序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种共孔径红外/雷达复合导引头 CN201610936108.0 2016-11-01 CN106569205A 2017-04-19 王艳; 李晓雷; 武因峰
发明公开了一种共孔径红外/雷达复合导引头,属于雷达红外复合探测设备技术领域,它包括:红外热像仪、雷达探测模俯仰框架、主支架、安装板、驱动电机、方位电机、主动齿轮及从动齿轮;红外热像仪通过螺钉与雷达探测模块的雷达共孔径固定连接后,通过安装板固定在俯仰框架顶部;两个方位电机分别安装在俯仰框架中部;俯仰框架通过连接轴与轴承安装在主支架的两个支板之间,驱动电机固定在主支架的支板外侧面;主动齿轮位于主支架的支板内侧面,并与驱动电机的输出轴固定连接;从动齿轮固定在俯仰框架底部,并与主动齿轮啮合;本发明具有小型化和轻型化的特点,有利于提高作战能
2 一种基于强散射点的舰船特定点的位置获取方法 CN201310483355.6 2013-10-16 CN103558593A 2014-02-05 孙兵; 李冰; 王烨; 王耿锞; 邓德仙
发明公开了一种基于强散射点的舰船特定点的位置获取方法,包括以下几个步骤:步骤一:获取雷达图像、雷达视和舰船几何参数,设定坐标系;步骤二:根据SAR图像I获取舰船的方位角;步骤三:根据强散射点获取参考点的图像坐标和对应的实际坐标;步骤四:根据投影关系获取特定点的图像坐标。本发明根据舰船目标的特殊性,利用舰岛的散射特性能够为方位角的计算提供更为有效的信息,使方位角计算更准确;根据强散射点计算出特定点的位置坐标,可为制导提供更加准确的控制信息,比直接以强散射点作为打击的参考信息效果更好。
3 使用时域脉冲信号快速检测物体的设备和方法 CN200480006704.4 2004-03-12 CN1788213B 2010-09-08 D·P·麦克莱莫尔
公开了一种使用超宽带(UWB)RF信号检测在目标区域中感兴趣的物体的方法和系统。发射机和天线阵列产生超宽带RF脉冲信号,这些信号用来探测可能包括感兴趣的物体的目标区域。天线和信号处理器从该目标区域接收返回信号,并处理这些返回信号以产生一组坐标。所处理的返回信号的坐标与一个预先存在数据库中的多个已知物体的坐标相比较,以便确定在该返回信号和一个已知物体之间是否匹配。当有匹配的指示时,就向该系统的操作员显示存在该已知物体。
4 使用时域脉冲信号快速检测物体的设备和方法 CN200480006704.4 2004-03-12 CN1788213A 2006-06-14 D·P·麦克莱莫尔
公开了一种使用超宽带(UWB)RF信号检测在目标区域中感兴趣的物体的方法和系统。发射机和天线阵列产生超宽带RF脉冲信号,这些信号用来探测可能包括感兴趣的物体的目标区域。天线和信号处理器从该目标区域接收返回信号,并处理这些返回信号以产生一组坐标。所处理的返回信号的坐标与一个预先存在数据库中的多个已知物体的坐标相比较,以便确定在该返回信号和一个已知物体之间是否匹配。当有匹配的指示时,就向该系统的操作员显示存在该已知物体。
5 一种高速弹载雷达目标相参积累方法 CN201710170567.7 2017-03-21 CN107064927A 2017-08-18 文才; 闫青; 彭进业
发明介绍了一种高速弹载雷达目标相参积累方法,所述方法的一具体实施方式包括:计算第m个原始快时间数据,并对第m个原始快时间数据进行傅里叶变换,得到第m个原始快时间数据的频谱;根据惯导速度信息计算出速度补偿相位,并对第m个原始快时间数据的频谱进行速度补偿;将速度补偿后的第m个原始快时间数据的频谱进行逆傅里叶变换,得到第m个快时间数据;根据惯导加速度信息计算出加速度补偿相位,并对第m个快时间数据进行加速度补偿;将补偿后的各个快时间数据进行多脉冲积累得到积累信号。该实施方式通过对径向速度和径向加速度的运动补偿,消减了距离走动以及多普勒扩展对相参积累性能的影响,能够提升高速弹载雷达的目标检测性能。
6 基于光纤的雷达照射控制装置 CN201610675855.3 2016-08-16 CN106019273A 2016-10-12 沈全成; 张德平; 徐光辉
发明提出一种基于光纤的雷达照射控制装置,包括背板,及设置在所述背板上的光电转换插件、照射控制计算机插件、照射控制与定时插件、数字电源插件;光电转换插件通过光纤连接武控系统,实现大数据量传输,以光信号形式接收武控系统的武控指令,并将其实现光电转换,输出电信号形式的武控指令;照射控制计算机插件接收电信号形式的武控指令,解析生成照射控制命令;照射控制与定时插件接收照射控制命令,生成不同控制信号和时序信号,输出给相控阵天线,以根据控制信号控制照射阵面对各个不同目标的工作状态、及根据时序信号控制间断照射。电路简单、可靠性高、结构重量轻、电缆走线少、占用空间小,能够适应恶劣的使用环境等。
7 一种8毫米一维相扫体制巡航雷达 CN201510043378.4 2015-01-28 CN104569967A 2015-04-29 陈之典; 芮文刚; 齐侠琛; 汪言康; 檀剑飞; 罗诗旭; 王威; 陈坤; 舒航
发明提出的一种8毫米一维相扫体制巡航雷达,采用平面阵列天线,平面阵列天线由四个子阵构成,每个子阵由2n条列馈、1/2n功率分配器和2n套T/R组所组成;1/2n功率分配器分别通过2n套T/R组连接2n条列馈,每一个列馈由单向排列的2m个天线辐射单元组成,1≤n≤100,1≤m≤100;平面阵列天线采用多层电路结构,层与层之间的电路连接用金属化孔进行垂直互连。本发明采用平面阵列天线,平面阵列天线采用在PCB板上印刷电路的制造工艺,重量轻,成本低。本发明采用一维相扫的扫描方式,可实现比机械圆锥扫描方式更快的扫描速度和更全面的扫描范围。此外,本发明中可对平面阵列天线的前后两面同时搜索与跟踪目标,提高了对目标的截获。
8 激光校准环 CN201410288617.8 2014-06-25 CN104111447A 2014-10-22 刘秋丽
发明激光校准环涉及测量领域,具体涉及激光校准环,包括安装环、滚动环、激光发射器组件;其特征在于所述安装环为整个激光校准环的基座,安装环上装有定位装置,安装环上还装有平仪,滚动环通过轴承和限位销钉连接到安装环上,所述安装环上对称分布有四个把手,所述激光发射器组件安装在滚动环上。本发明利用光学原理使得制导雷达两电轴校准直观简单、操作方便。
9 一种频率步进雷达引信速度补偿方法 CN201310567505.1 2013-11-14 CN103558596A 2014-02-05 胡秀娟
发明提供了一种频率步进雷达引信速度补偿方法,包括:将波形熵与免疫科隆选择算法进行结合,以波形熵为搜索的亲和度函数,并以速度补偿准则为约束条件,采用免疫克隆选择算法完成搜索,以实现频率步进雷达引信一维距离像速度补偿。所述速度补偿准则包括对一次相位项进行补偿的最大速度变化单元、以及二次相位项相位变化不超过时一维距离像不失真条件。
10 Fast detection apparatus and method of the object based on the impulse-like signal in the time domain JP2006532320 2004-03-12 JP5186682B2 2013-04-17 ドナルド, ピー. マクレモア,
11 Fast detection apparatus and method of the object based on the impulse-like signal in the time domain JP2006532320 2004-03-12 JP2007515620A 2007-06-14 ドナルド, ピー. マクレモア,
超広帯域(UWB)RF信号を用いてターゲット領域における関心物体を検出するための方法及びシステムが開示されている。 トランスミッタとアンテナアレイは、関心物体を含んでいるかもしれないターゲット領域を探査するために用いられる、超広帯域RFインパルス状信号を生成する。 アンテナと信号処理手段は、ターゲット領域からの応答信号を受信し、一群の座標を生成するために応答信号を処理する。 応答信号と既知の物体との間に対応が存在するか否かを決定するために、処理された応答信号の座標は、既存のデータベースにおける既知の物体の座標と比較さる。 対応を示すものが存在する場合、既知の物体の存在が、システムのオペレータへ表示される。
12 MEASURING AN AREA OF INTEREST BASED ON A SENSOR TASK US16039574 2018-07-19 US20180348358A1 2018-12-06 Scott Allen Anderson; Troy R. Johnson; Jonathan R. Haws; Brad D. Petersen; Thomas J. Walls
For measuring an area of interest based on a sensor task, a method generates a sensor task comprising a sensor type and an area of interest. The method further routes the sensor task to a sensor of the sensor type and with a sensor motion track that includes the area of interest. The method measures the area of interest with the sensor based on the sensor task.
13 SYSTEMS AND METHODS FOR DETECTING, TRACKING AND IDENTIFYING SMALL UNMANNED SYSTEMS SUCH AS DRONES US15967291 2018-04-30 US20180313945A1 2018-11-01 Dwaine A. PARKER; Damon E. STERN; Lawrence S. PIERCE
A system for providing integrated detection and countermeasures against unmanned aerial vehicles include a detecting element, a location determining element and an interdiction element. The detecting element detects an unmanned aerial vehicle in flight in the region of, or approaching, a property, place, event or very important person. The location determining element determines the exact location of the unmanned aerial vehicle. The interdiction element can either direct the unmanned aerial vehicle away from the property, place, event or very important person in a non-destructive manner, or can cause disable the unmanned aerial vehicle in a destructive manner.
14 METHOD AND SYSTEM FOR RESOLVING RANGE AMBIGUITY US15769862 2016-10-16 US20180306911A1 2018-10-25 Thomas PERNSTÅL; Gary SMITH JONFORSEN
A system for resolving range ambiguity includes a wave generator a modulator for applying a digital signature to a continuous wave to generate a digitally-signed continuous wave, a transmitter for emitting the digitally-signed continuous wave from the ranging system as interrogating radiation towards an object, a receiver for receiving a portion of the interrogating radiation after reflection from the object, a correlator for correlating the portion of the interrogating radiation against the emitted digitally signed continuous wave according to the digital signature, a processor for determining from correlation in the correlator an elapsed time period between emitting the interrogating radiation and receiving the portion of the interrogating radiation after reflection from the object, wherein the processor calculates a range of the object from the transmitter by employing space-time adaptive processing and to determine a velocity of the object from correlation in the correlator using Doppler detection.
15 PROJECTILE, AND SYSTEM AND METHOD FOR STEERING A PROJECTILE US15768943 2016-10-25 US20180306563A1 2018-10-25 Asher LOTAN
A projectile is disclosed, having: a longitudinal axis, a steering assembly, a shell body, an attitude control system, a despin module, an electromagnetic receiver and/or emitter system, and a controller. The attitude control system includes a ram air inlet in selective open fluid communication with an exhaust assembly, which includes a plurality of exhaust outlets to selectively generate each of a plurality of thrust jets from a ram air inflow provided by the ram air inlet, each thrust jet being selectively controllable via the controller. The despin module is configured for selectively de-spinning the steering assembly with respect to the shell body about the longitudinal axis. The electromagnetic receiver and/or emitter system is configured for receiving and/or emitting electromagnetic energy, and for cooperating with the controller for operating the exhaust assembly to thereby selectively provide steering control moments. Systems and methods for steering the projectile are also disclosed.
16 Systems and methods for detecting, tracking and identifying small unmanned systems such as drones US15598112 2017-05-17 US09977117B2 2018-05-22 Dwaine A. Parker; Damon E. Stern; Lawrence S. Pierce
A system for providing integrated detection and countermeasures against unmanned aerial vehicles include a detecting element, a location determining element and an interdiction element. The detecting element detects an unmanned aerial vehicle in flight in the region of, or approaching, a property, place, event or very important person. The location determining element determines the exact location of the unmanned aerial vehicle. The interdiction element can either direct the unmanned aerial vehicle away from the property, place, event or very important person in a non-destructive manner, or can cause disable the unmanned aerial vehicle in a destructive manner.
17 Passive range estimating engagement system and method US13803907 2013-03-14 US09212869B1 2015-12-15 Jonathan A. Boardman; Jeffrey B. Boka; Purusottam Mookerjee; Naresh R. Patel
A system and method for determining a 3-dimensional target position and velocity using 2-dimensional IR sensor angular measurements for objects travelling in a ballistic manner within an IR sensor's field of view (FOV). Resulting 3-dimensional states may be used to generate updated inputs for correlation and object selection to drive missile guidance and intercept operations.
18 System and method for the measurement of the unambiguous roll angle of a projectile US11335678 2006-01-20 US07589663B1 2009-09-15 Geoffrey H. Goldman; William O. Coburn; Thomas J. Pizzillo
A system for the measurement of an angle of roll of a projectile is disclosed. The projectile has a casing with a rear end, a front end, and a side wall extending therebetween. The system includes a radar configured to transmit a polarized electromagnetic signal toward the projectile and a groove disposed on the side wall of the casing. The groove has a width, a depth, and a length, the width extending along a longitudinal axis of the projectile, the depth extending inwardly from an outer surface of the casing toward the longitudinal axis, and the length extending along the outside of the casing. The radar is further configured to receive a return signal from the projectile, wherein the return signal from the groove is modulated as a function of the angle of roll of the projectile. Amplitude or phase modulation of the return signal from the groove can be used to uniquely determine the roll angle of the projectile.
19 Airborne look-down doppler radar tracking of hovering helicopters using rotor features US11423590 2006-06-12 US07522089B2 2009-04-21 Bernard Radza; Joseph Henning; Sunny Ali; John Mincer; Randal Walters
A system and method is presented for detecting and classifying slow-moving and hovering helicopters from a missile's look-down Doppler radar that is compatible with the existing base of Doppler radars. This approach uses definable attributes of a helicopter rotor assembly and its extended Doppler rotor return to differentiate “rotor samples” from other samples (steps 123, 125), extract features such as bandwidth, activity, angle, and shape from the rotor samples (step 127), and classify a potential target as a helicopter or other based on the extracted rotor features and the known attributes of the helicopter rotor assembly (step 129). A target report including a classification target, range, range-rate, and angle of the extended rotor return is suitably passed to a tracking processor (step 121).
20 Radar-filtered projectile US10215475 2002-04-15 US07079070B2 2006-07-18 Knut Kongelbeck; Ada Mendelovicz
Disclosed is an autonomous radar guidance of an otherwise radar-directed projectile (RDP). The preferred embodiment uses an inexpensive radar receiver with an inexpensive slow wave antenna, placed internally in a gun projectile, and on the surface of the projectile, respectively. The receiver detects the angle and range of the target relative to the body coordinates of the projectile. The radar receiver operates as a bistatic radar apparatus with the primary illumination emanating from the fire control radar directing the fire of the gun. When integrated with an on-board trajectory correcting system, such as divert thrusters of miniature proportions, the projectile autonomously refines its otherwise ballistic trajectory to the target. The trajectory refinements produce improved kills per round, with the potential for reducing the ammunition expended and time-loading on the fire control system and its guns. An alternative embodiment, in addition to receiving the target-reflected fire control emissions, receives and processes the fire control radar emissions directly in order to enhance homing accuracy.
QQ群二维码
意见反馈