序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Fahrzeug-Verformungs-Sensor EP99116033.4 1999-08-16 EP1079405B1 2001-12-12 Hagen, Markus; Schondorf, Steven Yellin; Brosig, Ralf
42 Fahrzeug-Verformungs-Sensor EP99116033.4 1999-08-16 EP1079405A1 2001-02-28 Hagen, Markus; Schondorf, Steven Yellin; Brosig, Ralf

Bei einem Fahrzeug-Verformungs-Sensor (1) mit in bei einem Unfall verformbaren Bereich des Fahrzeuges angeordneten elektrischen Leitern (2 und 3), die in einem bestimmten Abstand zueinander angeordnet sind und mit einer elektronischen Auswerteinheit verbunden sind, die sowohl die relative Verlagerung der beiden elektrischen Leiter (2 und 3) als auch die Geschwindigkeit der Verlagerung erfassen kann, sind die beiden flächigen, elektrischen Leiter (2 und 3) einander gegenüberliegend nach Art eines Kondensators angeordnet, die beiden Leiter ( 2 und 3) werden mit einem geeigneten Impuls beaufschlagt und die im unverformten Zustand vorliegende Kapazität wird von der elektronischen Auswerteinheit überwacht und die sich bei einer fortschreitenden Verformung der beiden elektrischen Leiter (2 und 3) fortlaufend ändernde Kapazität wird in der elektronischen Auswerteinheit für die Auslösung einer Sicherheitseinrichtung aufbereitet und herangezogen.

43 CONTACTEUR D'IMPACT NOTAMMENT POUR PROJECTILES A CHARGE EXPLOSIVE EP92904622.0 1992-01-09 EP0519064A1 1992-12-23 BONNET, Alain; BLIN, André
Amorçage de charge pyrotechnique. Le contacteur comprend: une embase de support (6), en matière isolante, portant au moins deux bornes conductrices (7 et 8), un manchon de contact (13) centré coaxialement sur l'embase, en contact avec l'une des bornes et portant des doigts poussés en déplacement centrifuge par des organes élastiques (22), un étui conducteur (24), déformable, en contact avec la seconde borne, et un coulisseau conducteur (28), mobile par inertie sur l'axe de symétrie contre l'action d'un ressort de maintien (31). Application en tant que contacteur d'impact pour projectiles.
44 鈍的衝撃を示す方法 JP2015143116 2015-07-17 JP6399976B2 2018-10-03 ジョージソン, ゲイリー イー.; タピア, ウィリアム ジョセフ
45 鈍的衝撃を示す方法 JP2015143116 2015-07-17 JP2016136127A 2016-07-28 ジョージソン, ゲイリー イー.; タピア, ウィリアム ジョセフ
【課題】航空機のような構造物に対する高エネルギー鈍的衝撃をモニタするか、又は示すための改善された方法を提供する。
【解決手段】航空機のような構造物に対する高エネルギー鈍的衝撃のモニタすること、又は示すことを支援するために、流体で満たされた中空微小粒を使用する、システム及び方法である。多数の微小粒6が、基材2(例えばテープ又はアップリケ)の表面に適用されたコーティングに接着4されるか、又はコーティングの中に埋設され、かかる基材は次いで、モニタされるべき構造物の表面に接着されうる。微小粒は、一又は複数の特定の圧閾値で破裂するよう設計される。
【選択図】図1
46 Inertial sensor having failure threshold JP2003307627 2003-08-29 JP2004264281A 2004-09-24 ZERBINI SARAH; MERASSI ANGELO; SPINOLA DURANTE GUIDO; DE MASI BIAGIO
PROBLEM TO BE SOLVED: To provide an inertial sensor having failure threshold. SOLUTION: The inertial sensor having failure threshold is provided with a first body 2 and a second body 18, which can move relatively with respect to one another and are constrained by a plurality of elastic elements, and at least one sample element 6, connected between the first body 2 and the second body 18 and shaped so as to be subjected to a stress, when the second body 18 goes outside of the relative resting position with respect to the first body 2. The sample element 6 has at least one weakened region 9, 10. COPYRIGHT: (C)2004,JPO&NCIPI
47 Manufacturing process of inertial sensor having failure threshold JP2003307928 2003-08-29 JP2004134763A 2004-04-30 ZERBINI SARAH; MERASSI ANGELO; SPINOLA DURANTE GUIDO; DE MASI BIAGIO
PROBLEM TO BE SOLVED: To provide a method of manufacturing an inertial sensor having a failure threshold. SOLUTION: A process of manufacturing the inertial sensor, having a failure threshold includes the steps of: on the substrate 2 of a semiconductor wafer 1, forming at least one sample element 6 embedded in a sacrificial region 3 and 12; on the sacrificial region 3 and 12, forming a body 18 connected to the sample element 6; and etching the sacrificial region 3 and 12 to free the body 18 and the sample element 6. COPYRIGHT: (C)2004,JPO
48 Vehicle having a collision sensor and the vehicle occupant restraint device JP50981889 1989-08-14 JP2978523B2 1999-11-15 BURIIDO DEBITSUDO ESU
49 JPH05505451A - JP50415792 1992-01-09 JPH05505451A 1993-08-12
50 Impact sensor for firing body JP4732985 1985-03-08 JPS6177217A 1986-04-19 KENESU SUNDOBARU
51 JPS49133876A - JP12506573 1973-11-08 JPS49133876A 1974-12-23
52 JPS4925538Y1 - JP2602170 1970-03-18 JPS4925538Y1 1974-07-10
53 SENSING AND RESPONDING TO AN EXPLOSION LOCAL TO A VEHICLE EP15703809.2 2015-01-30 EP3071923B1 2018-12-05 SLOMAN, Roger Mark
A vehicle and a sensor for use in the vehicle is disclosed. The vehicle includes: a sensor array configured to detect an explosion by sensing, at different heights within a base of the vehicle, mechanical deformation of the base of the vehicle caused by the explosion; and control circuitry configured to respond to detection of the explosion by causing a groundwards force to be applied to the vehicle that depends upon inputs, characterizing the explosion, provided by the sensor array. The sensor includes: at least one support; a first frangible electrical connection, for conveying an electrical signal, held by the at least one support at a first height; and a second frangible electrical connection, for conveying an electrical signal, held by the at least one support at a second height different from the first height.
54 BLUNT IMPACT INDICATOR METHODS EP17206396.8 2015-06-26 EP3312580A3 2018-06-13 GEORGESON, Gary E.; TAPIA, William Joseph

Systems and methods using fluid-filled hollow microspheres to assist in monitoring or indicating high-energy blunt impacts on structures such as aircraft. A multiplicity of microspheres may be adhered to or embedded in a coating applied on a surface of a substrate (e.g., a tape or an appliqué), which substrate in turn can be adhered to a surface of a structure to be monitored. The microspheres are designed to rupture at one or more specified pressure thresholds. In some embodiments, the microspheres are filled with electrically conductive fluid which, if released from ruptured microsphere, changes the electromagnetic state of the substrate. In response to the detection of a sufficiently large change in the electromagnetic state of the substrate, a blunt impact indication is generated. The impact site may then undergo nondestructive inspection.

55 BLUNT IMPACT INDICATOR METHODS EP15174164.2 2015-06-26 EP2977737B1 2018-02-14 GEORGESON, Gary E.; TAPIA, William Joseph
Systems and methods using fluid-filled hollow microspheres to assist in monitoring or indicating high-energy blunt impacts on structures such as aircraft. A multiplicity of microspheres may be adhered to or embedded in a coating applied on a surface of a substrate (e.g., a tape or an appliqué), which substrate in turn can be adhered to a surface of a structure to be monitored. The microspheres are designed to rupture at one or more specified pressure thresholds. In some embodiments, the microspheres are filled with electrically conductive fluid which, if released from ruptured microsphere, changes the electromagnetic state of the substrate. In response to the detection of a sufficiently large change in the electromagnetic state of the substrate, a blunt impact indication is generated. The impact site may then undergo nondestructive inspection.
56 SPECTRAL IMAGING FOR MEASUREMENT OF NUCLEAR PATHOLOGY FEATURES IN CANCER CELLS PREPARED FOR IN SITU ANALYSIS EP12725639.4 2012-05-07 EP2707505B1 2016-06-08 DEMICHELIS, Francesca; GARSHA, Karl; MILLER, Phillip C; NAGLE, Ray B; OTTER, Michael; PESTANO, Gary Anthony; RUBIN, Mark A.
In general, the presently disclosed technology relates to identification of cancer subtypes. More specifically, the technology relates to methods for determining molecular drivers of cancer and/or progression using a multivariate image data and statistical analysis of in-situ molecular markers and morphological characteristics in the same cells of a biological sample suspected of b cancer. This analysis takes place after a single acquisition that obtains the molecular and anatomic morphology data in parallel. The analysis compares specific morphological and molecular markers to known samples exhibiting particular genetic drivers of the cancer. This method provides statistical information that allows for an increased confidence in the identification of specific molecular drivers of the cancer.
57 BLUNT IMPACT INDICATOR METHODS EP15174164.2 2015-06-26 EP2977737A3 2016-05-11 GEORGESON, Gary E.; TAPIA, William Joseph

Systems and methods using fluid-filled hollow microspheres to assist in monitoring or indicating high-energy blunt impacts on structures such as aircraft. A multiplicity of microspheres may be adhered to or embedded in a coating applied on a surface of a substrate (e.g., a tape or an appliqué), which substrate in turn can be adhered to a surface of a structure to be monitored. The microspheres are designed to rupture at one or more specified pressure thresholds. In some embodiments, the microspheres are filled with electrically conductive fluid which, if released from ruptured microsphere, changes the electromagnetic state of the substrate. In response to the detection of a sufficiently large change in the electromagnetic state of the substrate, a blunt impact indication is generated. The impact site may then undergo nondestructive inspection.

58 SPECTRAL IMAGING FOR MEASUREMENT OF NUCLEAR PATHOLOGY FEATURES IN CANCER CELLS PREPARED FOR IN SITU ANALYSIS EP12725639.4 2012-05-07 EP2707505A2 2014-03-19 DEMICHELIS, Francesca; GARSHA, Karl; MILLER, Phillip C; NAGLE, Ray B; OTTER, Michael; PESTANO, Gary Anthony; RUBIN, Mark A.
In general, the presently disclosed technology relates to identification of cancer subtypes. More specifically, the technology relates to methods for determining molecular drivers of cancer and/or progression using a multivariate image data and statistical analysis of in-situ molecular markers and morphological characteristics in the same cells of a biological sample suspected of b cancer. This analysis takes place after a single acquisition that obtains the molecular and anatomic morphology data in parallel. The analysis compares specific morphological and molecular markers to known samples exhibiting particular genetic drivers of the cancer. This method provides statistical information that allows for an increased confidence in the identification of specific molecular drivers of the cancer.
59 Process for the fabrication of a threshold acceleration sensor EP02425539.0 2002-08-30 EP1394554A1 2004-03-03 Zerbini, Sarah; Merassi, Angelo; Spinola Durante, Guido; De Masi, Biagio

A process for the fabrication of an inertial sensor with failure threshold, including the steps of: forming, on top of a substrate (2) of a semiconductor wafer (1), at least one sample element (6) embedded in a sacrificial region (3, 12); forming, on top of the sacrificial region (3, 12), a body (18) connected to the sample element (6); and etching the sacrificial region (3, 12), so as to free the body (18) and the sample element (6).

60 Impact sensor for a projectile EP85101471 1985-02-12 EP0166074A3 1986-01-08 Sundvall, Kenneth

impact sensor for a projectile (1), which comprises a source of power (6) with a normally open circuit (8, 9) and a sensing element (7), for example a fuse pipe, for the purpose of sensing a closing of the circuit. The circuit consists of two conductors (8, 9) embedded in a plastic film (10). A number of edges (13) in the projectile are so arranged as to be capable at the time of the impact by the projectile of penetrating the plastic film and making contact between the conductors.

QQ群二维码
意见反馈