies an electric field to a space around the conductor, the electric field having a component perpendicular to the lengthwise direction of the conductor; and a second signal source that applies an AC signal to the driving electrode. The signal processor can be a device for controlling or modulating phase or amplitude.
36 CHIP-SCALE RESONANT GYRATOR FOR PASSIVE NON-RECIPROCAL DEVICES US15790999 2017-10-23 US20180115294A1 2018-04-26 Songbin Gong; Rouchen Lu; Tomas Manzaneque Garcia; Cheng Tu; Daniel Shoemaker; Chengxi Zhao
An integrated circuit is a layered device, on a semiconductor substrate, which contains metal electrodes that sandwich a piezoelectric layer, followed by a magnetostrictive layer and a metal coil. The metal electrodes define an electrical port across which to receive an alternating current (AC) voltage, which is applied across the piezoelectric layer to cause a time-varying strain in the piezoelectric layer. The magnetostrictive layer is to translate the time-varying strain, received by way of a vibration mode from interaction with the piezoelectric layer, into a time-varying electromagnetic field. The metal coil, disposed on the magnetostrictive layer, includes a magnetic port at which to induce a current based on exposure to the time-varying electromagnetic field generated by the magnetostrictive layer.
37 MEMS amplitude modulator and MEMS magnetic field sensor including same US14913537 2014-08-05 US09748899B2 2017-08-29 Chil Young Ji; Yong Jun Ko; Seung Hwa Kwon; Sang Won Seo; Chul Kim; Jeong Gi Seo; Do Han Jun; Wan Seop Choi
The present invention provides an amplitude modulator, which is disposed in an area through which a magnetic field flows so as to modulate amplitudes, comprising: a substrate; a first driving electrode which receives a first frequency signal and a second frequency signal supplied from the substrate and carries out resonant motion by the magnetic field; and a second driving electrode for receiving the second frequency signal and carries out resonant motion by the first driving electrode and the magnetic field, wherein a modulated signal is generated by modulating the amplitudes of the first and second frequency signals through the resonant motions of the first and second driving electrodes. Therefore, since the signal generated by modulating a carrier signal through mechanical resonance according to the magnetic field is outputted, amplitude modulation can be carried out without a complicated circuit configuration. In addition, since an MEMS device is a single structure that does not include an insulating layer, a single signal is applied to one structure, thereby simplifying driving, and all the driving electrodes of both ends thereof are driven so as to double a change in variable capacitance, thereby improving sensing ability.
38 Thermal-mechanical signal processing US13292658 2011-11-09 US08330323B2 2012-12-11 Maxim Zalalutdinov; Robert B. Reichenbach; Keith Aubin; Brian H. Houston; Jeevak M. Parpia; Harold G. Craighead
A source signal is converted into a time-variant temperature field with transduction into mechanical motion. In one embodiment, the conversion of a source signal into the time-variant temperature field is provided by utilizing a micro-fabricated fast response, bolometer-type radio frequency power meter. A resonant-type micromechanical thermal actuator may be utilized for temperature read-out and demodulation.
39 Shell type actuator US11358299 2006-02-20 US07812502B2 2010-10-12 Maxim Zalalutdinov; Robert B. Reichenbach; Keith Aubin; Brian H. Houston; Jeevak M. Parpia; Harold G. Craighead
A micromechanical resonator is formed on a substrate. The resonator has a partial spherical shell clamped on an outside portion of the shell to the substrate. In other embodiments, a flat disc or other shape may be used. Movement is induced in a selected portion of the disc, inducing easily detectible out-of-plane motion. A laser is used in one embodiment to heat the selected portion of the disc and induce the motion. The motion may be detected by capacitive or interferometric techniques.
40 MEMS device annealing US11358689 2006-02-20 US20070109656A1 2007-05-17 Keith Aubin; Maxim Zalalutdinov; Lidija Sekaric; Brian Houston; Alan Zehnder; Jeevak Parpia; Harold Craighead
A method of increasing a quality factor for a micromechanical resonator uses a laser beam to anneal the micromechanical resonator. In one embodiment, the micromechanical oscillator is formed by fabricating a mushroom shaped silicon oscillator supported by a substrate via a pillar. The laser beam is focused on a periphery of the mushroom shaped silicon oscillator to modify the surface of the mushroom shaped silicon oscillator. In a further embodiment, the mushroom shaped oscillator is a silicon disk formed on a sacrificial layer. Portions of the sacrificial layer are removed to free the periphery of the disk and leave a supporting pillar at the center of the disk. In further embodiments, different type resonators may be used.
QQ群二维码
意见反馈