序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 激光装置 CN200410028221.6 1996-05-30 CN1304877C 2007-03-14 山本和久; 水内公典; 北冈康夫; 加藤诚
在一个LiTaO3基底1中形成了一些畴反转层3之后,形成一个光学波导。通过对这样形成的光学波长转换元件进行低温退火,便形成一个稳定质子交换层8,其中在高温退火过程中所产生的折射率增大被减少,由此提供了一个稳定的光学波长转换元件。这样,相位匹配波长变得恒定,谐波输出的变化被消除。结果,对于利用非线性光学效应的光学波长转换元件而言,提供了高度可靠的元件。
82 液晶定向处理剂及液晶显示元件 CN200480025374.3 2004-10-20 CN1845965A 2006-10-11 今村哲也; 绳田秀行; 军司里枝
提供可形成对应于环境温度变化预倾的变化小、且即使在高温时也可赋予液晶稳定的高预倾角的液晶定向膜的液晶定向处理剂,以及对于环境温度的变化可实现稳定、高品质的显示的液晶显示元件。含有具备下式(1)所示的结构单元的加聚物的液晶定向处理剂及使用了该液晶定向处理剂的液晶显示元件,式中,A为通过加聚获得的聚合物的主链结构,B为单键或选自酯、醚、酰胺及甲酸乙酯的连接基,X1和X2独立地表示芳香族环、脂肪族环或杂环,R1为原子数3~18的烷基、碳原子数3~18的烷基、碳原子数1~5的氟烷基、碳原子数1~5的氟烷氧基、氰基或卤素原子。
83 混合扩散板,及具有混合扩散板的背光源组件和显示装置 CN200510115826.3 2005-11-09 CN1841154A 2006-10-04 河周和; 崔震成
发明公开了一种具有不同透射率的多层结构的混合扩散板,及具有该混合扩散板的背光源组件及显示装置。其中,混合扩散板包括下部外壳层、中心层、及上部外壳层。下部外壳层改变通过背面提供的光的路径,混合光后射出。中心层形成在下部外壳层之上,扩散并射出已改变路径的混合的光。上部外壳层具有棱镜形状的正面,形成在中心层之上,并通过正面射出被中心层扩散的光。因此,随着提供具有不同透射率的多层结构的混合扩散板,不仅可以减少光学薄片的数量,而且还可以减少光源导致的暗线并提高辉度
84 光学补偿式双折射型液晶显示装置及其制造方法 CN03153249.7 2003-08-11 CN1251006C 2006-04-12 朴求铉; 崔相好
发明的光学补偿式双折射型液晶显示装置包括彼此面对且相互隔开一定距离的第一和第二基板;设在第一和第二基板之间、且在未施加电压时,呈斜展状态,而当施加转换电压时则呈弯曲状态的液晶材料层;设在第一基板外表面上的第一补偿膜;设在第一补偿膜上的第一偏光片;设在第二基板外表面上的第二补偿膜;和设在第二补偿膜上的第二偏光片,其中处于斜展状态下的液晶材料层具有第一延迟值(R1),该值满足:1.35<R1/λ<1.75对于处于弯曲状态的液晶材料层,在施加适合白色图像的白色电压时,具有第二延迟值(R2),该值满足:0.5<R2/λ<0.7而当施加适合黑色图像的黑色电压时,具有第三延迟值(R3),该值满足:0.1<R3/λ<0.15。
85 液晶光量调整设备及其驱动方法和照相机 CN02805118.1 2002-11-15 CN1228668C 2005-11-23 高冈俊史
一种用于优化加速驱动脉冲的有效功率来改进光透射率的响应特性的液晶光量调整器、驱动这个装置的方法、以及包括这个装置的照相机。该液晶光量调整器包括用于产生脉冲电压的驱动脉冲的驱动脉冲产生电路(16)、用于根据驱动脉冲的脉冲形状来变化液晶的光透射率的液晶光量调整部分(12)、以及用于控制脉冲的频率和负荷比的微机(19)。微机(19)实行控制,从而驱动脉冲生成电路生成加速用驱动脉冲,其脉冲形状具有第一频率和第一负荷比,并生成调光用驱动脉冲,其脉冲形状具有异于第一频率的第二频率和异于第一负荷比的第二负荷比。
86 光学元件,激光光源,激光设备,以及制作光学元件的方法 CN200410028221.6 1996-05-30 CN1540814A 2004-10-27 山本和久; 水内公典; 北冈康夫; 加藤诚
在一个LiTaO3基底1中形成了一些畴反转层3之后,形成一个光学波导。通过对这样形成的光学波长转换元件进行低温退火,便形成一个稳定质子交换层8,其中在高温退火过程中所产生的折射率增大被减少,由此提供了一个稳定的光学波长转换元件。这样,相位匹配波长变得恒定,谐波输出的变化被消除。结果,对于利用非线性光学效应的光学波长转换元件而言,提供了高度可靠的元件。
87 光学元件,激光光源,激光设备,以及制作光学元件的方法 CN200410028223.5 1996-05-30 CN1540428A 2004-10-27 山本和久; 水内公典; 北冈康夫; 加藤诚
在一个LiTaO3基底1中形成了一些畴反转层3之后,形成一个光学波导。通过对这样形成的光学波长转换元件进行低温退火,便形成一个稳定质子交换层8,其中在高温退火过程中所产生的折射率增大被减少,由此提供了一个稳定的光学波长转换元件。这样,相位匹配波长变得恒定,谐波输出的变化被消除。结果,对于利用非线性光学效应的光学波长转换元件而言,提供了高度可靠的元件。
88 光学补偿式双折射型液晶显示装置及其制造方法 CN03153249.7 2003-08-11 CN1512238A 2004-07-14 朴求铉; 崔相好
发明的光学补偿式双折射型液晶显示装置包括彼此面对且相互隔开一定距离的第一和第二基板;设在第一和第二基板之间、且在未施加电压时,呈斜展状态,而当施加转换电压时则呈弯曲状态的液晶材料层;设在第一基板外表面上的第一补偿膜;设在第一补偿膜上的第一偏光片;设在第二基板外表面上的第二补偿膜;和设在第二补偿膜上的第二偏光片,其中处于斜展状态下的液晶材料层具有第一延迟值(R1),该值满足:1.35<R1/λ<1.75对于处于弯曲状态的液晶材料层,在施加适合白色图像的白色电压时,具有第二延迟值(R2),该值满足:0.5<R2/λ<0.7而当施加适合黑色图像的黑色电压时,具有第三延迟值(R3),该值满足:0.1<R3/λ<0.15。
89 DISPLAY DEVICE INCLUDING A CONDUCTIVE PATTERN PCT/KR2011007915 2011-10-21 WO2012053872A3 2012-07-26 CHOI HYEON; KIM SUJIN; KIM KI-HWAN; HONG YOUNG JUN
The present invention relates to a display device including a display panel and a conductive pattern. The conductive pattern includes an irregular pattern.
90 DISPLAY ASSEMBLIES AND METHODS OF DISPLAY PCT/EP2006009803 2006-10-11 WO2007042267A3 2007-07-12 CAPPAERT BART; SCHROEYERS JEAN-MARC
Applications of embodiments include the use of transmissive or transflective display technologies in extreme temperature environments. Specifically, display assemblies and methods using heating and/or active cooling are described. For example, such applications may include the use of display panels, such as LCD panels, having a diagonal dimension of 17 inches or more.
91 FLAT PANEL DISPLAY HAVING INTEGRAL HEATER, EMI SHIELD, AND THERMAL SENSORS PCT/US2005002952 2005-02-01 WO2005074577A3 2006-02-16 DUNN WILLIAM R; KWON KEUK-SANG; PARK HYOUNG-YOL; KANG IN-BYEONG
A flat panel display (10) having a black mask EMI layer isolated (32) from Vcom and tied to zero potential. The flat panel display (10) has an integral metal heater layer (34) and thermal sensor (82) that are in close proximity to the liquid crystals (14) to provide efficient heating and temperature sensing.
92 Backlight assembly EP10006226.4 2010-06-16 EP2362263B1 2018-09-05 Cho, Joo-Woan; Park, Jin-Hee; Shim, Sung-Kyu; Lee, Sang-Hoon; Kim, Joo-Young; Shin, Taek-Sun; Choi, Kwang-Wook
A backlight assembly includes a plurality of point light sources, a light guide plate ("LGP") and a printed circuit board ("PCB"). The LGP has a light incident face in which light is incident, a side surface extending from an edge portion of the light incident face, and a fixing groove which is formed from the side surface toward an inner portion thereof. The PCB includes a point light source disposing portion in which the point light sources are disposed along a first direction, an extending portion extending from the point light disposing portion along a second direction substantially perpendicular to the first direction, and a protrusion which is fixed at an end portion of the extending portion. The protrusion of the PCB is coupled with the fixing groove of the LGP.
93 OPTICAL SWITCH WITH IMPROVED SWITCHING EFFICIENCY EP15883043 2015-12-12 EP3248056A4 2018-01-17 DUMAIS PATRICK; CHROSTOWSKI LUKAS
An optical device comprises a first optical coupler configured to receive a light signal and provide a first output and a second output, a first optical waveguide in optical communication with the first output and configured to provide a first optical path for a first portion of the light signal, and a second optical waveguide in optical communication with the second output and configured to provide a second optical path for a second portion of the light signal, wherein the first optical waveguide is configured to provide a phase differential between the first optical path and the second optical path, wherein the second optical waveguide is positioned according to a lateral thermal diffusion length associated with the first optical waveguide, and wherein the lateral thermal diffusion length is a spreading distance of a thermal effect in a direction about perpendicular to the first optical path.
94 Integrated photonic devices with reduced sensitivity to external influences EP13196054.4 2013-12-06 EP2741113B1 2017-11-22 Dwivedi, Sarvagya; Bogaerts, Wim
Photonic device (100) having a wavelength-dependent transmission or filter characteristic, comprising: a Splitter Polarization Rotator (11) receiving polarized light (1) and providing a first resp. second wave (2, 3); a first resp. second waveguide arm (12, 13) connected to the SPR for propagating a first resp. second polarization mode (TM, TE) of the first resp. second wave (2, 3), the second polarization mode (TE) being different from the first polarization mode (TM); and a Polarization Rotator and Combiner (14) for combining the propagated first resp. second waves (2, 3); wherein the dimensions of the first and second arm (12, 13) are selected to cancel the influence of an external effect on the wavelength-dependent characteristic. Method for reducing the sensitivity of said integrated photonic device, comprising splitting a polarized light beam (1), and propagating light waves(2,3) of different polarity through two waveguide arms of specific dimensions, and recombining them.
95 ARRAY SUBSTRATE, LIQUID CRYSTAL DISPLAY PANEL AND DISPLAY DEVICE EP15766377.4 2015-04-28 EP3200012A1 2017-08-02 WU, Hao

The embodiments of the present invention disclose an array substrate, a liquid crystal display panel and a display device. Low temperature compensation circuits one-to-one corresponding to the data lines are added to the peripheral area of the array substrate; each low temperature compensation circuit comprises a first branch and a second branch connected in parallel; wherein the first branch comprises a divider resistance; the second branch comprises a diode and a capacitance connected in series; in the second branch the position of the diode and the position of the capacitance can be interchanged. Since the voltage difference between the both terminals of the diode rises with the temperature decreasing, the voltage difference on the route comprising the diode and the capacitance rises when the temperature decreases; a divider resistance is used in the route to divide the voltage of the voltage signal inputted at the data signal receiving terminal, reducing the voltage signal inputted to the input terminal of the data line. The reduced voltage signal brings a higher transmittance, compensating the integral shift of the voltage-transmittance curve in low temperature environment, such that the voltage-transmittance curve at low temperature is kept in accordance with that at normal temperature.

96 Backlight unit and image display apparatus having the same EP12199815.7 2012-12-31 EP2645159B1 2016-07-20 Hur, Gil-tae; Jang, Nae-won; Kim, Young-chul; Cho, Kun-ho; Choi, Hyeong-sik
97 Electro-optic displays EP13005031.3 2006-10-18 EP2711770B1 2016-02-24 Whitesides, Thomas, H.; Paolini, Jr., Richard, J.; Walls, Michael, D.; Sohn, Seungman; Mccreary, Michael, D.; Danner, Guy, M.; Honeyman, Charles, Howie
98 DISPLAY ASSEMBLIES AND METHODS OF DISPLAY EP06806174.6 2006-10-11 EP1949178B1 2015-03-25 CAPPAERT, Bart; SCHROEYERS, Jean-Marc
99 Display assemblies and methods of display EP14189294.3 2006-10-11 EP2843465A1 2015-03-04 Cappaert, Bart; Schroeyers, Jean-Marc

Applications of embodiments include the use of transmissive or transflective display technologies in extreme temperature environments. Specifically, display assemblies and methods using heating and/or active cooling are described. For example, such applications may include the use of display panels, such as LCD panels, having a diagonal dimension of 17 inches or more.

100 Components for electro-optic displays EP13005031.3 2006-10-18 EP2711770A3 2014-08-06 Whitesides, Thomas, H.; Paolini, Jr., Richard, J.; Walls, Michael, D.; Sohn, Seungman; Mccreary, Michael, D.; Danner, Guy, M.; Honeyman, Charles, Howie

An electro-optic display (300) comprising, in order: a backplane (202) comprising a plurality of pixel electrodes; a layer of a solid electro-optic medium (104); a first adhesive layer (206); a front electrode (108) and a light-transmissive protective layer (110) for protecting the front electrode (108), the electro-optic medium (104) being separated from the backplane (202) by a second adhesive layer (312), the second adhesive layer (312) having a thickness not greater than the larger of 10 µm and one half the thickness of the first adhesive layer (206). An inverted front plane laminate useful in forming such a display comprises the same layers except that the backplane (202) is replaced by a release sheet. The display combines good low temperature performance and good resolution at higher temperatures.

QQ群二维码
意见反馈