首页 / 国际专利分类库 / 机械工程;照明;加热;武器;爆破;发动机或泵 / 弹药;爆破 / 爆炸装药,例如用于爆破、烟火、弹药 / 爆破筒,即壳体和炸药 / .控制或导引爆轰波的元件,例如管(使用嵌入于成形或空心装药中的惰性体入F42B1/024)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
121 Explosive assemblies and method of utilizing the same US42801765 1965-01-21 US3894489A 1975-07-15 RIEDL HANS-JOACHIM; SCHLUTER HEINZ; TRINKS WALTER; HENSEL GERHARD
1. In an explosive assembly, in combination, primary and secondary explosive charges; directing means common to both of said charges and cooperating therewith for directing the blasts from both of said charges along the same path in the same direction toward a given target; and means operatively connected to both charges for igniting said secondary explosive charge at an interval of 10-150 microseconds subsequent to the ignition of said primary charge, whereby the blast from said secondary charge will enter an area which has previously been entered by the blast of said primary charge to augment the destructive effects of said primary charge.
122 Explosive body construction US3732817D 1963-12-20 US3732817A 1973-05-15 THOMANEK F
1. An explosive body construction for use with a hollow explosive charge having a cavity in the front in respect to the firing direction, comprising a frustoconically-shaped guiding sleeve having a smaller dimensioned end with an opening in said sleeve being adapted to be arranged before the hollow explosive charge in respect to the firing direction, said guiding sleeve having an apex angle of between 15* and 45*, a secondary charge enclosed by said guiding sleeve having a frontal area at an end thereof, the generatrix of said guiding sleeve forming an angle of between 90* and 100* with the frontal area of said secondary charge, and at least three primer charges arranged on said frontal area at substantially equal distances apart on a pitch circle concentric to the axis of said secondary charge, the diameter of said pitch circle amounting to between 70 and 90 percent of the maximum exterior diameter of said guiding sleeve.
123 Explosive driven conical shock tube US7879460 1960-12-27 US3184955A 1965-05-25 FILLER WILLIAM S
124 Penetrator mit einer Hohlladung EP13002969.7 2013-06-10 EP2679948A3 2017-06-21 Arnold, Werner

Bei einem Penetrator mit integrierter Hohlladung werden mittels der vorgeschlagenen Maßnahmen Asymmetrien bei der Stachelbildung und beim Aufreißen des Mantels (PM) reduziert oder sogar vermieden und somit die Leistung des Penetrators bei der Stachelbildung und die Gesamtleistung des Penetrators optimiert.

125 DISRUPTOR COMPRISING A LIQUID CONTAINER WITH A LONGITUDINAL GROOVE IN THE WALL FOR GENERATING A FOCUSED LIQUID JET EP10736758.3 2010-06-14 EP2443414B1 2016-11-02 ALFORD, Sidney; ALFORD, Roland
126 Penetrator mit einer Sprengladung und einer Zündvorrichtung EP10014608.3 2010-11-15 EP2325596B1 2015-04-01 Arnold, Werner, Dr.
127 DETONATION OF EXPLOSIVES EP11804815.6 2011-12-09 EP2649405B1 2015-02-25 MULLER, Elmar; HALLIDAY, Pieter, Stephanus, Jacobus; MORGAN, Clifford, Gordon; DASTOOR, Paul; BELCHER, Warwick; ZHOU, Xiaojing; BRYANT, Glenn
128 Zündvorrichtung für die Sprengladung eines Penetrators EP10014608.3 2010-11-15 EP2325596A3 2014-04-02 Arnold, Werner, Dr.

Bei einem Penetrator ist eine Verstärkerladung (V) mittels eines Abstandhalters (A) in einem Abstand von der Zündvorrichtung (Z) angeordnet, so dass auch nach einer Zielpenetration eine Initiierung der Sprengladung (SP) möglich ist. Zur Unterstützung dieses Effekts ist vor der Verstärkerladung (V) ein Detonationswellenlenker (DWL) vorgesehen.

129 Penetrator mit einer Hohlladung EP13002969.7 2013-06-10 EP2679948A2 2014-01-01 Arnold, Werner

Bei einem Penetrator mit integrierter Hohlladung werden mittels der vorgeschlagenen Maßnahmen Asymmetrien bei der Stachelbildung und beim Aufreißen des Mantels (PM) reduziert oder sogar vermieden und somit die Leistung des Penetrators bei der Stachelbildung und die Gesamtleistung des Penetrators optimiert.

130 DETONATION OF EXPLOSIVES EP11804815.6 2011-12-09 EP2649405A1 2013-10-16 MULLER, Elmar; HALLIDAY, Pieter, Stephanus, Jacobus; MORGAN, Clifford, Gordon; DASTOOR, Paul; BELCHER, Warwick; ZHOU, Xiaojing; BRYANT, Glenn
An explosives detonator system for detonating an explosive charge with which it is, in use, arranged in a detonating relationship is provided. On acceptance of a detonation initiating signal having a detonation initiating property, the system initiates and thus detonates the explosive charge. The system includes an initiating device which accepts the detonation initiating signal and initiates and thus detonates the explosive charge. The initiating device is initially in a non-detonation initiating condition, in which it is not capable of accepting the detonation initiating signal. The system also includes a radio frequency identification (RFID) based switching device that detects a switching property of a radio switching signal that is transmitted to the detonator system and switches the initiating device, on detection of the detonation initiating property, to a standby condition in which the initiating device is capable of operatively accepting the detonation initiating signal when it is transmitted thereto.
131 EXPLOSIVE CUTTING EP11764359.3 2011-09-22 EP2619522A1 2013-07-31 CARTON, Erik Peter
The invention is directed to a method for explosive cutting, more in particular to a method for explosive cutting using converging Shockwaves, and to an explosive cutting device. The explosive cutting method of the invention comprises the steps of providing a projectile (2) with an explosive charge (1) for accelerating said projectile (2) in the direction of an object (4) to be cut; positioning said projectile (2) over the object (4) to be cut such that it extends along an intended line of cut, whereby the projectile (2) is spaced from the object (4) to be cut; detonating the explosive charge (1) so that the projectile (2) is accelerated in the direction of the object (4) to be cut, wherein i) the projectile (2) impacts on the object (4) to be cut and the projectile (2) comprises a wave-shaping element (2a, 2b) which is shaped such that the impact generates converging Shockwaves in the underlying object (4) to be cut causing a crack to be propagated through the object (4) substantially along the intended line of cut; or ii) the projectile (2) impacts on a wave-shaping element (3) in contact with the object (4) to be cut, the wave- shaping element (3) being shaped such that the impact generates converging Shockwaves in the underlying object (4) to be cut causing a crack to be propagated through the object (4) substantially along the intended line of cut.
132 Verfahren und Vorrichtung zur Erzeugung unterschiedlicher Splittergrößen EP09015024.4 2009-12-04 EP2194354A3 2013-07-03 Arnold, Werner, Dr.

Ein Gefechtskopf weist eine Splitter bildende Hülle (MH) und eine innerhalb dieser angeordnete Innenhülle (NG) auf. Die Innenhülle umfasst eine Vielzahl verteilt angeordneter, bezüglich eines Lots auf die Oberfläche der Innenhülle hinsichtlich ihres Querschnitts asymmetrischer und bezüglich ihrer Lage gegenüber der ersten Initiiereinrichtungen gleichartig ausgerichteter und in eine Vorzugsrichtung weisender Nuten (N), wobei wenigstens zwei sich diametral gegenüberliegende Initiiereinrichtungen im Bereich der Sprengladung (HE) vorgesehen sind, die einzeln und/oder mit einstellbarem Zeitabstand zündbar sind.

133 Zündvorrichtung für die Sprengladung eines Penetrators EP10014608.3 2010-11-15 EP2325596A2 2011-05-25 Arnold, Werner, Dr.

Bei einem Penetrator ist eine Verstärkerladung (V) mittels eines Abstandhalters (A) in einem Abstand von der Zündvorrichtung (Z) angeordnet, so dass auch nach einer Zielpenetration eine Initiierung der Sprengladung (SP) möglich ist. Zur Unterstützung dieses Effekts ist vor der Verstärkerladung (V) ein Detonationswellenlenker (DWL) vorgesehen.

134 Verfahren und Vorrichtung zur Erzeugung unterschiedlicher Splittergrößen EP09015024.4 2009-12-04 EP2194354A2 2010-06-09 Arnold, Werner, Dr.

Ein Gefechtskopf weist eine Splitter bildende Hülle (MH) und eine innerhalb dieser angeordnete Innenhülle (NG) auf. Die Innenhülle umfasst eine Vielzahl verteilt angeordneter, bezüglich eines Lots auf die Oberfläche der Innenhülle hinsichtlich ihres Querschnitts asymmetrischer und bezüglich ihrer Lage gegenüber der ersten Initiiereinrichtungen gleichartig ausgerichteter und in eine Vorzugsrichtung weisender Nuten (N), wobei wenigstens zwei sich diametral gegenüberliegende Initiiereinrichtungen im Bereich der Sprengladung (HE) vorgesehen sind, die einzeln und/oder mit einstellbarem Zeitabstand zündbar sind.

135 PERFORATING SYSTEM COMPRISING AN ENERGETIC MATERIAL EP07870697.5 2007-05-23 EP2029955A2 2009-03-04 EVANS, Randy L.; HILL, Freeman L.; HETZ, Avigdor; HONEKAMP, Jeffrey
A perforating system (20), including a gunbody and a shaped charge assembly (10) comprising a charge case(1), a liner (5), and a main body of explosive (2). The material of the perforating system components, including the gun body, the charge case and the liner may be comprised of an energetic material that conflagrates upon detonation of the shaped charge. The material may be an oxidizer, tungsten, cement particles, rubber compounds, compound fibers, KEVLAR®, steel, steel alloys, zinc, and combinations thereof.
136 METHOD AND APPARATUS FOR CONTROLLED SMALL-CHARGE BLASTING OF HARD ROCK AND CONCRETE BY EXPLOSIVE PRESSURIZATION OF THE BOTTOM OF A DRILL HOLE EP96935776.3 1996-08-02 EP0842391B1 2003-06-25 WATSON, John, David; MICKE, Brian P.
137 DISSOLVABLE MATERIAL APPLICATION IN PERFORATING PCT/US2010047959 2010-09-07 WO2011049678A2 2011-04-28 MARYA MANUEL; YANG WENBO; BEHRMANN LAWRENCE; HENDERSON STEVEN; FERENCE ROBERT
A shaped charge includes a charge case; a liner; an explosive retained between the charge case and the liner; and a primer core disposed in a hole in the charge case and in contact with the explosive, wherein at least one of the case, the liner, the primer core, and the explosive comprising a material soluble in a selected fluid. A perforation system includes a perforation gun, comprising a gun housing that includes a safety valve or a firing valve, wherein the safety valve or the firing valve comprises a material soluble in a selected fluid.
138 METHOD AND APPARATUS FOR CONTROLLED SMALL-CHARGE BLASTING OF HARD ROCK AND CONCRETE BY EXPLOSIVE PRESSURIZATION OF THE BOTTOM OF A DRILL HOLE PCT/US9612749 1996-08-02 WO9706402A2 1997-02-20 WATSON JOHN DAVID
Rock and other hard materials, such as concrete, are fragmented by a controlled small-charge blasting process. The process is accomplished by pressurizing the bottom of a drill hole in such a way as to initiate and propagate a controlled fracture or propagate any pre-existing fractures near the hole bottom. A cartridge containing an explosive charge is inserted at the bottom of a short hole drilled in the rock. The explosive charge is configured to provide the desired pressure in the hole bottom, including, if desired, a strong shock spike at the hole bottom to enhance microfracturing. The cartridge is held in place or stemmed by a massive stemming bar of high-strength material such as steel. The explosive can be initiated in a variety of ways including by a standard electric blasting cap. The cartridge incorporates additional internal volume designed to control the application of pressure in the bottom hole volume by the detonating explosive. The primary method by which the high-pressure gases are contained in the hole bottom until relieved by the opening up of controlled fractures, is by the massive inertial stemming bar which blocks the flow of gas up the drill hole except for a small leak path between the stemming bar and the drill hole walls. This small leakage can be further reduced by design features of the cartridge and of the stemming bar. The stemming bar is preferably connected to a boom mounted on a carrier. A preferred embodiment incorporates an indexing mechanism to allow both a drill and a small-charge blasting apparatus to be used on the same boom for drilling and subsequent charge insertion and firing operations. The major features of the method and apparatus are the relatively low-energy of the flyrock and the relatively small amount of explosive required to break the rock.
139 DETONATION OF EXPLOSIVES PCT/IB2011055573 2011-12-09 WO2012077082A1 2012-06-14 MULLER ELMAR; HALLIDAY PIETER STEPHANUS JACOBUS; MORGAN CLIFFORD GORDON; DASTOOR PAUL; BELCHER WARWICK; ZHOU XIAOJING; BRYANT GLENN
An explosives detonator system for detonating an explosive charge with which it is, in use, arranged in a detonating relationship is provided. On acceptance of a detonation initiating signal having a detonation initiating property, the system initiates and thus detonates the explosive charge. The system includes an initiating device which accepts the detonation initiating signal and initiates and thus detonates the explosive charge. The initiating device is initially in a non-detonation initiating condition, in which it is not capable of accepting the detonation initiating signal. The system also includes a radio frequency identification (RFID) based switching device that detects a switching property of a radio switching signal that is transmitted to the detonator system and switches the initiating device, on detection of the detonation initiating property, to a standby condition in which the initiating device is capable of operatively accepting the detonation initiating signal when it is transmitted thereto.
140 METHODS AND APPARATUS FOR HIGH-IMPULSE FUZE BOOSTER PCT/US2009002538 2009-04-24 WO2010011243A9 2010-04-08 BERLIN BRYAN F; CHRISTIANSON KIM L
A method for initiating a low-sensitivity explosive charge includes initiating a booster explosive charge within an explosive charge cavity in a booster housing, and generating a planar detonation wave. Generating the planar detonation wave includes directing a detonation wave through the booster housing along a first waveshaper surface of a detonation waveshaper. The detonation wave is directed around the first waveshaper surface toward a second tapered waveshaper surface. After progressing around the first waveshaper surface, the detonation wave is directed along the second tapered waveshaper surface. The detonation wave changes into a planar detonation wave as the detonation wave moves along the second tapered waveshaper surface, the planar detonation wave includes a planar wave front. The planar detonation wave strikes a flyer plate coupled over the explosive charge cavity of the booster housing, and the planar wave front makes planar contact along an inner face of the flyer plate.
QQ群二维码
意见反馈