序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 BOIL-OFF GAS TREATMENT PROCESS AND SYSTEM US12668200 2008-07-09 US20100212329A1 2010-08-26 Paul Bridgwood
A flowline system for transferring cryogenic liquids between a cryogenic liquid storage tank and a cryogenic liquid receiving/loading facility, and a method of maintaining the system at or marginally above cryogenic temperature during periods between transfer of cryogenic liquids between the cryogenic liquid storage tank and the cryogenic liquid receiving/loading facility are provided. The flowline system has a main transfer conduit and a vapour return line in fluid communication with the cryogenic liquid storage tank and the cryogenic liquid receiving/loading facility. A cooling medium line is provided that is in fluid communication with the main transfer conduit, the vapour return line, and a source of cooled boil-off gas, wherein the cooled boil-off gas is at or marginally above cryogenic temperature. The cooled boil-off gas is circulated between said tank and said facility through the main transfer conduit and the vapour return line during periods between transfer of cryogenic liquids to maintain the main transfer conduit and the vapour return line at or marginally above cryogenic temperature.
22 SYSTEM AND METHOD FOR LIQUID AIR PRODUCTION, POWER STORAGE AND POWER RELEASE US12406754 2009-03-18 US20090293503A1 2009-12-03 David Vandor
Systems and methods for storing and releasing energy comprising directing inlet air into a vertical cold flue assembly having an air inlet at or near its top into which inlet air is directed and an exit at or near its bottom. The air is cooled within the cold flue assembly and a portion of moisture is removed from the air within the cold flue assembly. The air is directed out the exit of the cold flue assembly and compressed. The remaining moisture is substantially removed and the carbon dioxide is removed from the air by adsorption. The air is cooled in a main heat exchanger such that it is substantially liquefied using refrigerant loop air, the refrigerant loop air generated by a refrigerant loop process. The substantially liquefied air is directed to a storage apparatus. The refrigerant loop air is cooled by a mechanical chiller and by a plurality of refrigerant loop air expanders. In energy release mode, working loop air warms the released liquid air such that the released liquid air is substantially vaporized, and the released liquid air cools the working loop air such that the working loop air is substantially liquefied. A portion of the released liquid air is directed to the at least one generator and used as bearing air for the at least one generator. The substantially vaporized air is directed to a combustion chamber and combusted with a fuel stream. Combustion gas may be directed from the combustion chamber to at least one expander and expanded in the expander, the expanded combustion gas split into a first portion and a second portion, the first portion being relatively larger than the second portion. The first portion may be directed to a first heat exchanger, and the second portion may be directed to a second heat exchanger such that the second portion heats and substantially vaporizes the released liquid air.
23 Building energy recovery, storage and supply system US12315002 2008-11-26 US20090145130A1 2009-06-11 Jay Stephen Kaufman
A building having an energy conversion apparatus and method for distributed energy systems using recovered energy of stationary structure wind resistance and solar radiation in conjunction with normal and off-peak operation of a gas turbine engine. The energy sources are combined, as available, for electric generation and to drive an air liquefier. Liquid air compression and pre-compression cooling of an atmospheric air portion of engine working fluid reduces compression work while increasing engine efficiency. The liquefied air is stored and transferred between buildings and between buildings and vehicles, as required.
24 Process for extracting ethane and heavier hydrocarbons from LNG US11012517 2004-12-15 US20060042312A1 2006-03-02 Horace Winningham
A process for the extraction and recovery of ethane and heavier hydrocarbons (C2+) from LNG. The process covered by this patent maximizes the utilization of the beneficial cryogenic thermal properties of the LNG to extract and recover C2+ form the LNG using a unique arrangement of heat exchange equipment, a cryogenic fractionation column and processing parameters that essentially eliminates (or greatly reduces) the need for gas compression equipment minimizing capital cost, fuel consumption and electrical power requirements. This invention may be used for one or more of the following purposes: to condition LNG so that send-out gas delivered from an LNG receiving and regasification terminal meets commercial natural gas quality specifications; to condition LNG to make Lean LNG that meets fuel quality specifications and standards required by LNG powered vehicles and other LNG fueled equipment; to condition LNG to make Lean LNG so that it can be used to make CNG meeting specifications and standards for commercial CNG fuel; to recover ethane, propane and/or other hydrocarbons heavier then methane from LNG for revenue enhancement, profit or other commercial reasons.
25 Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process US09968610 2001-10-02 US06449984B1 2002-09-17 Henri Paradowski
A process for liquefaction of and nitrogen extraction from natural gas, an installation for implementation of the process, and gases obtained by this process. In the process, a first top fraction is cooled and liquefied, separated into a second top fraction which is relatively volatile and which provides gaseous nitrogen, and into a second bottom fraction which is withdrawn. The first bottom fraction is cooled in order to provide liquefied natural gas essentially free nitrogen.
26 Ten degree Kelvin hydride refrigerator US701486 1985-02-14 US4641499A 1987-02-10 Jack A. Jones
A compact hydride absorption refrigeration system with few moving parts for 10.degree. Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10.degree. Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10.degree. Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.
27 液化天然ガスの生成方法およびシステム JP2010515317 2008-07-07 JP5813950B2 2015-11-17 ブリッジウッド ポール
28 A system and method for the manufacture of liquid air, power storage and power release JP2013534958 2011-10-13 JP2014500424A 2014-01-09 デイビッド・バンダー
【課題】より単純でより効率的な液体空気の製造システムと、電貯蔵及び電力放出のためのシステム及び方法とを提供する。
【解決手段】本発明に係るエネルギを貯蔵し放出するシステムないしは方法においては、入口空気が縦型冷却管組立体に導入され、冷却管組立体内で空気に含まれる分の一部が除去される。 この空気は、冷却管組立体から排出されて圧縮され、残りの水分が実質的に除去される。 この空気中の二酸化炭素は吸着により除去される。 この空気はメイン熱交換器内で冷却され、循環冷媒空気を用いて実質的に液化させられる。 実質的に液化させられた空気は貯蔵装置に導入される。 循環冷媒空気は、機械式冷凍機と、複数の循環冷媒空気膨張器とによって冷却される。 エネルギ放出モードにおいては、循環作業流体は、放出された液体空気を加熱し、放出された液体空気が実質的に気化させられる。
【選択図】図2
29 The process of extracting ethane and heavier hydrocarbons from Lng JP2007530207 2005-08-26 JP5171255B2 2013-03-27 ホレイス・ジー・ウィニンガム
30 The process of extracting ethane and heavier hydrocarbons from Lng JP2007530207 2005-08-26 JP2008511734A 2008-04-17 ホレイス・ジー・ウィニンガム
LNGからのエタンおよび重い炭化素(C2+)の抽出および回収のプロセスは、熱交換装置のユニークな配置、低温分別カラム、および、ガス圧縮装置の必要を本質的になくし(大幅に縮小し)、資本費用、燃料消費量および電消費を最小限にする加工パラメーターを用いて、LNGからC2+を抽出し回収するために、LNGの有益な低温熱的性質の利用を最大にする。 この発明は、次の目的の1つ以上に用いられてもよく、受け取られ末端で再ガス化されるLNGから配送される送り出されるガスが、商用天然ガス品質規格を満たすように、LNGを調整すること、LNG動力の乗り物および他のLNG燃料の装置によって必要とされる燃料品質規格および基準を満たす乏しいLNGを作るために、LNGを調整すること、商用CNG燃料のための規格および基準を満たしているCNGを作るために用いることができるよう乏しいLNGを作るために、LNGを調整すること、エタン、プロパン、および(または)、収入増強、利益または他の商用理由のためのLNGからのメタンより重い他の炭化水素を回収することである。
31 Liquefying device JP23202582 1982-12-28 JPS59123479A 1984-07-17 SUKAI TSUNEHISA
PURPOSE:To effectively utilize natural energy by liquefying air by electromotive force generated by utilizing the natural energy and generating the energy by the evaporation heat. CONSTITUTION:A compressor 111 is driven by a solar battery output 118, a compressor 112 is driven by wind power, and a compressor 113 is driven by other power. These compressors 111-113 feed air to a heat exchanger 114 through a device 124 for removing moisture or carbon dioxide gas. This air is liquefied, and electromotive force is generated from a thermocouple 123 by the temperature difference generated by the evaporation heat.
32 ボイルオフガス処理プロセスおよびシステム JP2010515318 2008-07-09 JP5763339B2 2015-08-12 ブリッジウッド ポール
33 System and method for liquid air generation, power storage and release JP2012500847 2010-03-12 JP2012520973A 2012-09-10 デービッド バンドー,
エネルギーを貯蔵し解放するシステムおよび方法は、垂直冷管アセンブリの中に注入口空気を方向付けることと、空気を冷却することと、分の一部分を除去することとを含む。 空気は、冷管アセンブリから出るように方向付けられ、圧縮される。 残りの水分は実質的に除去される。 空気は、空気が冷却剤ループ空気を用いて実質的に液化されるようにメイン熱交換器において冷却される。 実質的に液化された空気は、貯蔵装置に方向付けられる。 エネルギー解放モードにおいて、作業ループ空気は、解放された液体空気が実質的に蒸発させられるように解放された液体空気を温め、解放された液体空気は、作業ループ空気が実質的に液化されるように作業ループ空気を冷却する。 実質的に蒸発させられた空気は、燃焼室に方向付けられ、燃料ストリームで燃焼させられる。 膨張させられた燃焼ガスの一部分は、解放された液体空気を加熱し、実質的に蒸発させるために用いられ得る。
34 System and method for liquid air generation, power storage and release JP2012500847 2010-03-12 JP5017497B1 2012-09-05 デービッド バンドー,
エネルギーを貯蔵し解放するシステムおよび方法は、垂直冷管アセンブリの中に注入口空気を方向付けることと、空気を冷却することと、分の一部分を除去することとを含む。 空気は、冷管アセンブリから出るように方向付けられ、圧縮される。 残りの水分は実質的に除去される。 空気は、空気が冷却剤ループ空気を用いて実質的に液化されるようにメイン熱交換器において冷却される。 実質的に液化された空気は、貯蔵装置に方向付けられる。 エネルギー解放モードにおいて、作業ループ空気は、解放された液体空気が実質的に蒸発させられるように解放された液体空気を温め、解放された液体空気は、作業ループ空気が実質的に液化されるように作業ループ空気を冷却する。 実質的に蒸発させられた空気は、燃焼室に方向付けられ、燃料ストリームで燃焼させられる。 膨張させられた燃焼ガスの一部分は、解放された液体空気を加熱し、実質的に蒸発させるために用いられ得る。
35 Boil off-gas treatment processes and systems JP2010515318 2008-07-09 JP2010532856A 2010-10-14 ポール ブリッジウッド
A process and system for liquefying a hydrocarbon gas is provided. The hydrocarbon feed gas is pre-treated to remove sour species and water therefrom. The pre-treated feed gas is then passed to a refrigeration zone where it is cooled and expanded to produce a hydrocarbon liquid. A closed loop single mixed refrigerant provides most of the refrigeration to the refrigeration zone together with an auxiliary refrigeration system. The auxiliary refrigeration system and closed loop single mixed refrigerant are coupled in such a manner that waste heat generated by a gas turbine drive of the compressor in the closed loop single mixed refrigerant drives the auxiliary refrigeration system and the auxiliary refrigeration system cools the inlet air of the gas turbine. In this way, substantial improvements are made in the production capacity of the system.
36 Generation method and system for liquefied natural gas JP2010515317 2008-07-07 JP2010532796A 2010-10-14 ポール ブリッジウッド
A process and system for liquefying a hydrocarbon gas is provided. The hydrocarbon feed gas is pre-treated to remove sour species and water therefrom. The pre-treated feed gas is then passed to a refrigeration zone where it is cooled and expanded to produce a hydrocarbon liquid. A closed loop single mixed refrigerant provides most of the refrigeration to the refrigeration zone together with an auxiliary refrigeration system. The auxiliary refrigeration system and closed loop single mixed refrigerant are coupled in such a manner that waste heat generated by a gas turbine drive of the compressor in the closed loop single mixed refrigerant drives the auxiliary refrigeration system and the auxiliary refrigeration system cools the inlet air of the gas turbine. In this way, substantial improvements are made in the production capacity of the system.
37 Manufacturing of refrigeration methods and liquefied natural gas JP2004566683 2003-12-04 JP2006513391A 2006-04-20 ウィリアム ブリッヂウッド ポール
Process and apparatus for the production of liquefied natural gas utilising a refrigeration cycle, characterised by the steps of: i) Pre-treatment of a natural gas stream; ii) Chilling of either or both of the resulting pre-treated gas stream or a refrigerant gas stream within the refrigeration cycle; and iii) Liquefaction of the natural gas.
38 Carbon Dioxide Capture from Flu Gas US15728014 2017-10-09 US20180031315A1 2018-02-01 Larry Baxter
A method for capturing carbon dioxide from a flue gas includes (i) removing moisture from a flue gas to yield a dried flue gas; (ii) compressing the dried flue gas to yield a compressed gas stream; (iii) reducing the temperature of the compressed gas stream to a temperature T1 using a first heat exchanger; (iv) reducing the temperature of the compressed gas stream to a second temperarature T2 using a second heat exchanger stream, where T2
39 Building with energy recovery and storage systems US13298446 2011-11-17 US09395118B2 2016-07-19 Jay Stephen Kaufman
A building energy recovery system having at least one wind drive mounted to the building structure proximate to the roof junction, a generator and an electrical output. The wind drive includes a radial flow wind turbine having a rotor, a rotatable shaft of the rotor, an open windward facing air intake duct, and a side facing air discharge opening disposed perpendicular to the rotatable shaft of the rotor. The intake duct is in communication with a wind blowing toward the front wall and the discharge opening is in communication with a wake region adjacent to the discharge opening and induced by a wind flowing behind the roof junction.
40 PROCESS AND APPARATUS FOR GENERATING ELECTRIC ENERGY US14409006 2013-06-25 US20150192065A1 2015-07-09 Alexander Alekseev
The invention provides a process and apparatus to generate electric energy in a system comprising a power station and air treatment plant. The power station has a first gas expansion unit connected to a generator. The air treatment plant has an air compression unit, heat exchanger system and tank for liquid. In a first operating mode, feed air is compressed in the air compression unit and cooled in the heat exchanger system. A storage fluid containing less than 40 mol % of oxygen is produced and stored as low-temperature liquid in the tank for liquid. In a second operating mode, low-temperature liquid is taken from the tank for liquid and vaporized or pseudovaporized under superatmospheric pressure. The gaseous high-pressure storage fluid produced in this way is expanded in a gas expansion unit. The (pseudo)vaporization of the low-temperature liquid is carried out in the heat exchanger system of the air treatment plant.
QQ群二维码
意见反馈