序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 Device for measuring supercompression rate of flowing gas JP2279386 1986-02-04 JPS61265548A 1986-11-25 ROBAATO ESU YAKOBUSEN; JIYOOJI DABURIYU SHIYUNAIDAA J
82 Measuring method of vapor pressure JP17639384 1984-08-24 JPS6154426A 1986-03-18 SAEKI TOSHIO; TOKAWA JUNJI; ISHITOBI TAKESHI
PURPOSE:To measure vapor pressure accurately in a short time by using a small amount of a sample by pressing the volatile material in a sampling cut to specific pressure with inert gas and passing it through a heat exchanger, and blowing the volatile material which is held at specific temperature out of a nozzle. CONSTITUTION:A valve 19 is opened valves 33 and 29 are closed to press the sample in the sampling cut 14 to the specific pressure with nitrogen gas. A valve 15 is opened to admit the sample the sample into a nozzle 7 through the heat exchanger 12 and then an absolute pressure transducer 13 is linked with the nozzle 7 by opening a valve 32 to transduce the outlet pressure at the port part of the nozzle 7 into an electric or air signal through the absolute value transducer 13, measuring vapor pressure. Then, the valve 33 is opened to perform line cleaning and then while valves 19, 15, and 32 are closed, a valve 27 is opened to discharge liquid and pressure from the sampling cut 14. Then, the valve 27 is closed and the valve 29 is opened to obtain the state right before the sample introduction into the sampling cut 14.
83 Densitometer JP7037682 1982-04-28 JPS58187832A 1983-11-02 HAMADA YOSHIYASU
PURPOSE:To detect the concentration of a liquid, by sampling a part of a liquid, and obtaining the temperature of the sampled liquid when the generation of gas is started, while reducing the pressure on the liquid. CONSTITUTION:A part of a liquid is sampled from a piping 1 through a by-pass pipe 2, and the pressure on the sampled liquid is reduced by means of a pressure- reducing valve 3. When the pressure is between a pressure P1 and a pressure P2, no gas is generated in the case where the liquid is supercooled. When the pressure drop by means of the pressure-reducing valve 3 is large, a gas is generated from the liquid to lower the liquid level in a tank 4. Therefore, decreasing the pressure-reduction amount by means of the pressure-reducing valve 3 from the time when the liquid level lowers, causes the generated gas to decrease in amount, thereby making it possible to find a point where the liquid level in the tank 4 no longer changes. The liquid level in the tank 4 is sensed by a liquid- level senser 7. Sensing the outlet temperature of the pressure- reducing valve 3 under the state where the liquid level in the tank 4 no longer changes, permits the concentration of the liquid to be obtained from a temperature T2 and the pressure P2. Accordingly, the concentration of the liquid can be detected by obtaining the saturation temperature through the changing of the pressure.
84 Measuring device of scale stuck state in boiler system JP21505781 1981-12-28 JPS58115344A 1983-07-09 FUJITA TADAO; TANIGUCHI SHIN; HIRAIWA ICHIROU
PURPOSE:To measure a state of stuck scale automatically, highly accurately and continuously by discriminating the scale stuck state on the basis of the evaluation value for concentrated state at prescribed conditions corresponding to the scale stuck state. CONSTITUTION:An evaluation value operating part 8 evaluates the concentrated state of boiler water independently of steam load. A monostable multivibrator MM is triggered at the completion of the evaluation operation and, FF 10e is reset when a complete blow switch 11 is closed at the trailing edge of an output from the monostable multivibrator MM. The opening of an AND gate 10b in a scale stuck state discriminating part 10 is controlled through the MM 10d and the FF 10e and the high level output of a comparator 10c is produced through the gate 10b when the evaluation value corresponding to the scale stuck state calculated by the operating part 8 exceeds a prescribed value just after the boiler water is replaced with fresh water by blowing the steam completely. The stuck scale higher than the prescribed quantity can be automatically, highly accurately and continuously measured.
85 가스정량포집장치 및 가스정량포집방법 KR1020140066305 2014-05-30 KR1020150137798A 2015-12-09 류지훈; 안향식; 고용권; 조호영; 권장순
본발명은반응시편과반응용액의상호반응에의하여생성되는가스를저장하는공간을형성하고, 상기반응시편을투입할수 있도록개폐가능한상부입구를구비하는반응챔버, 상기반응챔버의하부에결합되고, 측정유체를저장할수 있는측정챔버, 상기측정유체가내부로유입되도록상기측정챔버의어느일 측에결합된유로와연결되고, 상기유로로부터유입되어축적되는상기측정유체의부피를측정하도록형성되는측정컬럼및 상기반응챔버와상기측정챔버의사이에배치되고, 상기반응챔버의내부압력에의해서변형또는복원되도록탄성을갖는재질로형성되는멤브레인을포함하고, 상기멤브레인은상기반응챔버의내부에서생성된가스의부피에대응하는부피의상기측정유체를상기측정컬럼내부로유입시킬수 있도록상기반응챔버의내부압력의상승에의해서상기측정챔버를향하여탄성적으로변형되는것을특징으로하는가스정량포집장치, 그리고가스정량포집방법을제공한다.
86 수중 생물 폐사 방지용 해수의 이산화탄소분압 측정 장치 KR1020120136342 2012-11-28 KR101363012B1 2014-02-12 김성; 김동성; 조홍연; 최해영; 오지나
A device for measuring the partial pressure of carbon dioxide in seawater to prevent the death of marine life comprises: a water tank for providing a space to store seawater in which the minute marine life lives; a floating member partially submerged in the seawater to form an isolated space therein and having an opening (28) through which the seawater is entered or discharged; a bubble lead-in pipe communicating with the bottom of the floating member and submerged in the seawater; an air circulation pipe connected to the bottom of the floating member and the bubble lead-in pipe so that it can suck the internal air of the isolated space to supply the sucked air to the bubble lead-in pipe; and a measuring machine for sampling the air supplied into the air circulation pipe and measuring the partial pressure of carbon dioxide in the sampled air. [Reference numerals] (60) Measuring machine; (AA,BB) Air circulation; (CC) Water circulation; (DD,EE) Water; (FF) Air
87 석영 앰플 내 고압가스 성분분석을 위한 가스포집 장치 KR1020120026100 2012-03-14 KR1020130104533A 2013-09-25 최계천; 송규석; 연제원; 한선호; 박용준
PURPOSE: A gas collection device for the analysis of high-pressure gas components in quartz ampoules prevents the spread of radioactive contamination by safely punching the quartz ampoules. CONSTITUTION: An ampoule chamber (110) opens high-pressure ampoules in space. The space is closed by an open member. A gas transfer pipe is connected to the ampoule chamber. A collection part (186) is connected to the other end of the gas transfer pipe. A vacuum pump (178) supplies negative pressure between the ampoule chamber and the collection part.
88 압력과 체적을 이용한 압력용기의 충전량 측정 시스템 및 방법 KR1020120068308 2012-06-26 KR101222874B1 2013-01-16 길영만; 김광윤
PURPOSE: A system and a method for measuring a charged amount of a pressure container using pressure and volume are provided to save on construction costs for a charging system as a charged amount is calculated by detecting the pressure and temperature of the charged pressure container without using an expensive mass flow meter. CONSTITUTION: A system and a method for measuring a charged amount of a pressure container comprises a pressure container information acquisition device(16), a control part(14), and a display part(15). Information on the temperature and volume of the pressure container is inputted in the pressure container information acquisition device. By pressure being detected by the pressure sensor(12), temperature detected by the temperature sensor(13), and basic information of the gas-charged pressure container, the control part calculates the amount of gas charged in the pressure container and the temperature and volume variation of the pressure container. Accordingly, the amount of charged gas is corrected, the safety of the pressure container is determined to correct the charged amount and the corrected charged amount is converted to a monetary amount. The display part displays the information calculated in the control part.
89 큐엠에스를 이용한 가스 성분별 절대량 측정시스템 KR1020090115440 2009-11-26 KR100985923B1 2010-10-06 윤석래
PURPOSE: A system for measuring absolute amount of each gas ingredient using QMS is provided to accurately quantitate and qualitate a small amount of gas. CONSTITUTION: A system for measuring absolute amount of each gas ingredient using QMS comprises: a main chamber(100) for storing sample gas inlet through a pin hole; a QMS(200) for measuring partial pressure of the sample gas stored in the main chamber; an ion gauge(400) for measuring vacuum degree of the main chamber; a turbo pump pumping station(800) for discharging the sample gas; the pin hole(700) for inputting the sample gas in a molecular flow state; a first valve(1000) which is mounted to the pipe connecting the pin hole and molecular chambers; a second valve(1100) and third valve(1200) which is mounted to form a physical space; a fourth valve(1300) for transmitting the sample gas to a second turbo pump; and a rotary pump(900) for quickly processing the sample gas.
90 부피법을 이용한 수소 저장 성능 평가 장치 및 그 제어방법 KR1020080006770 2008-01-22 KR1020090080803A 2009-07-27 조원철; 김병권; 한상섭; 박주식; 배기광; 심규성; 김창희; 강경수
A hydrogen storage performance evaluation apparatus using a volume method and a control method thereof are provided to prevent damage to instrument due to corrosion and leakage of a pipe and a connection part by controlling the temperature of a constant temperature chamber using a thermoelectric element. A hydrogen storage performance evaluation apparatus using a volume method comprises a main body(10), a hydrogen supply pipe, a helium supply pipe, a main pipe, a test cell(66), and a vacuum pipe. The main body has a constant temperature chamber(20) maintaining the fixed temperature with a thermoelectric element. The hydrogen supply pipe supplies hydrogen to the constant temperature chamber. The helium supply pipe supplies the helium which is inactive gas to the constant temperature chamber. The main pipe is arranged inside the constant temperature chamber and one end of the main pipe is supplied with each gas from the hydrogen supply pipe and the helium supply pipe and the other end has a outlet which is exposed from the outside of the constant temperature chamber. The test cell is detachably mounted at the end part of an outlet pipe(60) which is drawn out of the main body. The vacuum pipe is connected to the main pipe.
91 부피 측정장치 및 그 측정 방법 KR1020070121777 2007-11-28 KR1020090055059A 2009-06-02 임인태; 성대진; 신용현; 홍승수
A volume measurement device and a measurement method thereof are provided to measure volume of complicated sample precisely. A volume measurement method comprises a step(S100) which measures volume and pressure of a piston; a step(S200) which loads a sample in a chamber and measures an initial pressure inside the chamber; a step(S300) which inflows a constant flow rate to the chamber; and a step(S400) which measures pressure of the chamber and extracts the volume of sample. The volume of the sample is extracted by using a boyle-charles' law. The flow rate is flowed into the chamber through the piston or a mass flow controller. The step which measures the initial pressure by loading the sample into the chamber comprises a step which exhausts the chamber under a reference pressure and a step which stops the exhaustion and measures the initial pressure.
92 WORKING ODOR MEASURING APPARATUS OF AN EXPERIMENT EQUIPMENT AND A COMMUNICATION EQUIPMENT KR20070055794 2007-06-05 KR20070074513A 2007-07-12 LEE JUN HYUK
An odor measuring apparatus and a communication apparatus of experimental equipment are provided to prevent accidents by promptly determining wrong operations of the experimental equipment during absence of a worker. An odor measuring apparatus includes a transmitter, a receiver, an inlet, a filter, an exhaust, sensors, and a measuring chamber. The transmitter transmits a signal to the receiver when a wrong operation occurs. The inlet is formed in front of the measuring chamber. The filter is formed in front and rear of the inlet. The exhaust is formed in an opposite side of the inlet for discharging gas. The sensors are installed on both sides of the measuring chamber in parallel facing each other. The measuring chamber is connected to a controller and transmitter.
93 自走式移動体、湿度センサ、および液体検出装置 JP2017043967 2017-03-08 JP2018143649A 2018-09-20 宮本 寛之
【課題】検出対象面の上に液体(または液体を多く含む固体)が存在している場合に、装置も、液体が存在していない場所も汚すことなく液体を検出する。
【解決手段】自走式掃除機(1)において、自走式掃除機(1)の周辺の湿度を検出する湿度センサ(16)と、湿度センサ(16)による検出結果を参照して自走式掃除機(1)の動作を制御する制御部(20)とを備えている。
【選択図】図2
94 気泡率計測方法 JP2016082559 2016-11-02 JPWO2017078060A1 2018-08-23 池田 裕二; 牧田 忍
【課題】簡易な方法によりオイル中に含まれる気泡率を計測する。密閉空間に導入された気泡率が既知の複数のサンプルオイルを、所定圧に圧縮した場合の圧力に対する、圧力と体積変化量の積の関係から、それぞれのサンプルオイルの0kPa時の圧力と体積変化量の積の値を結んだ一次直線を校正線とし求めるステップ、気泡率が未知のサンプルオイルを、所定圧力に圧縮した場合の圧力に対する、圧力と体積変化量の積の関係から、未知のサンプルオイルの0kPa時の圧力と体積変化量の積の値を求めするステップ、該値と校正線とを比較して未知のオイルサンプルの気泡率を得るスッテプから構成される。
【選択図】図1
95 開口容器の飲料中の炭酸化レベルを測定するための方法 JP2017549689 2016-03-31 JP2018511800A 2018-04-26 アレクセイ・バハレフ; ヘリオット・モイズ; ミン・フォン・ジェン
開口容器の飲料中の二酸化炭素レベルを、ある量の飲料を槽に移送することによって測定する。この槽に対して蓋を固定して、飲料を含む封入体積を形成する。プローブを蓋に挿貫して飲料に接触させて、サンプルを槽から測定器具へと移送して、二酸化炭素レベルを決定する。この方法によれば、開口容器の飲料の炭酸化レベルの測定における精度及び信頼性が、現在利用可能な技術と比較して著しく向上する。
96 液体分析装置 JP2017517110 2014-10-07 JP2017533418A 2017-11-09 ヴューモエス アンデルセン,ハンス; ヴィルストラップ ユール,ヘンリック
液体分析装置(2)は、液体サンプル(6)への浸漬のための液体サンプル吸入口(4);少なくとも1つの測定ゾーン(16;16’);およびサンプル吸入口(4)から少なくとも1つの測定ゾーン(16;16’)に向かって液体を流すように動作可能な、第1のポンプモジュール(P1)を含む。第1の圧モニター(36)は、サンプル吸入口(4)と少なくとも1つの測定ゾーン(16;16’)との間の圧力を測定するために提供され、液体導管(22)内での液体の流れを調整するための第1のポンプモジュール(P1)の動作は、それに応じて調整される。【選択図】図1
97 吸入器の抵抗を測定するための方法 JP2016084149 2016-04-20 JP2016164568A 2016-09-08 アダモ,ブノワ; マクリーン,スコット; スムトニー,チャド・シー; ポリドロ,ジョン・エム; サヒ,カール・アール
【課題】空気流に対する吸入器の抵抗を測定するためのデバイスを提供する。
【解決手段】デバイス10および方法は、疾患用薬物送達のために使用される乾燥粉末吸入器20の空気流に対する抵抗を測定するために使用できる。デバイス10は、その中に吸入器20を装着し、封入するための1対のチャンバ12、18を有する。各チャンバ12、18はそれぞれの弁を有する。デバイス10は、圧制御装置22、流量制御装置24、圧力および流量センサ、ならびに、弁の開閉を制御し、対応する信号を検知し、解析するように構成されたマイクロプロセッサをさらに有する。
【選択図】図2
98 歯科衛生検出装置における光検出器を用いた歯肉検出 JP2015548863 2013-12-20 JP5934847B2 2016-06-15 スプルイト ヨハネス ヘンドリクス マリア; ジュッテ ペトルス テオドルス; バーミューレン オラフ トーマス ヨハン アントニー; バン デン バイガート アドリアヌス ウィルヘルムス ディオニシウス マリア; エドワーズ マーティン ジョン; ディーン スティーブン チャールズ; バン ゴール エドガー マルティヌス
99 ストリームプローブを用いた歯垢検出 JP2015548866 2013-12-20 JP2016509492A 2016-03-31 ゴール エドガー マルティヌス バン; ヨハネス ヘンドリクス マリア スプルイト; マーク トーマス ジョンソン; メンノ ウィレム ホセ プリンス; オッケ オーウェルトジェス; スティーブン チャールズ ディーン
遠位プローブ先端112、112’の開口136、2604を介する流体30の通過が、開口136、2604を介する流体30の通過を少なくとも部分的に妨害する物質と相関する信号の測定に基づく、表面31、33、例えば歯面上に存在し得る物質116の検出を可能にするよう、装置100、100’が構成される。装置100、100’は、近位ポンプ部124と、別の流体11、例えば、歯磨剤の泡に浸漬されるよう構成された少なくとも1つの遠位プローブ部110とを含む。対応するシステム3000は、1つ又は2つのかかる装置3100、3200を含む。表面上の物質の存在を検出する方法は、遠位先端112、112’を介する流体30のフローの少なくとも部分的な妨害に関して相互作用ゾーン17を調査することを含む。遠位プローブ先端112、112’は、開口136、2604の閉塞を防止するための構造的構成を有し得る。また、遠位プローブ先端112、112’は不均一な摩耗プロフィールを有し得る。少なくとも1つの遠位プローブ部110は、性能及び信頼性を向上させるために2つ又は複数のコンポーネントを含み得る。
100 溶接プロセス中に不活性ガスをモニタリングする方法及び装置 JP2015511860 2013-11-11 JP5890935B2 2016-03-22 ヨハネス・ツィマー; ダビド・シャリンガー; マヌエル・グラーダウアー; ヘルムート・プフリュゲルマイアー
QQ群二维码
意见反馈