序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种联合收割机粮箱中谷物破碎在线监测系统及方法 CN201610173831.8 2016-03-24 CN105806751A 2016-07-27 陈进; 陈璇; 李耀明; 梁振伟; 李桥; 吴静静
发明提供了一种联合收割机粮箱中谷物破碎在线监测系统,包括谷物传送机构、图像摄取单元和处理器ARM;谷物传送机构包括滚筒、倾斜传送带和激振器;滚筒位于粮仓出口处,倾斜传送带位于滚筒的下方,倾斜传送带的底部安装有激振器;图像摄取单元位于倾斜传送带上方,且在垂直于倾斜传送带的方向上;图像摄取单元依次包括CCD摄像机、镜头、光源以及数据采集卡;图像摄取单元用于对谷物进行周期性的摄取,并将摄取图片传送至处理器ARM;滚筒、CCD摄像机、光源均与处理器ARM连接;处理器ARM用于控制滚筒、CCD摄像机和光源的开启和关闭,并分析处理图像摄取单元传送的摄取图片。利用本装置能够实时在线监测谷物操作简单方便,且准确率高。
2 状态下土体颗粒运动状态试验装置 CN201511002056.1 2015-12-29 CN105571996A 2016-05-11 王鹏; 孙宏磊; 王军; 张丙钦; 腾凌飞
发明公开了一种渗状态下土体颗粒运动状态试验装置,包括透明筒体,透明筒体上部带有进水机构和储水腔、中部设置有试验土体、下部设置有抽水机构,所述储水腔侧壁上带有水位刻度和溢水孔,所述试验土体上部采用镂空压板覆盖、底部设置有渗透层,所述试验土体中带有彩色土颗粒,所述透明筒体外设置有对准试验土体的摄像机。该试验装置能够对渗水状态下的土体中土颗粒的运动情况进行拍摄分析。
3 颗粒物性测量装置 CN201110137134.4 2009-09-25 CN102323191A 2012-01-18 山口哲司; 伊串达夫; 黑住拓司
发明提供一种颗粒物性测量装置,该颗粒物性测量装置的光检测部件尽管具有单一的结构,但可以确保测量精度,而且可以尽可能减少光学元件的数量,从而可以实现抑制成本的增加和减少调整部位。颗粒物性测量装置(1)具有作为照射光学系统机构(2)的入射一侧的偏振镜(24)和入射一侧的1/4波片(25),并且具有作为受光光学系统机构(3)的能够以试样池(4)为中心转动到多个位置的出射一侧的1/4波片(33)和出射一侧的偏振镜(34),在光路上设置不会使偏振光状态改变的减光部件(23),控制利用减光部件(23)的减光率,使得在各测量位置的检测光强度在光检测部件(31)的测量范围内。
4 固体灰尘颗粒径谱分析仪 CN201610324983.3 2016-05-17 CN107389510A 2017-11-24 王雪飞
发明公开了一种测量固体颗粒密度与径谱分布的原理及技术。本发明采用喇叭口电晕灰尘带电技术与灰尘成像分析技术,构造固体灰尘径谱识别与灰尘颗粒直径测量。颗粒径谱的显示与测量的环境可以通过自动设置与手动设置完成,并将测量结果显示到LCD屏,为快速灰尘固态颗粒径的测量提供了一种有效、快速的解决方案。
5 模型构建方法和光散射成分检测方法 CN201610541945.3 2016-07-11 CN106198321A 2016-12-07 周真; 张思琦; 殷金英; 牛訦琛; 李昂
发明提供了一种模型构建方法和光散射成分检测方法。模型构建方法包括:选择预定浓度且颗粒物粒径分布均匀的流体介质样品,去除样品中的杂质,在颗粒物粒径大于预定阈值的情况下对样品进行声波均质至微米级别;将样品置于光学显微镜下,移动样品以截取多组视野图像。对获取的多组视野图像进行色调及灰度调整;利用进行色调及灰度调整后的多组视野图像,获取样品的颗粒物粒径分布;根据样品的颗粒物粒径分布,建立多粒径分布颗粒物光散射特性模型。本发明的上述技术能够充分考虑多粒径分布的存在对流体介质中颗粒物光散射的影响,可以得到更为准确的光散射检测结果。
6 一种浮游藻类检测系统 CN201610589182.X 2016-07-25 CN106053302A 2016-10-26 严心涛; 王策; 马玉婷; 吴云良; 陈忠详; 裴智果; 钟金凤
发明公开了一种浮游藻类检测系统,属于微型浮游藻类检测技术领域,该系统包括:样品进样装置;激光器,用于发出激光以照射所述样品进样装置内流动的藻类细胞;光探测装置,用于探测所述激光照射在所述藻类细胞上所产生的散射光和/或荧光;分析计算模,用于根据所述光探测装置探测到的散射光和/或荧光识别所述藻类细胞种类和/或计算所述藻类细胞的数量。整个系统在检测时能够自动检测样品中藻类细胞的数量,无需人为干预,检测的速度快、效率高、准确率高。
7 颗粒物性测量装置 CN201110137134.4 2009-09-25 CN102323191B 2013-11-06 山口哲司; 伊串达夫; 黑住拓司
发明提供一种颗粒物性测量装置,该颗粒物性测量装置的光检测部件尽管具有单一的结构,但可以确保测量精度,而且可以尽可能减少光学元件的数量,从而可以实现抑制成本的增加和减少调整部位。颗粒物性测量装置(1)具有作为照射光学系统机构(2)的入射一侧的偏振镜(24)和入射一侧的1/4波片(25),并且具有作为受光光学系统机构(3)的能够以试样池(4)为中心转动到多个位置的出射一侧的1/4波片(33)和出射一侧的偏振镜(34),在光路上设置不会使偏振光状态改变的减光部件(23),控制利用减光部件(23)的减光率,使得在各测量位置的检测光强度在光检测部件(31)的测量范围内。
8 颗粒物性测量装置 CN200980137028.7 2009-09-25 CN102159934A 2011-08-17 山口哲司; 伊串达夫; 黑住拓司
发明提供一种颗粒物性测量装置,该颗粒物性测量装置的光检测部件尽管具有单一的结构,但可以确保测量精度,而且可以尽可能减少光学元件的数量,从而可以实现抑制成本的增加和减少调整部位。颗粒物性测量装置(1)具有作为照射光学系统机构(2)的入射一侧的偏振镜(24)和入射一侧的1/4波片(25),并且具有作为受光光学系统机构(3)的能够以试样池(4)为中心转动到多个位置的出射一侧的1/4波片(33)和出射一侧的偏振镜(34),在光路上设置不会使偏振光状态改变的减光部件(23),控制利用减光部件(23)的减光率,使得在各测量位置的检测光强度在光检测部件(31)的测量范围内。
9 Particle detector JP2005261428 2005-09-09 JP2007071794A 2007-03-22 MATSUDA TOMONOBU
PROBLEM TO BE SOLVED: To provide a particle detector capable of detecting a fine particle by lengthening a pulse width of a particle signal output from a photoelectric transfer element. SOLUTION: A direction of a laser beam La is brought into parallel to a flow direction of a sample fluid 1, in this particle detector of the present invention of emitting the laser beam La to form a particle detection area 4, and of receiving a scattered light Ls by the particle 6 passing the particle detection area 4, by the photoelectric transfer element 9, to detect the particle. The particle detector may be provided with a convergence lens 7 for converging the scattered light Ls, and a slit 8 in parallel to the flow direction of the sample fluid 1 in a focal point of the convergence lens 7. The particle detector may be provided further with a capacitor circuit 11 for integrating an output signal from the photoelectric transfer element 9, and a low-pass filter 13 for filtering an output signal from the capacitor circuit 11. COPYRIGHT: (C)2007,JPO&INPIT
10 デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置 JP2017196720 2017-10-10 JP2018049019A 2018-03-29 河野 誠; 渡會 仁; 太田 亘俊
【課題】粒径の測定にバラツキが生じ難いデバイスを提供する。
【解決手段】デバイスは、第1部材と、第1部材と共に間隙を形成する第2部材とを備える。ある実施形態のデバイス1において、第2部材3には、傾斜面5aを有する流路が形成されており、傾斜面5aが第1部材2側を向くように第2部材3が第1部材2に重ねられることにより、流路を含む間隙6が形成される。他の実施形態のデバイス70は、間隙73の一端側の高さを規定する第1高さ調整部材74と、間隙73の他端側の高さを一端側の高さよりも低く規定する第2高さ調整部材75とを備える。
【選択図】図1
11 Particle monitor system and a substrate processing apparatus JP2007019888 2007-01-30 JP4895294B2 2012-03-14 剛 守屋; 隆 榎本
12 Particle monitoring system and substrate-treating device JP2007019888 2007-01-30 JP2008187040A 2008-08-14 MORIYA TAKESHI; ENOMOTO TAKASHI
PROBLEM TO BE SOLVED: To provide a particle monitoring system detecting fine particles. SOLUTION: In a bypass line 16 for connecting a chamber 11 to a DP 17, a laser beam oscillator 21 for applying laser beams, and a laser power measuring instrument 22 positioned on an optical path in laser beams L that are applied from the laser beam oscillator 21 and pass through the space in the bypass line 16, are arranged. Further, on the inner wall surface of the bypass line 16, a plurality of laser reflection mirrors 23 are arranged to reflect the laser beams L so that at least two optical paths of the laser beams L are positioned in the space in the bypass line 16. COPYRIGHT: (C)2008,JPO&INPIT
13 DEVICE FOR MEASURING PHYSICAL PROPERTY OF PARTICLE EP09816190.4 2009-09-25 EP2333516A1 2011-06-15 YAMAGUCHI, Tetsuji; IGUSHI, Tatsuo; KUROZUMI, Takuji

Provided is a particle characterization instrument that can ensure measurement accuracy even though light detecting means has a single configuration, and enables the number of optical elements to be decreased as much as possible to suppress cost increase and reduce the number of adjustment places, and the particle characterization instrument has an incident side polarizer 24 and an incident side 1/4 wavelength plate 25 as an illumination optical system mechanism 2 and, as a light receiving optical system mechanism 3, an exit side 1/4 wavelength plate 33 and an exit side polarizer 34 that can be rotated to a plurality of angle positions around a cell 4, wherein light attenuating means 23 that prevents a polarization state from being changed is provided on a light path, and a light attenuation rate by the light attenuating means 23 is controlled such that a detected light intensity at each measurement position falls within a measurement range of light detecting means 31.

14 Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid EP97110905.3 1997-07-02 EP0823626A2 1998-02-11 Mölter, Leander; Munzinger, Friedrich

Zur Vereinfachung der optischen Messung eines Teilchenstromes in einem Fluid und insbesondere zur Ausschaltung von Fehlern sieht die Erfindung bei einer Vorrichtung zur Messung eines Teilchenstroms in einem Fluid mit mindestens einer eine Blende aufweisenden Beleuchtungsanordnung und mit mindestens einer eine Blende aufweisenden Empfängeranordnung vor, daß mindestens eine Blende (6a, 11a) eine Blendenöffnung (6, 11) mit einem zum Inneren der Blendenöffnung (6, 11) konvex ausgebildeten Rand (6b, 11b) aufweist. Bei einem Verfahren ist vorgesehen, daß der Teilchenstrom durch eine Blendenöffnung mit zu ihrem Inneren hin konvex ausgebildetem Rand beleuchtet und/oder betrachtet wird, daß die Maximalintensität des durch einen ersten optischen Meßbereich fliegenden Teilchens gemessen und das Teilchen nur berücksichtigt wird, wenn die Intensität beim Durchfliegen durch einen zweiten Meßbereich einen bestimmten Mindestprozentsatz der für dieses Teilchen gemessenen Maximalintensität überschreitet.

15 Fluid analysis using digital imagery US15302328 2016-04-12 US10145776B2 2018-12-04 Pranay Jain; Sanjay E. Sarma
A system for analyzing fluid includes a housing having first and second opposing surfaces spaced to form a fluid chamber, a light source disposed to direct light at the first surface of the housing; and a digital imaging circuit disposed to detect light at the second surface of the housing. The digital imaging circuit includes a pixel array configured to capture one or more digital images of an illuminated fluid. The system also includes a processor configured to: capture multiple digital images of the fluid at different camera exposure levels, calculate a net radiant energy value at a plurality of different integration times within at least two images, calculate a slope of the net radiant energy value with respect to integration time in a selected image, and determine size distribution and volume fraction of particles within the fluid based on the calculated slope.
16 PARTICLE DETECTION CARTRIDGES, SYSTEMS THEREOF AND METHODS FOR USING THE SAME US15940698 2018-03-29 US20180313743A1 2018-11-01 Jonathan V. Dixon; Jianying Cao; Edward Michael Goldberg
Particle detection cartridges are provided. Aspects of the particle detection cartridges according to certain embodiments include a sample input, a flow channel and a light channel, where the flow channel and light channel are coupled at a detection region such that only light from the detection region can propagate directly through the light channel to a detector. Systems including the cartridges, as well as methods for detecting particles in a sample with the subject particle detection cartridges/systems, are also described. Kits having one or more cartridges are also provided.
17 LASER SENSOR FOR PARTICLE SIZE DETECTION US15746470 2016-08-01 US20180209892A1 2018-07-26 ALEXANDER MARC VAN DER LEE; JOACHIM WILHELM HELLMIG; JOHANNES HENDRIKUS MARIA SPRUIT
The invention describes a laser sensor module (100) for particle size detection. The laser sensor module (100) comprises at least one first laser (110), at least one first detector (120), at least one electrical driver (130) and at least one evaluator (140). The first laser (110) is adapted to emit first laser light in reaction to signals provided by the at least one driver (130). The at least one first detector (120) is adapted to determine a first self -mixing interference signal (30) of an optical wave within a first laser cavity of the first laser (110). The first self-mixing interference signal (30) is caused by first reflected laser light reentering the first laser cavity, the first reflected laser light being reflected by a particle receiving at least a part of the first laser light. The evaluator (140) is adapted to determine a size of the particle by determining a first relative distance between the particle and the first laser (110) by means of the first self-mixing interference signal (30) and by determining a first amplitude information by means of the first self-mixing interference signal (30). The invention is further related to a corresponding method of determining a particle size.
18 MEASURING DEVICE US15823963 2017-11-28 US20180080862A1 2018-03-22 Daichi SHIGEMARU
A measuring device can be used under high pressure and can measure impurity particles contained in a hydraulic oil with high accuracy. A flow path hole opening on two facing surfaces of a housing has flat side surfaces. A cavity opens on the side surface, and a cavity opens on the side surface. Light emitted from a light irradiating section irradiates a hydraulic oil flowing in the flow path hole, via a cell disposed in the cavity in a direction substantially orthogonal to a center axis. Light passing through the hydraulic oil is received by a light receiving section via a cell disposed in the cavity opening on the side surface.
19 Method and Apparatus for Decreasing Tubing Carryover With Poly(2-hydroxyethyl methacrylate) Coating US15621500 2017-06-13 US20170356836A1 2017-12-14 Zhaoping Liu
A method for collecting and delivering biological samples to a destination, such as an analyzer are provided herein. In one example, a plurality of samples, each including particles, is obtained from respective wells of a sample source having a plurality of wells. The plurality of samples are introduced into a fluid flow stream contained within a conduit having an inner diameter and in communication with a destination. An inner surface of the conduit is coated with a hydrogel barrier substance, such as poly-HEMA. The fluid flow stream is guided through the conduit to a destination. In one example, the destination may be a flow cytometer. Methods of preparing a poly-HEMA solution and coating the inner surface of a conduit with poly-HEMA are also provided.
20 ELECTRICAL SYSTEMS,AND SEPARATION SAMPLING MODULES FOR USE WITHIN A BUCKET OF A CENTRIFUGE US14927026 2015-10-29 US20160123862A1 2016-05-05 Kenneth A. HALVORSEN; Tony P. HOANG
A separation sampling module for use within a bucket of a centrifuge for monitoring separation of a sample in a container includes a housing operable for supporting the container for containing the sample and removably positionable within the bucket of the centrifuge, at least one light source for illuminating the sample, at least one light detector for detecting light from the sample, and at least one of a power source and a connector operably connectable to a power source for use in powering the at least one light source. Light from the at least one light source passing through the sample defines a light path disposed in a direction across the direction of a centrifugal force when the separation sampling module is disposed in the bucket and rotated in the centrifuge.
QQ群二维码
意见反馈