首页 / 国际专利分类库 / 物理 / 测量 / 线速度或角速度、加速度、减速度或冲击的测量;运动的存在、不存在或方向的指示 / 用积分加速度的方法测量速度(用加速度的双重积分测量行程入G01C21/16)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
221 Vorrichtung zur Erkennung einer Drehzahländerung EP06122435.8 2006-10-17 EP1777527A2 2007-04-25 Stehr, Peter

Die Erfindung betrifft eine Vorrichtung zur Erkennung einer Drehzahländerung eines Rotors (1), umfassend den Rotor (1) und einen Sensor (7). Bisherige Lösungen erfordern einen unwirtschaftlichen Aufwand in Software und Hardware. Daher hat es sich die Erfindung zur Aufgabe gemacht, eine Vorrichtung der eingangs genannten Art derart weiterzubilden, dass sie weniger aufwändig ist, auch rauen Betriebsbedingungen standhält und gleichzeitig eine hohe Zuverlässigkeit der Erkennung einer Drehzahländerung bietet. Zur Lösung der erfindungsgemäßen Aufgabe wird vorgeschlagen, dass der Rotor (1) in einem axialen Abschnittsbereich von einer Hülse umgeben ist, welche relativ beweglich auf dem Rotor (1) gelagert ist, wobei eine Führung(5) vorgesehen ist, die derart beschaffen ist, dass bei einer Drehung der Hülse (3) relativ zu dem Rotor (1) in Umfangsrichtung (9) sich die Hülse (3) in eine Axialrichtung(12) des Rotors (1) bewegt, wobei der Sensor (7) die Axialbewegung der Hülse (3) erfasst und in Abhängigkeit von der Axialbewegung ein elektrisches Signal (8) erzeugt, welches eine Drehzahländerung anzeigt.

222 Velocity detection, position detection and navigation system EP06018703.6 2006-09-06 EP1760474A2 2007-03-07 Ohkubo. Masashi Sony Corp.; Takaoka, Tomohisa Sony Corp.

As an embodiment of the present invention, in a navigation system using an acceleration sensor, when position information cannot be obtained from a GPS processing section, a velocity detecting unit performs an operation using detected acceleration α G, a measurement time mt, a velocity V0 at a time t0, gravity acceleration g and an amount of height change Dh, according to Expression (11). By using the relationship among a gravity acceleration component gf, the gravity acceleration g, the amount of height change Dh and distance Dm shown in Expression (4), the gravity acceleration component gf can be offset by the amount of height change Dh. Therefore, velocity V can be calculated with high accuracy without receiving the effect of the gravity acceleration component gf.

223 Apparatus for monitoring human body's movements in sport or medical domain, and its use EP06425050.9 2006-02-01 EP1688746A2 2006-08-09 Facchielli, Duccio; Torti, Stefano; Verza, Andrea; Chiarugi, Antonio; Clot, Paolo Rosa; Clot, Marco Rosa

A precise measurement of human body's movements is highly important in all those domain where monitoring such movements is essential to: screening the effort made during a movement, analyzing human limits in performing such movements, train and improve human abilities of movement performance. Such context are easily found in the rehabilitation domain and/or physical training. This immediately leads to physiotherapy and sport. However, current methods (especially in sports) are extremely expensive because they involve the use of cameras and ultrasound acquisition systems. A widely used system uses accelerometers to assess acceleration, and mathematically deduct velocity, strength, and power of a movement. But, a serious limitation of all the already patented inventions using accelerometers and of their mechanism is that in no case they obtain a precise estimation of the monitored object (or a part of it) motion. The current industrial invention is, indeed, a new invention relating to a new system for estimating any body part displacement -and, therefore, motion―without any external reference, by means of inertial measurement. Furthermore, the proposed new method, unlike the potential competing technologies allows a very precise estimation of monitored motions.

224 ELECTRONIC HUBODOMETER EP03810813.0 2003-10-30 EP1579179A1 2005-09-28 KRANZ, Mark, J.
An apparatus and method for counting wheel revolutions are provided that include a wheel-hub mountable odometer comprising an accelerometer comprising sensor means for sensing force, wherein the sensor means are operable to sense a force acting thereon and generate an electrical signal representative of said force. Further an electronic control system is provided comprising a microcontroller and power source, the microcontroller comprising electronic filtering means for attenuating irregularities in the signal from the sensor means and computing a wheel revolution count based on said attenuated signal, and output means for communicating the wheel revolution count. The accelerometer preferably comprises a dual axis electronic accelerometer with no internally rotating parts. Further, the output means preferably comprises at least one of a display means, an IR communication system, or a RF communications system.
225 STOSSIMPULSSENSOR EP02726122.1 2002-03-01 EP1364216A1 2003-11-26 SONDERGELD, Manfred
A shock pulse sensor (10) comprising a housing (46) and a sensor element. The sensor element, especially a permanent magnet (42), can be displaced along a predetermined path (x) in the housing at speed under the influence of an at least approximately pulse-type shock to the housing (46). The sensor element is mounted on the housing (46) with a guide element affecting the speed thereof. The sensor element consists of a magnetic material. A receiving element which is fixed to the housing is provided for magnetic generation of a measuring signal (UM) as a result of the movement of the sensor element caused by the shock. The movement of the sensor element generates a measuring voltage (UM) which is dependent upon the path (x) in said receiving element. The guide element alters the speed of the sensor element in such a way that the measuring voltage (UM) along the path (x) is dependent upon the duration of the pulse-type shock when the pulse surface is the same.
226 Movement condition determination EP03252628.7 2003-04-25 EP1357354A2 2003-10-29 Tanaka, Kazuaki, Pioneer Corporation Kawagoe Plant; Goto, Seiji, Pioneer Corporation Kawagoe Plant; Endo, Isao, Pioneer Corporation Kawagoe Plant; Okamoto, Tatsuya, Pioneer Corp. Kawagoe Plant

A velocity information acquisition section 21 acquires velocity information on the velocity of a vehicle and records this acquired information in a velocity information recording section 27. A state judgment section 23 judges start and stop states of the vehicle based on state information indicating the start and stop states of the vehicle that was acquired at a state information acquisition section 22. After this judgment, a minimum output velocity computing section 24 accurately computes, based on the velocity information recorded in velocity information recording section 27, a minimum output velocity in a period in which a vehicle velocity detection circuit 10 cannot detect velocity information. A movement condition computing section 25 can appropriately compute a relative movement distance or a relative movement velocity of the vehicle based on the state information acquired at state information acquisition section 22 and the minimum output velocity computed at minimum output velocity computing section 24.

227 PROCEDE DE MESURE DE LA VITESSE DE LACET D'UN VEHICULE EP96912074.0 1996-04-05 EP1007976B1 2003-01-08 CONSTANCIS, Pierre
228 VERFAHREN ZUM BESTIMMEN DER DREHZAHL EINES RADES AN EINEM FAHRZEUG EP01903696.1 2001-02-03 EP1269202A1 2003-01-02 NORMANN, Norbert; SCHULZE, Gunter, Lothar
The invention relates to a method for determining the speed of a wheel on a motor vehicle. To achieve this, an acceleration sensor is mounted on the wheel. According to the invention, the frequency φ or the cycle T of an alternating signal caused by the influence of the ground acceleration g is determined as the speed of the wheel. Said alternating signal is contained in the acceleration signal provided by the acceleration sensor. The method can be used in automatic tyre-pressure monitoring systems to assign signals transmitted by a wheel electronic system by radio to a specific wheel position on the motor vehicle and to control the transmission rate of a wheel electronic system according to the speed.
229 VERFAHREN ZUR ERKENNUNG EINER BERGAUF- ODER BERGABFAHRT EINES KRAFTFAHRZEUGES EP00954635.9 2000-08-17 EP1210256A1 2002-06-05 KLUSEMANN, Rainer
The invention relates to a method for determining that a motor vehicle is climbing or descending a slope. According to said method, the vehicle acceleration aref is determined from Vref by differentiation and compared to the longitudinal vehicle acceleration aL determined by a sensor. The method checks whether there is a deviation from normal driving by monitoring whether aL - aref is greater than a threshold value SL. A deviation time t during which a deviation from normal driving is continuously present, is determined and is monitored for exceeding a minimum time value TM. The motor vehicle is deemed to be climbing or descending a slope when t is greater than TM. The invention also relates to a device which uses a digital logic with a counter to measure the time t, t1, t2 and tk. One digit of said logic corresponds to a fixed predetermined time unit.
230 PROCEDE DE MESURE DE LA VITESSE DE LACET D'UN VEHICULE EP96912074.0 1996-04-05 EP1007976A1 2000-06-14 CONSTANCIS, Pierre
A method for measuring the yaw velocity (γ) of a vehicle (1), wherein a continuous evaluation of said velocity, provided by an on-board unit (2), is periodically updated using indications V1, D1 and Vt that correspond to the forward velocity of the vehicle (1), the longitudinal distance between the vehicle and a fixed obstacle lying in its path, and the relative cross-velocity of said fixed obstacle (17) relative to the vehicle, respectively.
231 Apparatus and method for providing an inertial velocity signal in an active suspension control system EP98108798.4 1998-05-14 EP0884595A1 1998-12-16 Williams, Daniel E.

An apparatus (10) and a method provide a signal (12) indicative of velocity of a mass (18). An acceleration sensor (64) senses acceleration of the mass (18) and provides an acceleration signal (66) indicative of the acceleration of the mass. A displacement sensor (70) senses displacement of the mass (18) and provides for a displacement signal (72) indicative of displacement of the mass. Two filters (68 and 74) operate upon the acceleration and displacement signals (66 and 72) respectively, and the filter outputs are summed to provide the velocity signal (12). In one example, an active suspension system (16) utilizes the velocity signal (12) to control relative movement between the mass (18), as a sprung mass, and an unsprung mass (20). The suspension system (16) includes a controller (54), which receives the velocity signal (12) and provides a control signal (56) utilizing the velocity signal. A force actuator (30), between the sprung and unsprung masses (18 and 20), is controlled in response to the control signal (56).

232 MOVEMENT MEASURING DEVICE, ELECTRONIC GAME MACHINE INCLUDING MOVEMENT MEASURING DEVICE, AND METHOD OF PLAYING GAME MACHINE EP97922144.0 1997-05-23 EP0842436A2 1998-05-20 TONOMURA, Keisuke; YAMAGISHI, Masakatsu
A movement measuring device determines the speed of the body's specific movement on the basis of the maximum value of the acceleration sensed by an acceleration sensing unit attached to the body, when the body has made a specific movement. For example, when th e player wears the device on his arm and makes a punching motion, the punching speed is found from the maximum acceleration resulting from the punching action. Furhtermore, a game device obtains data indicating the magnitude of a specific movement of the body, on the basis of the acceleration sensed by an acceleration sensing unit, and then decides the outcome of the game is decided on the basis of the strength and weakness of the punch. This enables the user to easily play a fighting sport game involving the player's actual punching motions anywhere.
233 Velocity calculating apparatus EP97118542.6 1997-10-24 EP0838660A1 1998-04-29 Kihara, Takaei

A velocity calculating apparatus (10) includes an acceleration sensor (12) for detecting acceleration in the direction in which a motor vehicle travels. The acceleration sensor (12) is connected to a CPU (16) through an A/D converter (14). The CPU (16) is connected to a GPS-signal receiver (18, 20) through a digital converter (22), and is also connected to a memory (26). The apparatus carries out a program for compensating for an error in the output signal of the acceleration sensor (12), wherein the program compensates the output signal of the acceleration sensor (12) according to a GPS signal received from the GPS-signal receiver (18, 20).

234 Datenerfassungssystem für Fahrzeuge EP94112405.9 1994-08-09 EP0638877A3 1996-08-21 LAUCHT, Horst Dr.; Vötterl, Georg

Beschrieben wird ein Datenerfassungssystem, z.B. ein Fahrtschreiber, der mittels eines in Fahrtrichtung des Fahrzeuges messenden Beschleunigungssensors (2) und mittels entsprechender Auswertung des Beschleunigungssensor-Signales (201) sowie dem Vergleich mit den aufgezeichneten Geschwindigkeitsgeber-Signalen (101) in der Lage ist, selbständig eine Manipulation an den Geschwindigkeitsgeber-Signalen (101) zu erkennen und als Meldung (61) anzuzeigen und gegebenenfalls Maßnahmen einzuleiten.

235 A MAGNETOHYDRODYNAMIC ANGULAR RATE SENSOR FOR MEASURING LARGE ANGULAR RATES EP90916574.8 1990-10-25 EP0497872B1 1995-03-15 LAUGHLIN, Darren
An electronic motion sensor is described, wherein in a cavity (20) formed in a case (11) of high flux density material supports a permanent magnet (28) at the bottom. The permanent magnet (28) has a north/south pole orientation in line with the cavity axis. A circular channel (20) is located above, having an axis coincident with the cavity axis and which is filled with mercury. A center contact post (21) is located long the cavity axis in contact with the mercury, extending upwards through the top of the channel. An amplifier circuit (29) supported on a header (27) of high flux density material is placed on top of the channel. The amplifier (27) amplifies the potential difference between the center contact post (21) and the case (11). The header (27) effectively seals the cavity of the case.
236 Datenerfassungssystem für Fahrzeuge EP94112405.9 1994-08-09 EP0638877A2 1995-02-15 LAUCHT, Horst Dr.; Vötterl, Georg

Beschrieben wird ein Datenerfassungssystem, z.B. ein Fahrtschreiber, der mittels eines in Fahrtrichtung des Fahrzeuges messenden Beschleunigungssensors (2) und mittels entsprechender Auswertung des Beschleunigungssensor-Signales (201) sowie dem Vergleich mit den aufgezeichneten Geschwindigkeitsgeber-Signalen (101) in der Lage ist, selbständig eine Manipulation an den Geschwindigkeitsgeber-Signalen (101) zu erkennen und als Meldung (61) anzuzeigen und gegebenenfalls Maßnahmen einzuleiten.

237 PROCEDE DE DETERMINATION DE LA VITESSE DE ROTATION D'UN OUTIL DE FORAGE EP91916343.6 1991-08-30 EP0498876B1 1994-12-14 DRAOUI, Elyes
A method for determining the rotational speed of a drill bit (16) arranged at one end of a rotating drill string (20). According to the method, the axial acceleration at one point on the drill string is measured, this measurement is processed to determine the acceleration's energy content, and a correction is applied to this energy value in order to determine the rotational speed.
238 Rotation sensor using linear accelerometers EP94106096.4 1994-04-20 EP0621482A1 1994-10-26 Olney, Ross D.; Romagnoli, Robert J.

A rotation sensor (10) comprises first and second linear accelerometers (14, 16) which are spaced from each other by a predetermined distance along a rotatable linear axis (18) and have first and second sensing axes (20, 22) which are parallel to each other. Said accelerometers (14, 16) sense first and second linear accelerations, respectively. A computer (24) computes rotating of said linear axis (18) as a predetermined function of said first and second linear accelerations and said predetermined distance.

239 Current-to-frequency converter EP90302558.3 1990-03-09 EP0389156B1 1993-12-01 Watson, Norman Frederick
240 Verfahren und Vorrichtung zur fälschungssicheren Erfassung der Radumdrehungszahl von Fahrzeugen EP92108903.3 1992-05-27 EP0517082A2 1992-12-09 Küng, Roland; Hartmann, René, Dr.

Es wird die Umdrehungszahl eines mit dem Antrieb gekuppelten, bei Bewegung des Fahrzeugs rotierenden Teils durch einen Sensor (28) erfasst, aus dessen Signalen ein Taktsignal gebildet und einem Speicher (27) zugeführt wird, dessen Inhalt durch einen Sender (13, 14) an ein Abfragegerät übertragbar ist. Die Umdrehungszahl wird mit Hilfe von von der Rotationslage des rotierenden Teils abhängigen, nicht manipulierbaren Beschleunigungsgrössen bestimmt, und die Speisung (10) des Senders erfolgt von ausserhalb des Fahrzeugs. Die genannten Beschleunigungsgrössen sind vorzugsweise durch die Erdbeschleunigung und/oder durch die Zentrifugalbeschleunigung gebildet.

Anwendung zur Registrierung der Fahrstrecke oder von anderen Ereignissen, wie zum Beispiel Geschwindigkeitsübertretungen und dergleichen. Die Einrichtung ist manipulations- und fälschungssicher.

QQ群二维码
意见反馈