序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 ATOMCHIP DEVICE US11816172 2006-01-29 US20100154570A1 2010-06-24 Valery Dikovsky; Ron Folman; Yoni Japha
An AtomChip device and a method for trapping, manipulating and measuring atoms in ultra high vacuum chamber, and for increasing the lifetime of the trapped atoms, the AtomChip device including at least one conductive element, made of metal, wherein at least part of the metal is a dilute alloy metal, and wherein the at least one conductive element has a low working temperature.
82 Optoelectronic tweezers US11596490 2005-05-10 US07732758B2 2010-06-08 Kishan Dholakia; Thomas F. Krauss; Simon John Cran-McGreehin
An on-chip micro-fluidic device (10) fabricated using a semiconductor material. The device has a micro-fluidic channel or chamber (14) defined within the material and one or more monolithically integrated semiconductor lasers (12) operate to form an optical trap in the channel or chamber (14).
83 Particle movement device US11671050 2007-02-05 US07633056B2 2009-12-15 Stephanie Gaugiran; Jerome Hazart
A process for moving a particle using a device, the device including a substrate, a wave guide and a grating formed on the wave guide. The process includes injecting light with wavelength λ into the wave guide, and diffracting the light transmitted through the guide to a medium with an index nsuper in which the particle is located, particle movement forces being generated by the diffraction of light from the grating.
84 METHOD OF OPTICAL MANIPULATION OF SMALL-SIZED PARTICLES US11946966 2007-11-29 US20080212179A1 2008-09-04 Romain Roger Quidant; Maurizio Righini
Method and system of optical manipulation of micrometer-sized objects, which comprises the steps of placing a pattern (2) of a certain material on a surface (1), wherein said material is capable of sustaining surface plasmons; placing a solution (4) comprising micrometer-sized objects in contact with said surface (1) and said pattern (2); applying at least one optical beam (5) at a certain wavelength and with a certain incident angle (Φ) to said surface (1) for certain time interval, thereby creating surface plasmons forces at said surface (1), in such a way that said micrometer-sized objects are trapped by the pattern (2) in a stable and selective way. Optical trap and use thereof as a tool for optically driven lab-on-a-chip.
85 Neutral atom trapping device US11714557 2007-03-06 US20080073494A1 2008-03-27 Masaharu Hyodo
A neutral atom trapping device with a multipole-magnetic field-generating electrode is provided with a main current electrode through which main current flows, and a pair of sub-current electrodes through which sub-current flows, and which is located in parallel to and both sides of said main current electrode; a neutral atom trapping device with an S-shaped multipole-magnetic field-generating electrode-.
86 Electromagnetic/optical tweezers using a full 3D negative-refraction flat lens US11786670 2007-04-12 US20070285803A1 2007-12-13 Dennis Prather; Zhaolin Lu; Janusz Murakowski; Shouyuan Shi; Garrett Schneider
Described herein are electromagnetic traps or tweezers. Desired results are achieved by combining two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers. The very unique advantages of using 3DNRFLs for electromagnetic traps have been demonstrated. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens.
87 Optical trapping with a semiconductor US11525518 2006-09-22 US20070069119A1 2007-03-29 David Appleyard; Matthew Lang
A method and apparatus are disclosed for forming an optical trap with light directed through or above a semiconductor material. A preferred embodiment selected light-trapping wavelengths that have lower absorption by the semiconductor. A preferred embodiment provides for an optical trapping through semiconductor employing a thin silicon (Si) wafer as a substrate. Further embodiments of the invention provide for microchannel fabrication, force probe measurement, sorting, switching and other active manipulation and assembly using an optical trap.
88 Composite material lens for optical trapping US11116657 2005-04-27 US20060243897A1 2006-11-02 Shih-Yuan Wang; Zhiyong Li
For manipulation of a specimen, the specimen and a focusing location of a composite material lens are brought into spatial coincidence. The composite material lens has at least one of a negative effective permittivity and a negative effective permeability at a frequency of an applied light beam. The composite material lens focuses the light beam toward the focusing location and forms an optical trap for the specimen.
89 Optical array device and methods of use thereof for screening, analysis and manipulation of particles US10199341 2002-07-19 US06991939B2 2006-01-31 David R. Walt; Irving L. Weissman; Israel Biran; Jenny Tam
Methods and devices are provided for the trapping, including optical trapping; analysis; and selective manipulation of particles on an optical array. A multi-channel device parcels a light source into many points of light transmitted through an optical array of fibers or conduits, preferably where the individual points of light are individually controllable through a light controlling device. Optical properties of the particles may be determined by interrogation with light focused through the optical array. The particles may be manipulated by immobilizing or releasing specific particles, separating types of particles, etc.
90 Particle movement device US10962603 2004-10-13 US20050184230A1 2005-08-25 Stephanie Gaugiran; Jerome Hazart
This invention relates to a process for moving a particle using a device comprising a substrate (4), a wave guide (2) and a grating (6) formed on the wave guide, in which: light with wavelength λ is injected into the wave guide, the light transmitted through the guide is diffracted to a medium (14) with an index nsup in which the particle is located.
91 Minute particle optical manipulation method and apparatus US10117182 2002-04-08 US06603607B2 2003-08-05 Kumiko Matsui; Hisashi Okugawa
A minute particle optical manipulation method and a minute particle optical manipulation apparatus are capable of simply strengthening a trapping force in an optical-axis direction and expanding a range where the trapping for acts in the optical-axis direction without requiring an optical element such as a special prism etc., and obtaining the trapping force enough to trap the particle even when the minute particle exists deep within a medium while keeping the trapping force when the minute particle is in a shallow position within the medium.
92 Microorganism manipulating apparatus and microorganism manipulating method therefor US09504849 2000-02-16 US06501071B1 2002-12-31 Takayuki Hatase
A microorganism manipulating apparatus that has a low cost and that uses optical trapping to concurrently acquire a plurality of microorganisms, comprises: an optical trapping device, including a single laser beam output unit for emitting a laser beam, an optical system for condensing the laser beam, and a single galvanoscanner for making the laser beam scan and emitting the laser beam to a microorganism to be manipulated to acquire the microorganism; and a multi-trap controller, for controlling a laser output control unit and a galvanoscanner driver so that the optical trap device can concurrently acquire a plurality of microorganisms in a time-sharing manner. With this arrangement, the cost required for equipment of an expensive laser projection system and an expensive scanning/optical system, can be reduced, and inexpensive equipment can be used to perform an efficient microorganism operation.
93 MICROORGANISM MANIPULATING APPARATUS AND MICROORGANISM MANIPULATING METHOD THEREFOR US09504849 2000-02-16 US20020185591A1 2002-12-12 Takayuki Hatase
A microorganism manipulating apparatus that has a low cost and that uses optical trapping to concurrently acquire a plurality of microorganisms, comprises: an optical trapping device, including a single laser beam output unit for emitting a laser beam, an optical system for condensing the laser beam, and a single galvanoscanner for making the laser beam scan and emitting the laser beam to a microorganism to be manipulated to acquire the microorganism; and a multi-trap controller, for controlling a laser output control unit and a galvanoscanner driver so that the optical trap device can concurrently acquire a plurality of microorganisms in a time-sharing manner. With this arrangement, the cost required for equipment of an expensive laser projection system and an expensive scanning/optical system, can be reduced, and inexpensive equipment can be used to perform an efficient microorganism operation.
94 Multi-point laser trapping device and the method thereof US935308 1997-09-22 US5935507A 1999-08-10 Yuhkoh Morito; Shuji Shikano; Michinari Hoshina
The present invention involves a multi-point laser trapping device in which laser light is irradiated on medium that includes micro-particles, and captures and arranges multiple micro-particles within said medium simultaneously; and is characterized by irradiating the aforementioned laser light from a single laser light source, and by arranging in that light route grating which forms on medium a diffraction pattern consisting of multiple point laser spots.
95 Optical trap system and method US208131 1994-03-09 US5512745A 1996-04-30 Jeffrey Finer; Robert Simmons; James A. Spudich; Steven Chu
By providing a focal region of light onto a particle, a laser-based light source can provide enough radiation pressure to position the particle at any desired location in space. In one application, the particle can be a micrometer-sized bead, called a handle, attached to a sample. When the sample under examination, such as an actin filament, interacts with other molecules, such as myosin, the forces generated may displace the sample, and thus the handle, out of its original position. To correct for the off-target position (or in other words, to increase the stiffness of the handle), a feedback loop that utilizes a quadrant photodiode detector and a focal region location means such as an acousto-optic modulator or galvanometer mirror is incorporated in the optical trap system. Use of two other light sources for brightfield illumination and epifluorescence allows the simultaneous viewing of the sample in real time. In other embodiments, the optical trap system can trap and manipulate particles.
96 適応型の発射方向および/または位置を用いた原子干渉計 JP2013023447 2013-02-08 JP6072558B2 2017-02-01 ロバート・コンプトン; ケネス・サリット
97 微小体制御装置 JP2013228323 2013-11-01 JP2015085300A 2015-05-07 大津 知子; 安藤 太郎; 伊藤 博康; 豊田 晴義; 大竹 良幸; 瀧口 優
【課題】光渦による微小体の光トラップの状態を評価することができる微小体制御装置を提供する。
【解決手段】微小体制御装置1は、サンプル90における媒質中の微小体の動きを制御する装置であって、光源10、光渦生成部20、対物レンズ30、撮像部60、解析部70および移動部80を備える。解析部70は、対物レンズ30による光渦の集光位置が第1位置に設定されているときに、光渦により光トラップされた微小体を撮像した撮像部60から出された画像データに基づいて微小体の第1運動情報を取得し、対物レンズ30による光渦の集光位置が第2位置に設定されているときに、光渦により光トラップされた微小体を撮像した撮像部60から出力された画像データに基づいて微小体の第2運動情報を取得し、第1運動情報と第2運動情報とを比較することにより、光渦による微小体の光トラップの状態を評価する。
【選択図】図1
98 微小物体を操作し光学的に標的化するためのシステム JP2014549361 2012-12-28 JP2015504158A 2015-02-05 イェスパー グリュックシュタット; ダーウィン パリマ
【課題】本発明は、1つまたは複数の微小物体159を独立に保持し操作するための、および、電磁放射138を用いて捕捉体積102内の1つまたは複数の微小物体の少なくとも一部を標的化するためのシステム100に関する。【解決手段】システムは、1つまたは複数の微小物体を保持し操作するための捕捉手段と、電磁放射標的化手段(116)とを有する。光手段は、光源と、1つまたは複数の微小物体の少なくとも一部の具体的な照明を可能にするように光源からの光を変調するのに役立つ空間光変調器とを有する。捕捉手段および電磁放射標的化手段(116)は、互いに独立に機能することができ、その結果、捕捉された対象物はどの部分が標的化されているかに依らずに動き回ることができる。逆もまた同じである。【選択図】図1
99 電磁放射を用いて微小物体を分類するためのシステム JP2014549362 2012-12-28 JP2015503736A 2015-02-02 イェスパー グリュックシュタット
【課題】選択された微小物体を分類することを可能にする。【解決手段】微小物体76、78、80を分類するためのシステム10、100であって、流入口68および流出口70を有する流路66を含み、この流路は、流体の流れが層流となることを可能にするように構成される。システムは、流路内の微小物体を検出することを可能にし、それらの位置を判定することをさらに可能にする検出システム52をさらに含む。システムは、位置を受信し、それに応じて、選択された微小物体に向けて光ビームを「発射し、」それにより、それらを新たな位置内へと「押す」ように、光ビームの光源を制御する、コンピュータ等のコントローラ67をさらに含む。より具体的な実施形態では、検出システムは、異なる微小物体に異なるカテゴリをさらに指定し、それにより、複数のカテゴリに基づく分類を可能にする。【選択図】図1
100 Atom interferometer with adaptive launch direction and/or position JP2013023447 2013-02-08 JP2013178243A 2013-09-09 COMPTON ROBERT; KENNETH SALIT
PROBLEM TO BE SOLVED: To provide a method of launching atoms so as to increase sensitivity in an atom interferometer used as an inertial sensor.SOLUTION: The method includes: determining a direction of total effective acceleration force Feef on atoms 101; adaptively controlling a direction of launch of the atoms in the atom interferometer on the basis of the direction of the total effective acceleration force so that the direction of launch is opposite or orthogonal to the direction of the total effective acceleration force; and obtaining measurement results while the atoms are within the volume of a Raman laser beam for an extended period of time.
QQ群二维码
意见反馈