序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 Differential pressure flow meter JP4461281 1981-03-25 JPS57158515A 1982-09-30 MINAGAWA MASATOSHI; OOKUBO AKIRA
PURPOSE:To correct gaseous pressure and a temperature error, by deriving a specific weight factor of gas, its saturation temperature and its specific weight correction factor in accordance with measuring pressure, obtaining a corrected specific weight, and deriving a flow rate by use of this specific weight. CONSTITUTION:A differential pressure detector 21 having a throttle mechanism, a temperature detector 22 and a pressure detector 23 are provided on a pipe 18 in which gas to be measured flows, and differential pressure DELTAP, a temperature T and pressure P are measured, respectively. Also, as to measuring pressure P, tables 24, 25 and 26 which have stored relation of a specific weight correction factor (a), a variation factor (b) of specific weight per a unit temperature, and a saturation temperature T' are provided, and signals (a), (b) and T' corresponding to the pressure P are outputted. Subsequently, a difference between a measured temperature T and a saturation temperature T' is operated 27, is multiplied 28 by the variation factor (b) of specific weight, a specific weight correction factor (c) is obtained, also it is multiplied 31 by the specific weight correction factor (a), corrected specific weight (gamma) is derived, and when a flow rate Q=alpha(DELTAP/r)<1/2> is operated 32 by this corrected specific weight (gamma) and the differential pressure DELTAP, the flow rate is derived without gaseous pressure and a temperature error.
182 JPS56501511A - JP50003680 1980-11-07 JPS56501511A 1981-10-22
183 JPS5627811B2 - JP3047873 1973-03-14 JPS5627811B2 1981-06-27
184 Mass flow meter JP15025279 1979-11-20 JPS5673318A 1981-06-18 SASAKI TSUYOSHI
PURPOSE:To prevent the influences of temperature or pressure fluctuations by forming a tuning fork structure of U-shaped tube through which a fluid to be measured flows and a support beam equipped with a magnet on the tip, and exciting with an electromagnetic force and converting in terms of electric quantity with the help of a strain gauge. CONSTITUTION:A permanent magnet 2 of U-shaped tube 1 facing an electromagnet 4 is excited to a proper oscillation number of this system with the assistance of said electromagnet generating an electromagnetic force, so that a fluid running through the U-shaped tube is caused to generate a Coriolis force. Said Coriolis force has a varying magnitude proportional to the mass of a fluid, and the direction of the force coincides with a direction of motion and a direction of the vector product of an angular velocity exciting the U-shaped tube. Since the direction of a fluid is reversed at the input and output side of the U-shaped tube, a twisting torque is generated in the U-shaped tube on account of the Coriolis force on the both legs side. This oscillation torque is proportional to the mass flow of a fluid, and is transferred to a torque beam 6 and then is converted in terms of electric quantity by means of four pieces of strain gauge attached on the beam surface, thus enabling the output proportional to a mass flow to be available. Under this constitution, it is possible to prevent the influence of temperature and pressure fluctuations.
185 JPS5331829Y2 - JP7438172 1972-06-23 JPS5331829Y2 1978-08-08
186 Indicating device JP13336377 1977-11-07 JPS5358257A 1978-05-26 EDOWAADO SHII UOORITSUKU; MAIKURU DABISU
187 질량 유량 제어 장치 KR20187006630 2016-09-09 KR20180051520A 2018-05-16 SONODA MASASHI; KISHINE YUUJI
유량계에의해계측되는가스의계측유량이설정유량과일치하도록유량제어밸브에제어신호를출력하여밸브개방도를제어하는유량제어를실행하는제어수단은, 온도계에의해계측되는가스의계측온도가기준온도보다도높을수록밸브개방도의변경량의절댓값이커지도록제어신호의강도를조정하고, 계측온도가기준온도보다도낮을수록밸브개방도의변경량의절댓값이작아지도록제어신호의강도를조정한다. 이에의해, 가스의계측온도가기준온도와상이한것에기인하는유량제어밸브의밸브개방도의변경에있어서의응답시간의변화를저감할수 있다.
188 유체의 유동 특성을 검출하기 위한 센서 장치 KR1020137010713 2011-09-02 KR101854591B1 2018-05-04 슈나이더,노르베르트; 에테링톤,쿠르트; 릴링,하인츠; 콘첼만,우베; 카우프만,안드레아스; 리트만,미하엘; 슈타르크,안드레아스; 바이리히,한스
본발명은유체의적어도하나의유동특성을검출하기위한센서장치(110)에관한것이다. 센서장치(110)는적어도하나의센서하우징(116)을포함하고, 상기센서하우징내에, 유동특성을검출하기위한적어도하나의유동센서(152)를포함하는적어도하나의전자모듈(142)이수용된다. 또한, 적어도하나의압력센서(162) 및적어도하나의습기센서(160)가센서하우징(116) 내에수용되고, 적어도압력센서(162) 및바람직하게는습기센서(160)도상기전자모듈(142)과관계없이센서하우징(116) 내에배치된다.
189 음향 상분리기 및 다상 유체의 조성 모니터링이 일체화된 장치 및 방법 KR1020137008384 2011-09-06 KR101810722B1 2017-12-19 신하,디펜엔.
유동스트림(flow stream)에영향을주지않으면서, 유정시추공또는파이프에유동하는다상유체(multiphase fluid; 16)로부터지하의기체를분리(18)하고, 액체의개별적성분의양과액체의유동률(flow rate)을결정하고, 유체의성분요소들을재혼합하여이후기체의볼륨(volume)을측정하기위한장치(10) 및방법에관해기술되어있다. 음향방사력(acoustic radiation force)이액체로부터기체를분리하기위해사용되며, 이로써다음두 성분을각각측정할수 있다; 액체(오일/물)의조성은초음파공진(32)으로부터결정되고; 기체의볼륨은캐패시턴스측정(44)으로부터결정된다. 유체가장치의구성부분들을통해서유동하고그 주변으로도유동하기때문에, 압력의차이가거의없게되어, 높은압력차이로부터의보호가필요없다.
190 유량계 및 유량 콘트롤러 KR1020100004813 2010-01-19 KR101623107B1 2016-05-20 이가라시,히로키
제조비용의상승을억제하면서, 넓은유량범위에서의유량을측정할수 있는유량계, 및이를구비한유량콘트롤러를제공한다. 본발명에따른유량계에는, 상류측유로에서의유체의압력을측정하는상류측압력센서와, 하류측유로에서의유체의압력을측정하는하류측압력센서와, 상류측유로및 하류측유로의사이에배치되고적어도상류측유로보다유로면적이작은제1 스로틀부와, 상류측유로에서의상류측압력센서및 제1 스로틀부의사이로부터분기하여하류측유로에접속되는바이패스유로와, 바이패스유로를흐르는유체의유량을제어하는개폐밸브와, 바이패스유로및 하류측유로의사이에배치되고적어도바이패스유로보다유로면적이작은제2 스로틀부가마련된다.
191 질량 유량계 및 당해 질량 유량계를 사용하는 질량 유량 제어 장치 KR1020150042154 2015-03-26 KR1020150113871A 2015-10-08 이토히로유키
본발명의과제는, 신뢰성이높은자기진단기능을갖는질량유량계를제공하는것이다. 동일사양의 2개의유량센서유닛을구비하는질량유량계에있어서, 질량유량의실측시와동일한변동요인을갖는환경하에서, 이들 2개의유량센서유닛의유량편차를다양한질량유량으로미리측정한다. 이어서, 이들유량편차에기초하여, 이들 2개의유량센서유닛에의한질량유량의측정값을일치시키기위한보정값을산출하고, 데이터기억장치에저장해둔다. 그후, 질량유량의측정을행할때, 당해보정값에기초하여측정값을보정함으로써, 이들 2개의유량센서유닛의변동요인에대한응답의개체차에의한영향이제거된유량편차를산출한다. 이유량편차가소정의역치 t를초과하는지여부에기초하여이상의발생의유무를판정한다.
192 초고주파수 진동 유량계, 그 작동 방법 및 형성 방법 KR1020107026944 2009-04-29 KR101347781B1 2014-02-13 웨인스테인,조엘
초고주파수 진동 유량계(100)가 제공된다. 초고주파수 진동 유량계(100)는 하나 이상의 유동 도관 (103A, 103B)를 포함하는 유량계 조립체(10)를 포함한다. 유량계 조립체(10)는 이물질 크기 또는 이물질 조성과 무관하게 유동 유체에 대해 미리 결정된 최대 디커플링 주파수보다 큰 초고주파수 응답을 생성하도록 구성된다. 초고주파수 진동 유량계(100)는 상기 유량계 조립체(100)에 커플링된 유량계 전자회로(20)를 더 포함하고 초고주파수 진동 응답을 수신하고 이로부터 하나 이상의 유동 측정치를 생성하도록 구성된다.
193 유체의 유동 특성을 검출하기 위한 센서 장치 KR1020137010713 2011-09-02 KR1020130123390A 2013-11-12 슈나이더,노르베르트; 에테링톤,쿠르트; 릴링,하인츠; 콘첼만,우베; 카우프만,안드레아스; 리트만,미하엘; 슈타르크,안드레아스; 바이리히,한스
본 발명은 유체의 적어도 하나의 유동 특성을 검출하기 위한 센서 장치(110)에 관한 것이다. 센서 장치(110)는 적어도 하나의 센서 하우징(116)을 포함하고, 상기 센서 하우징 내에, 유동 특성을 검출하기 위한 적어도 하나의 유동 센서(152)를 포함하는 적어도 하나의 전자 모듈(142)이 수용된다. 또한, 적어도 하나의 압력 센서(162) 및 적어도 하나의 습기 센서(160)가 센서 하우징(116) 내에 수용되고, 적어도 압력 센서(162) 및 바람직하게는 습기 센서(160)도 상기 전자 모듈(142)과 관계없이 센서 하우징(116) 내에 배치된다.
194 다상 유동 유체의 하나 이상의 유동 유체 특성 결정 방법 그리고 다상 유동 유체의 하나 이상의 유동 유체 특성 결정을 위한 진동 유량계 및 그 형성 방법 KR1020107027023 2009-04-29 KR1020110005296A 2011-01-17 웨인스테인,조엘
다상 유동 유체의 하나 이상의 유동 유체 특성 결정을 위한 진동 유량계(5)가 히나 이상의 유관들(103A, 103B)를 포함한다. 이물질 크기 또는 이물질 조성과 무관하게, 유동 유체에 대한 기결정된 최소 디커플링 주파수 아래인 초저주파수 응답을 생성하고 그리고 상기 유동 유체에 대한 기결정된 최대 디커플링 주파수 위인 초고주파수 응답을 생성하도록 유량계 조립체(10)가 구성된다. 상기 유량계(100)는 계측 전자부(20)를 더 포함하는데, 계측 전자부(20)는 하나 이상의 초저주파수 진동 응답들과 하나 이상의 초고주파수 진동 응답들을 수신하고 그리고 상기 하나 이상의 초저주파수 진동 응답들과 상기 하나 이상의 초고주파수 진동 응답들로부터 하나 이상의 유동 유체 특성을 결정하도록 구성된다.
195 유량계 및 유량 콘트롤러 KR1020100004813 2010-01-19 KR1020100090193A 2010-08-13 이가라시,히로키
PURPOSE: A flow meter and a flow rate controller are provided to measure flow rate over a wide range of flow rate and to limit the rise of manufacturing cost by providing a valve for controlling the flow of fluid. CONSTITUTION: A flow meter(11) comprises an upstream fluid path(3A), a downstream fluid path(3B), an upstream pressure sensor(4A), a downstream pressure sensor(4B), a first throttle part(6A), a bypass fluid path(5), a valve(7) and a second throttle part(6B). Through the upstream fluid path and the downstream fluid path, the fluid to be measured flows. The upstream pressure sensor measures the pressure of the fluid at the upstream fluid path. The downstream pressure sensor measures the pressure of the fluid at the downstream fluid path. The first throttle part is arranged between the upstream fluid path and the downstream fluid path. The bypass fluid path is connected to the downstream fluid path. The valve controls the flow rate of the fluid flowing the bypass fluid path. The second throttle part is arranged between the bypass fluid path and the downstream fluid path.
196 플라스틱으로 이루어진 초음파측정부품 그리고 그에상응하는 측정방법 KR1020087014712 2006-11-21 KR1020080080556A 2008-09-04 리클리안드레
The invention relates to an ultrasound measuring section (1) made from plastic, for measuring flow of fluids, comprising two ultrasound transceivers (2, 3) at a separation from each other in the direction of flow, characterised in that the ultrasound may be guided in a Z-pattern between the transceivers (2, 3) by means of at least two reflectors (4). The invention further relates to a corresponding measuring method and a method for one-piece production of a measuring section (1) by injection moulding.
197 전자천칭 KR1020050003331 2005-01-13 KR1020050076617A 2005-07-26 시마우치쿠니오; 다무라키미토시; 하마모토히로시
In electronic balance, an analog computation portion determines at least a differential control signal according to an amount of displacement of a beam. A digital computation portion determines at least an integral control signal is determined by after the amount of displacement of the beam is digital-converted. The control signal component determined by the digital computation portion is analog-converted. Thereafter, a synthetic PID control signal is determined by being synthesized from a resultant signal and the control signal component, which is determined by the analog computation portion. Subsequently, a coil current based on the synthetic PID control signal is passed through the coil. A weight value is obtained according to the control signal component determined by the digital computation portion.
198 저손실 오리피스 유량계 KR1020030068960 2003-10-02 KR1020030083658A 2003-10-30 이재형
PURPOSE: A low loss orifice flowmeter is provided to minimize pressure loss, and to optimize efficiency for measuring flow rate. CONSTITUTION: An orifice flowmeter comprises an orifice(5) for measuring flow rate of an upstream side, and a diffuser(7). A thin orifice plate(1) is installed in the orifice to be fixed between flanges(3) of a pipe. A piece(6) is placed on a downstream part of the orifice, which is connected with the cylindrical diffuser to variably move an inlet and an outlet of the orifice and the diffuser. Pressure tabs are installed on front and rear portion of the orifice plate to be used for measuring pressure inside the orifice. The diffuser forms a channel on the downstream part of the orifice plate to solve flow separation generated on the downstream of the orifice plate, to minimize pressure loss, and to reduce loss coefficient of the orifice so as to get optimum efficiency of measurement of flow rate depending on flowing condition in the orifice. Loss in the orifice is reduced by the diffuser as the diffuser reduces an axial flow part formed on the downstream part of the orifice plate.
199 액화가스 계측장치 KR1020010049431 2001-08-17 KR1020020068947A 2002-08-28 하야마후미다까; 가다기리히로시; 가긴유우
PURPOSE: To provide a liquefied gas measuring device which reduces connecting parts by integrating each instrument, prevents leakage of liquefied gas, requires only a simple pressure test, and enables miniaturization of a metering device and an accurate correction of temperature. CONSTITUTION: The liquefied gas measuring device 6 is connected to some midpoint of piping, one end of which is connected to a liquid storage tank and the other end of which is connected to a filling nozzle. The device 6 outputs a flow rate signal from a flowmeter 26 provided inside a main body case 20. The case 20 is formed in such a manner that a main body inflow opening 7 having a strainer 21 is provided at one end and that a float chamber 22 having a main body discharge opening 8 is provided at the other end. The float chamber 22 is provided with a temperature sensor 28 and a float valve 23 which is located in an upper position and makes an upper opening opened when vapors flow in from the inflow opening 7. A metering mechanism equipped with the flowmeter 26 is provided below a descent position of a float 23a of the float valve 23. A discharge opening of the metering mechanism is connected to the discharge opening 8. A check valve 25 is provided on a side of the inflow opening 7.
200 APPARATUS AND METHOD FOR DETERMINING TEMPERATURE PCT/US2014010146 2014-01-03 WO2014109952A2 2014-07-17 SUI LEI; MCDONALD BENJAMIN EDWARD; HOBBS NICHOLAS ANDERSON
An apparatus and method for determining temperature is disclosed. An ultrasonic signal is generated that propagates through a buffer and a portion of the signal is reflected at an interface. A time of flight is measured between generating the ultrasonic signal and detecting the reflected portion. The temperature is determined based on the time of flight of the reflected signal.
QQ群二维码
意见反馈