序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
121 Method of producing a superconducting cable US10135178 2002-04-29 US20020170733A1 2002-11-21 Claus Nygaard Rasmussen
U 013971-0 A method of producing a superconducting cable, where a plurality of superconducting ribbons (4) are applied onto a preferably flexible tube (3), said ribbons being applied in one or more layers, optionally separated by intermediate plastic layers, whereafter a protective layer (5) of textile or paper is optionally applied followed by a metal tube (6). A plurality of film layers are applied onto the metal tube (6), a few of said layers being metal-coated. Subsequently, a number of preferably helical spacers (12) are applied onto there layers, and finally a screen (9) is placed on said spacers (12). In this manner the vacuum between the tubes (6 and 9) minimize the thermal conductivity at the same time as the metal-coated films block the thermal radiation. Compared to a conventional cryostate, an increase of the influx of heat is met by increasing the number of film layers and by inserting a predeteremined number of aluminium-coated layers serving both as equipotential surfaces and as equitemperature surfaces.
122 Superconducting cable US10026761 2001-12-27 US20020153162A1 2002-10-24 Sergio Spreafico
A superconducting cable comprising at least a superconducting conductor and a cryostat including a thermal insulation and an inner tube is provided with a protecting element between the superconducting conductor and the inner tube, to prevent damages to the superconducting material by the inner tube of the cryostat.
123 Superconducting cable with continuously porous insulation US332638 1989-03-30 US4966886A 1990-10-30 Takeshi Hoshiko
A ceramic wire superconducting cable is provided having porous expanded polytetrafluoroethylene insulation, a superconductive ceramic tape "conducting" layer having openings at prescribed intervals and a high strength polytetrafluoroethylene fiber protective layer. The components covering the cable are porous permitting liquid nitrogen to permeate and directly contact with the superconductive cable.
124 Spacer for coaxial tube systems US13043 1979-02-21 US4220179A 1980-09-02 Ernst Scheffler; Friedrich Schatz; Gerhard Ziemek
Spacer for concentrically disposed tube systems where a temperature drop exists between adjacent tubes. This may consist, for example, of a superconducting electric cable or alternatively of a tube system for carrying heated liquid or gaseous media. The concentric tubes are spaced by a winder which touches the surfaces of adjacent tubes at particular points and which consists of two ribbons of insulating material disposed adjacent to each other having two elements in-between, and one of them being wound about the other so that they touch adjacent ribbon surfaces only in isolated points.
125 Spacer for coaxial tube systems US847083 1977-10-31 US4161966A 1979-07-24 Ernst Scheffler; Friedrich Schatz; Gerhard Ziemek
Spacer for concentrically disposed tube systems where a temperature drop exists between adjacent tubes. This may consist, for example, of a superconducting electric cable or alternatively of a tube system for carrying heated liquid or gaseous media. The concentric tubes are spaced by a winder which touches the surfaces of adjacent tubes at particular points and which consists of ribbons of insulating material disposed adjacent to each other. The individual ribbons are so formed and so arranged that they touch adjacent tube surfaces either at only individual points or at lines.
126 Multi-layer insulation for deep-cooled cables US493899 1974-08-01 US3959549A 1976-05-25 Peter Penczynski; Peter Jacobsen; Gunther Matthaus; Peter Massek
A multi-layer insulation for deep-cooled cables utilizing insulating foils having a dielectric loss factor less than 5.times.10.sup..sup.-5 in which a layer of a spun bonded paper of high density polyethylene fibers is placed between each two layers of insulating foil thereby providing sufficient elasticity even when the cable is cooled to a very low temperature to equalize expansion differences occurring in the cable.
127 Cryogenic cable US3736365D 1972-04-14 US3736365A 1973-05-29 BOBO J; DUBOIS A; AUPOIX M
A cryogenic cable enabling the transfer of considerable electric power, characterized in that the electrical insulating means, between two coverings capable of being brought to different electric potentials, consists essentially of a volume of gas at a pressure between 10 5 and 10 2 Torr.
128 Supercooled electric cable US3735018D 1971-08-30 US3735018A 1973-05-22 GRIESINGER W
A supercooled electric cable having a conductor element centrally disposed within a tubular sheath for passing a coolant such as liquid helium therethrough, spacer elements being provided for locating the conductor element relative to the tubular sheath; the spacer elements being of a configuration such as to maintain the conductor element in a selected position relative to the sheath during the installation of the cable as well as at operating temperatures.
129 Electrically insulating tape and method of applying same US3623924D 1969-12-15 US3623924A 1971-11-30 WINTER THEO A DE; LUCAS EDWARD J; LANYI WILLIAM A
AN ELECTRICALLY INSULATING TAPE COMPRISING A THIN ROBBON OF FLEXIBLE ELECTRICALLY INSULATING MATERIAL WITH ADHESIVE ON ONE FLAT SURFACE AND IN CONTACT WITH A LOW RELEASE BACKING MATERIAL. OPENINGS SPACED ONE FROM ANOTHER ARE PROVIDED ALONG THE LENGTH OF THE TAPE. UPON REMOVAL OF THE BACKING MATERIAL, THE TAPE IS APPLIED TO AN ELONGATED SURFACE HAVING A DIMENSION LESS THAN THE WIDTH OF THE OPEN-

INGS AND TRIMMED TO LEAVE ON THE ELONGATED SURFACE ONLY THOSE PORTIONS OF THE TAPE INTERMEDIATE THE OPENINGS.
130 Coaxial arrangement of tubular members, and spacer structure for such arrangements US3604832D 1970-07-22 US3604832A 1971-09-14 KOHLER HUBERT; SCHMIDT FRITZ
A coaxial arrangement for coolable cables or the like, comprises inner and outer tubular members which form a longitudinally extending, annular interspace between each other, one or both these members being contactable by coolant passing through the cable during operation. The annular interspace is secured by longitudinally spaced spacer structures of poor heat-conducting material. Each of the spacer structures is in contact with the respective tubular members at only small areas and has a ring portion surrounding the inner tubular member when in assembled condition. The ring-shaped portion has inwardly directed and angularly spaced bosses or little protrusions which face and contact the inner tubular member when the arrangement is in assembled condition. Three spoke members are joined with and protrude in a radially outward direction from the ring portion so as to engage the outer tubular member of the arrangement when assembled. The three spoke members are 120* peripherally spaced from each other. Each spacer structure is composed of a plurality, preferably three component members, each component member carrying one of the three spoke members.
131 Low temperature electric transmission systems US3562401D 1969-03-03 US3562401A 1971-02-09 LONG HUGH M
This invention provides a low temperature electrical transmission system which is defined by an elongated conduit having at least one electrical conductor internally positioned within said conduit, an outer jacket surrounding said elongated conduit and a circulating cryogenic dielectric cooling liquid located between the electrical conductor and the elongated conduit for simultaneously cooling and electrically insulating the conductor from the conduit and from the outer jacket. Thermal insulation is positioned between the outer jacket and conduit to prevent heat inleakage.
132 Superconducting cable for transmitting high electrical currents US3529071D 1968-04-26 US3529071A 1970-09-15 KAFKA WILHELM
133 Cryogenic devices US3512581D 1968-07-02 US3512581A 1970-05-19 LAWTON JOHN E
134 超電導ケーブル及び超電導ケーブルの製造方法 JP2016572341 2016-01-29 JP6140377B2 2017-05-31 高木 智洋; 八木 正史
135 超伝導送電システムと冷却方法 JP2015525240 2014-07-01 JPWO2015002200A1 2017-02-23 作太郎 山口; 裕文 渡邉
断熱性能を向上し、例えばLNGが持っている冷熱を有効活用可能とする。超伝導ケーブル11を内側に収容する内管12と、内管12の少なくとも一部を外側から覆う輻射シールド13と、前記内管及び前記輻射シールドを内側に収容する外管14を備え、外管14の内側から前記輻射シールド13を挟んで内管12の外側を真空に保持する構成の超伝導送電システムが、外管14内に収容され、輻射シールド13に関連付けて設けられた輻射シールド管15を備え、前記輻射シールド管15には、輻射シールド13用に、第2の冷媒として、例えば液化天然ガス(LNG)を流す。
136 超電導ケーブル、並びに超電導ケーブルの冷却装置及び冷却方法 JP2011273750 2011-12-14 JP5922922B2 2016-05-24 玉田 紀治; 富田 優
137 Method of manufacturing the insulation-type high-temperature superconducting wire and superconducting wire JP2014517523 2012-07-04 JP2014525117A 2014-09-25 ゴルダッカー ヴィルフリート; フィンク シュテファン; クディモヴ アンドレイ; エルシュナー シュテフェン; ブラント イェアク
本発明は絶縁型高温超伝導ワイヤに関する。 線材(1)は非絶縁高温超伝導ワイヤから成り、その幅はその厚さの少なくとも10倍であり、高温超伝導体はマトリックスに収容されているか又は基板上に取り付けられている。 その際、両側に非導電性の絶縁層(2,2′)が設けられ、これら両方の絶縁層(2,2′)は、線材(1,1′)に対し張り出した2mm〜200mmの値の絶縁体周縁幅を有している。 本発明はさらに、絶縁型高温超伝導ワイヤの有利な製造方法にも関する。 これによれば非導電性の絶縁層(2,2′)が、非絶縁高温超伝導ワイヤから成る線材(1)の両側に被着されており、有利にはラミネートされている。 本発明によれば絶縁型高温超伝導ワイヤは、ブレークダウン(3)及びフラッシオーバ(4)に十分に保護され、敏感な表面は絶縁層(2,2′)により封止され、周縁部及び面での擦れに対し保護され、絶縁層(2,2′)は均質に被覆され、場合によっては軸線方向に加わるを、力の作用がエッジではなく線材(1)の面全体に伝達されるようにして良好に阻む。
138 Cryogenic element insulator JP2013541298 2011-11-24 JP2014504349A 2014-02-20 フェア,ルーベン
【構成】本発明は、極低温素子(2)の絶縁体(1)を提供する。 絶縁体は、金属被着ポリマー膜とポリマーネットの交互層からなる多層絶縁材料からなる内側部分(4)を有する。 この内側部分(4)を包囲する外側支持メッシュ(5)は、ステンレス鋼からなる。 この絶縁体(1)は、支持メッシュ(5)が極低温素子(2)の動作から生じるを原因とする損傷に対して内側部分(4)を保持するため、極低温素子(2)を絶縁するために好適である。
【選択図】図1
139 Superconducting power transmission cable and transmission system JP2005023814 2005-01-31 JP4880229B2 2012-02-22 作太郎 山口
140 Superconducting cable JP2004349170 2004-12-01 JP4716246B2 2011-07-06 正幸 廣瀬; 良輔 畑
QQ群二维码
意见反馈