序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 微型单片可变电气器件以及含有这类器件的装置 CN94108716.6 1994-07-27 CN1115067A 1996-01-17 布拉德利·M·凯耐克
一微型、可变电气器件,诸如一电容器(40a),包含一基本的DMD SLM(40′),DMD SLM包括一衬底(43)和一构件(145),构件与衬底相隔开,为可以移动,衬底安装在适当的设施(42,44)上。一控制信号(102)加至可动构件(145)以在它与衬底(43)或一相关的控制电极(46a)之间产生一电场。此电场使构件(145)向着或背着衬底(43)或一相关的输出电极(46b)移动,以有选择地调节它们之间的间隔。电场由衬底(43)相关联的寻址电路(45)产生。
2 MEMS元件及其制造方法 CN201010121487.0 2010-02-24 CN101811656A 2010-08-25 斋藤友博
发明涉及MEMS元件及其制造方法。本发明的一方面的MEMS元件包括:第一电极,其被设置在基底上;第二电极,其被设置在所述第一电极上方并被驱动朝向所述第一电极;锚件,其被设置在所述基底上;梁,其将所述第二电极支撑在半空中,所述梁的一端被连接到所述锚件,并且所述梁包括设置在其沿宽度方向的端部处的侧壁部分,所述侧壁部分具有向下的突起部。
3 微机械元件的控制方法及配置 CN01811158.0 2001-04-12 CN1436357A 2003-08-13 T·赖海宁; V·埃尔莫洛夫
发明涉及微机械元件的控制。特别是本发明涉及微机械开关的控制。按照控制至少一个微机械元件的方法,一个第一控制信号和一个第二控制信号被传递给微机械元件。第二控制信号被设置为将微机械元件置于激活态,第一控制信号被设置为将微机械元件保持在激活态。用于控制至少一个微机械元件(402)的配置,包括至少一个用于产生至少一个第一控制信号和一个第二控制信号的装置,用于提升至少第二控制信号电压电平的装置,以及将第一控制信号和已提升电压电平的第二控制信号传递给微机械元件的装置。通过本发明,较低的电压电平可以用于微机械领域。
4 具有可移动厚隔膜的微机电系统结构 CN201510959028.2 2015-12-18 CN105712292A 2016-06-29 安-苏菲·罗利耶; 安托万·博纳贝尔; 卡里姆·赛格尼
发明涉及制造MEMS器件的方法,其包括以下步骤:在牺牲基层上方形成第一隔膜层,在第一隔膜层上方形成第二隔膜层,其中第二隔膜层包括暴露第一隔膜层的侧向部分的侧向凹入部,以及形成止动件以限定第一隔膜层的移动。此外,提供了MEMS器件,其包括可移动隔膜,可移动隔膜包括第一隔膜层与形成在第一隔膜层上方的第二隔膜层,其中第二隔膜层包括暴露第一隔膜层的侧向部分的侧向凹入部。
5 具有多层隔膜的微机电系统结构 CN201510971269.9 2015-12-22 CN105712285A 2016-06-29 雷诺·罗宾; 尼古拉斯·洛尔弗兰; 卡里姆·赛格尼
发明涉及制造尤其是MEMS开关的MEMS设备的方法,其包括在基板上方形成柱与传导(传输)线以及在柱与传导线上方形成隔膜的步骤,形成隔膜步骤包括形成第一隔膜层和在柱中的一个上方的区域和/或传导线上方的区域中在第一隔膜层上方形成第二隔膜层使得第一隔膜层具有第二隔膜层未形成在其中的区域,该区域邻近第二隔膜层形成于其中的区域。此外,提供了尤其是MEMS开关的MEMS设备,其包括形成在基板上方的柱与传导(传输)线以及在柱与传导线上方的隔膜。隔膜包括第一隔膜层与在柱中的一个上方的区域和/或传导线上方的区域中形成在第一隔膜层上方的第二隔膜层,使得第一隔膜层具有第二隔膜层未形成在其中的区域,该区域邻近第二隔膜层形成于其中的区域。
6 MEMS元件及其制造方法 CN201010121487.0 2010-02-24 CN101811656B 2012-09-19 斋藤友博
发明涉及MEMS元件及其制造方法。本发明的一方面的MEMS元件包括:第一电极,其被设置在基底上;第二电极,其被设置在所述第一电极上方并被驱动朝向所述第一电极;锚件,其被设置在所述基底上;梁,其将所述第二电极支撑在半空中,所述梁的一端被连接到所述锚件,并且所述梁包括设置在其沿宽度方向的端部处的侧壁部分,所述侧壁部分具有向下的突起部。
7 厚い可動膜を備えるMEMS構造体 JP2015249763 2015-12-22 JP2016137565A 2016-08-04 アンネ−ソフィ ロリエ; アントワーヌ ボナベル; カリム セグエニ
【課題】動作の信頼性を向上させるMEMSデバイスの製造方法を提供する。
【解決手段】犠牲ベース層102上に第1膜層101を形成し、前記第1膜層上に第2膜層105を形成し、前記第2膜層は、前記第1膜層の側方部を露出する側方凹部(R)を備え、前記第1膜層の移動を制限するストッパ104を形成する。また、第1膜層と、前記第1膜層上に形成された第2膜層とを備える可動膜を備え、前記第2膜層は、前記第1膜層の側方部を露出する側方凹部(R)を備える。第1膜層は、従来用いられた均一な厚みの膜よりも薄いので膜の自由移動距離は減少し、それにより動作の信頼性が向上する。
【選択図】図3e
8 Source, drain, and electromechanical nanotube tunnel device having a gate JP2007513104 2005-05-16 JP2008502125A 2008-01-24 アクセルソン,スベン; キナレット,ヤリ; ノルド,トマス; フィーフェルズ,スザンヌ; ヨンソン,マグヌス
本発明は、長手方向及び横方向の延長部を有するナノチューブと、ナノチューブの少なくとも第1部分を支持する構造と、その横方向の延長部によって定義されている第1方向においてナノチューブに対してを作用させる第1手段と、を有するナノチューブ装置(100)に関するものである。 ナノチューブの少なくとも第2部分は、力が一定のレベルを超過した際に、ナノチューブの第2部分がその横方向の延長部の方向において曲がり、これによって第1電気回路を閉じるように、構造の支持部を超えて突出している。 好適には、力をナノチューブに対して作用させる第1手段は、電気的な手段であり、この力は、電圧をこの手段に印加することによって生成される。 本装置は、ソース及びドレイン電極の両方において量子力学トンネル現象を実現する。
9 Phase shifter incorporating switch for high-frequency signal JP28400595 1995-10-31 JPH08213803A 1996-08-20 CHIYAARUZU ERU GOORUDOSUMISU; BURATSUDORII EMU KANATSUKU; TSUEN FUANGU RIN; BIRU AARU NOOBERU; RIRII WAI PANGU; BIRII BII PAWAAZU JIYUNIA; CHIYAARUZU EMU ROOZU; DEBITSUDO JIEI SEIMOAA
PROBLEM TO BE SOLVED: To provide various kinds of systems incorporating a switch which does not consume much power, can be manufactured at a low cost, has linearity, and can be suitably integrated with a CMOS circuit for control, etc. SOLUTION: In a switch, for example, micro-strip segments 802 and 803 and electrodes 805 and 806 holding the segments in between are arranged in the opening of an insulating spacer provided on the surface of a substrate and metallic thin films 815 and 816 and a metallic plate 825 are mounted on the surface of a dielectric film 812 which is supported on the spacer across the opening. When the electrodes 805 and 806 and metallic thin films 815 and 816 are grounded, the dielectric film 812 becomes flat and the switch is opened. When a positive voltage is applied across the electrodes and metallic films, the electrodes make the metallic plate 825 to bridge the gap between the segments 802 and 803 by bringing down the dielectric film 812 and close the switch by inductively coupling the segments 802 and 803 with each other. When the voltage is canceled, the dielectric film 812 returns to the flat state. The switch operates within about one microsecond and can be integrated with a multi-throw switch in a microwave array at the time of constituting a phase shifter, a filter, etc.
10 Mems element and method of manufacturing the same JP2009041382 2009-02-24 JP2010199246A 2010-09-09 SAITO TOMOHIRO
PROBLEM TO BE SOLVED: To improve the element characteristics of an MEMS element. SOLUTION: The MEMS element includes a first electrode 12 provided on a substrate 1, a second electrode 16 provided above the first electrode 12 and mechanically driven toward the first electrode 12, and a beam 21A which supports the second electrode in midair, and includes a sidewall part 22 provided at its end in the width direction, the sidewall part having a downward-facing protrusion. COPYRIGHT: (C)2010,JPO&INPIT
11 Vibrating mems switch and method for manufacturing the same JP2005209426 2005-07-20 JP2006032353A 2006-02-02 LEE MOON-CHUL; PARK TAE-SIK; JEONG HEE-MOON
PROBLEM TO BE SOLVED: To provide a vibrating MEMS switch for performing a stable switching operation even in applying of a low voltage by turning on/off the MEMS switch using a resonating phenomenon. SOLUTION: The MEMS switch includes a vibrator vibrating in a prescribed direction by applying an AC voltage and a stationary contact formed at a position separated by a prescribed distance along with a vibration direction of the vibrator. When a DC voltage of a prescribed value is applied to the fixed contact, a vibration amplitude of the vibrator is increased to contact with the stationary contact then the MEMS switch is turned on. On the other hand, it is preferable for the MEMS switch to mutually joint a prescribed first substrate and a second substrate by sandwiching the vibrator therebetween and to isolate the vibrator in a sealed space in a vacuum state. COPYRIGHT: (C)2006,JPO&NCIPI
12 Input erase stabilization memory element JP52512194 1994-05-06 JP3627108B2 2005-03-09 スミス,チャールズ,ゴードン
13 ZERO-QUIESCENT POWER RECEIVER US15627142 2017-06-19 US20180145853A1 2018-05-24 Clark T.-C. Nguyen; Wei-Chang Li; Ruonan Liu
A microelectromechanical resonant switch (“resoswitch”) converts received radio frequency (RF) energy into an output signal with zero quiescent power usage by using a resonant element with a passband input sensitivity of: <−60 dBm, <−68 dBm, and <−100 dBm. The resoswitch first accepts incoming amplitude- or frequency-shift keyed RF energy at a carrier frequency, filters it, provides power gain via resonant impact switching, and finally envelop detects impact impulses to demodulate and recover the modulating waveform. Mechanical gain may be used to amplify received signals, whose amplitudes may be binned, thereby preserving use of amplitude modulated (AM) signals. A second resoswitch may be used to control additional circuitry, whereby the first resoswitch detects a control signal output to the additional circuitry.
14 MEMS STRUCTURE WITH THICK MOVABLE MEMBRANE US14977488 2015-12-21 US20160181041A1 2016-06-23 Anne-Sophie Rollier; Antoine Bonnabel; Karim Segueni
The present invention relates to a method of manufacturing an MEMS device that comprises the steps of forming a first membrane layer over a sacrificial base layer, forming a second membrane layer over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer and forming stoppers to restrict movement of the first membrane layer. Moreover, it is provided MEMS device comprising a movable membrane comprising a first membrane layer and a second membrane layer formed over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer.
15 MEMS element and method of manufacturing the same US12704836 2010-02-12 US08686816B2 2014-04-01 Tomohiro Saito
A MEMS element of an aspect of the present invention including a first electrode provided on a substrate, a second electrode which is provided above the first electrode and which is driven toward the first electrode, an anchor provided on the substrate, a beam which supports the second electrode in midair, one end of the beam being connected to the anchor and the beam including a sidewall part provided at its end in the width direction, the sidewall part having a downward-facing protrusion.
16 MOVING A FREE-STANDING STRUCTURE BETWEEN HIGH AND LOW ADHESION STATES US12405758 2009-03-17 US20100237738A1 2010-09-23 CHARLES GORDON SMITH; RICHARD L. KNIPE
Embodiments disclosed herein generally solve a stiction problem in switching devices by using a series of pulses of force which take the switch from being strongly adhered to a landing electrode to the point where it is only weakly adhered. Once in the low adhesion state, the switch can then be pulled away from contact with a lower force provided by either the spring constant of the switch and/or the electrostatic forces resulting from low voltages applied to nearby electrodes.
17 Vibration type MEMS switch and fabricating method thereof US11182775 2005-07-18 US20060017125A1 2006-01-26 Moon-chul Lee; Tae-sik Park; Hee-moon Jeong
A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.
18 Microelectromechanical (MEMS) switching apparatus US10912413 2004-08-04 US06967548B2 2005-11-22 Qing Ma; Valluri Rao; John Heck; Li-Peng Wang; Dong Shim; Quan Tran
This application discloses a microelectromechanical (MEMS) switch apparatus comprising an anchor attached to a substrate and an electrically conductive beam attached to the anchor and in electrical contact therewith. The beam comprises a tapered portion having a proximal end and a distal end, the proximal end being attached to the anchor, an actuation portion attached to the distal end of the tapered portion, a tip attached to the actuation portion, the tip having a contact dimple thereon. The switch apparatus also includes an actuation electrode attached to the substrate and positioned between the actuation portion and the substrate. Additional embodiments are also described and claimed.
19 Method of forming a beam for a MEMS switch US10342778 2003-01-15 US06880235B2 2005-04-19 Qing Ma
A microelectromechanical system (MEMS) switch having a high-resonance-frequency beam is disclosed. The MEMS switch includes first and second spaced apart electrical contacts, and an actuating electrode. The beam is adapted to establish contact between the electrodes via electrostatic deflection of the beam as induced by the actuating electrode. The beam may have a cantilever or bridge structure, and may be hollow or otherwise shaped to have a high resonant frequency. Methods of forming the high-speed MEMS switch are also disclosed.
20 Microelectromechanical (MEMS) switching apparatus US10912413 2004-08-04 US20050007219A1 2005-01-13 Qing Ma; Valluri Rao; John Heck; Li-Peng Wang; Dong Shim; Quan Tran
This application discloses a microelectromechanical (MEMS) switch apparatus comprising an anchor attached to a substrate and an electrically conductive beam attached to the anchor and in electrical contact therewith. The beam comprises a tapered portion having a proximal end and a distal end, the proximal end being attached to the anchor, an actuation portion attached to the distal end of the tapered portion, a tip attached to the actuation portion, the tip having a contact dimple thereon. The switch apparatus also includes an actuation electrode attached to the substrate and positioned between the actuation portion and the substrate. Additional embodiments are also described and claimed.
QQ群二维码
意见反馈