序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 具有集成打火机的便携式电子设备 CN200410056465.5 2004-08-09 CN1581892A 2005-02-16 乌尔里希·法贝尔
一种打火机集成到例如蜂窝式电话、PDA或便携式游戏机等便携式电子设备中。所述打火机能完全装在所述便携式电子设备内,从而所有部分都不会伸出携式电子设备的壳体。因此,不仅能减小尺寸,而且可避免损坏和与便携式电子设备放在一起的其它物品缠绕以及受伤。所述打火机由开关操作,所述开关为位于便携式电子设备的侧上的按钮或显示装置上的GUI菜单或按钮。当按所述开关按钮时,打火机出口上的盖子被移走,同时伸出和移动出出口,且在燃烧器中点火的火焰从柱体内部出现。所述打火机包括可以是固定或可移动的燃料箱,例如燃气筒等。也提供了用于检测燃气量和将其显示在屏幕上的功能以及定打火机的燃烧器的安全功能。
2 Regelvorrichtung für einen Brenner mit einem Gehäuse für die Verbrennungsluft EP96100271.4 1996-01-10 EP0733857A3 1996-12-04 Besser, Ulrich, Ing.; Welte, Christian, Dipl.-Ing.; Schmidt, Ernst, Dipl.-Ing.; Boettcher, Arno, Dipl.-Ing.; Hosch, Manfred, Dipl.-Ing.; Schmidl, Matthias, Ing.

Die Erfindung betrifft eine Regelvorrichtung, die innerhalb eines vorgegebenen Leistungsbereichs des Brenners (14) das Mischungsverhältnis von Brennstoff und Verbrennungsluft im Sinne einer Optimierung der Verbrennung steuert. Der Sollwertgeber (38) der Brennstoffregeleinrichtung (24) erfaßt somit auch indirekt die Temperatur der Verbrennungsluft. Es wird vorgeschlagen, daß der Sollwertgeber (38) als Teil einer kanalförmigen Leitung (16) und nach Art einer Venturidüse (38) ausgebildet ist, deren Querschnitt an einer Engstelle (42) temperaturabhängig steuerbar ist. Dadurch wird erreicht, daß auch bei einer Änderung der Verbrennungslufttemperatur das eingestellte Verhältnis Brennstoffmasse/Masse der Verbrennungsluft im wesentlichen konstant bleibt.

3 Brenneinrichtung EP88120967.0 1988-12-15 EP0321858A3 1989-11-29 Biniek, Horst; Kühl, Hans, Dipl.-Ing.

Eine weitere Leistungsreduzierung wird durch eine stufen­los regelbare Dosiereinrichtung ermöglicht. Die neue Brenneinrichtung ist mit einer Regelungseinheit verbunden, die den Verbrennungsvorgang überwacht und regelt.

4 Brenneinrichtung EP88120967.0 1988-12-15 EP0321858A2 1989-06-28 Biniek, Horst; Kühl, Hans, Dipl.-Ing.

Eine weitere Leistungsreduzierung wird durch eine stufen­los regelbare Dosiereinrichtung ermöglicht. Die neue Brenneinrichtung ist mit einer Regelungseinheit verbunden, die den Verbrennungsvorgang überwacht und regelt.

5 Condition control system for heat transfer EP82306537.0 1982-12-08 EP0081974B1 1989-06-28 Hammer, Jeffrey M.
6 Fuel burner control system EP85111590.7 1985-09-13 EP0175297B1 1989-02-08 Bartels, James I.
7 Heating system EP81301903.1 1981-04-30 EP0039579B1 1987-04-15 Nelson, Lorne W.; Torborg, Ralph H.
8 Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer EP86111215.9 1986-08-13 EP0212567A2 1987-03-04 Huber, Bernhard

Die Gasregeleinrichtung enthält in den Zuleitungen zum Zerstäuber, Oxidansanschluß und Brenngasanschluß des Brenners je einen Druckregler (35,40,54) und je einen, dem Druckregler nachgeschalteten Strömungsmesser (43,45,59). Die Strömungsmesser enthalten ein Turbinen­rad (49), das von dem durchströmenden Gas beaufschlagt ist und durch dessen Drehung von der Drehgeschwindig­keit und damit von der Gasströmung abhängige Aus­gangssignale erzeugt werden. Diese Ausgangssignale werden in die Steuereinheit (28) eingegeben, und die Stellmotore (37',46,56) der Druckregler (37,40,54) werden reproduzierbar auf bestimmte Gasströmungen einge­stellt.

9 Brennstoffbeheizte Wärmequelle EP83109048.5 1983-09-14 EP0103303A2 1984-03-21 Haas, Herbert; Daiber, Klaus; Bartelt, Manfred; Friedrich, Peter; Marrek, Lothar

@ Gasbeheiztes Gerät mit einer Brennkammer, die über einen Verbrennungsluftein- und einen -abgasauslaß, in denen ein Gebläse angeordnet ist, mit der Atmosphäre verbunden ist, und mit einer Gasdurchsatzsteuerarmatur zum Beherrschen des Durchsatzes von Gas zu einem einen Wärmetauscher beheizenden Brenner, wobei die Steuerarmatur eine erste und eine zweite Membran aufweist, die in verschiedenen Kammern angeordnet sind und wobei die zweite Membran durch eine weitere in einer Membrankammer angeordnete Membran vorgespannt wird, indem Druckanschlüsse beiderseits dieserweiteren Membran zu beiden Seiten einer Staustelle führen, die im Durchsatzweg für die Verbrennungsluft angeordnet ist. Wesentlich ist hierbei, daß das an einer Staustelle des Verbrennungsluftweges abgenommene pneumatische Signal unmittelbar zur Steuerung des Gasdurchsatzes herangezogen ist.

10 COMBUSTION CONTROL SYSTEM EP81901750.0 1981-03-17 EP0073762A1 1983-03-16 BROACH, George C.
Procede et appareil de commande de la combustion dans un dispositif de chauffage (10) utilise dans les differentes etapes d'un processus et permettant la commande efficace de la combustion avec un minimum de composants. L'appareil comprend un dispositif (26) produisant un signal qui est fonction d'une condition dans un processus, tel que la temperature, ou la pression dans le cas d'une chaudiere. Le signal qui peut etre un signal de pression est presente en parallele a un pointeau (38), a un premier relais sensible au fluide (36) et a un deuxieme relais sensible au fluide (40). Un reservoir de volume (60) est relie en serie au pointeau (38) et en parallele au premier relais (36) et au deuxieme relais (46). Le premier relais (36) communique avec un organe servant a commander l'ecoulement de l'air de combustion (46). Le deuxieme relais (40) communique avec un organe permettant de commander l'ecoulement du combustible (58). Lorsque le signal de la condition du processus se trouve en dessous du point auquel est regle un dispositif de commande (26), ce signal est un signal de pression croissante. Lorsque le signal de la combustion du processus se trouve au-dessus du point auquel le dispositif de commande (26) est regle, ce signal est un signal de pression decroissante. Le premier relais (36) est sensible au plus eleve des deux signaux qui lui sont appliques, et le deuxieme relais (40) est sensible au plus faible des deux signaux qui lui sont appliques. Tant dans le cas d'un signal de pression croissante que dans le cas d'un signal de pression decroissante, l'agencement du pointeau (38) et du reservoir de volume (60) provoque un retard dans la reponse soit du premier (36) soit du deuxieme relais (40) de maniere qu'un melange pauvre en combustible est maintenu pendant tout changement dans les conditions de fonctionnement du processus. Il est evident toutefois que des reponses opposees des dispositifs de commande de la condition du processus et des dispositifs de commande du combustible (58) et de l'air (46) pourraient
11 Device for heating a fluid EP80200824.3 1980-09-01 EP0025622A1 1981-03-25 Stapenséa, Jan Aede

A device for heating a fluid, for example, in a central heating boiler, comprising a heat exchanger (7) in the fluid conduit, a liquid or gaseous fuel burner (2) associated with said heat exchanger (1) and a housing (5) enveloping the heat exchanger (1) and the burner (2) to form a combustion channel having an inlet (6) for the combustion air and an outlet (7) for the exhaust gases, as well as a blowing apparatus (8) for producing a forced transport of combustion gases through the channel, wherein a pressure-difference switch (9) communicates on the one hand through a conduit (14) with a measuring point (Pl) of the channel near the blowing apparatus and on the other hand throuwh a further conduit (17) with a second measuring point (P2) further remote from the blowing apparatus (8) in the channel, said switch (9) controlling a valve (4) in the fuel supply and in the further conduit a second valve (18) controlled by the pressure-difference switch (9) is included, said second valve (18) establishing a communication between the other side of the pressure-difference switch (9) with the atmosphere when the fuel valve (4) is closed in order to providing a sufficiently high pressure difference for overcoming the resistances in the various valves.

12 자동연소 제어방법 KR1019820001740 1982-04-20 KR1019880000834B1 1988-05-14 무라기료오지; 고아시가쓰에
A main controlling unit (37) receives the signal indicating the steam pressure of a boiler from a pressure gage (31) and sets the desired value of the stream pressure of the boiler and the PID (proportional- plus-integral-plus-derivative) constant. A limiter (43) calculates the amount of variation of a manipulated variable ΔT12=T1-2, wherein T1 is the manipulated variable of the boiler at the time and T2 is the predetermined manipulated variable of the boiler. When the amount of variation ΔT12 lies within the allowable value of variation ΔT, T1 is adopted and when ΔT12 lines out of ΔT, T2 ± ΔT is adopt.
13 전(全) 1차 공기식 연소장치에 있어서의 연소안전장치 KR1019830000186 1983-01-19 KR1019870000664B1 1987-04-04 이시가와요시지
The main burner(1) and the pilot burner(2) are operated by the air from a fan(3). The air excess ratio of each burner is set differently. Frame rods are reached to the combustion plane(1a,2a) of the burners(1,2) to sense the frame electric current. This current value is input to the comparison device through a currentvoltage transformer(6) and an amplifier(7). The output of the comparison device controls the combustion state. An air supply controller (14) controls the air flow into the burnners at the air pressure of the fan. An interval circuit(13) transforms the driving condition of the fan from high load to low load.
14 자동연소 제어방법 KR1019820001740 1982-04-20 KR1019830010353A 1983-12-30 무라기료오지; 고아시가쓰에
내용없음
15 Wall mounted pellet stove US13788949 2013-03-07 US09752778B2 2017-09-05 August Jones
A wood pellet stove operable to mount to a wall includes a combustion chamber, a combustion chamber door, and a hopper. The combustion chamber has a front, back, and side. The combustion chamber door is in the front of the combustion chamber. The hopper is mounted at the side of the combustion chamber. The bottom of the hopper is below a top of the combustion chamber, and a top of the hopper is substantially coplanar with the top of the combustion chamber. The stove may also include a sight glass or fuel level monitoring system for determining a fuel level of the hopper without opening the hopper.
16 Wood residue disposal system US832879 1997-04-04 US6055915A 2000-05-02 Roy A. Bickell; Tjeerd E. Vanderveen
A method of wood waste disposal which regulates factors such as the amount of wood residue being fed to an incinerator at any given time so that wood residue from a mill is processed promptly and efficiently without compromising the efficient operation of the incinerator. The wood residue is separated into at least two fractions, the first fraction being directed to a storage bin for later use as required, and the second fraction being directed to the incinerator. During periods of slack feed of the second fraction to the incinerator, portions of the first fraction, as required, are directed to the incinerator as make-up, in order to maintain an optimal range of incinerator conditions by manipulating the volume and flow of wood residue in cooperation with manipulating other factors.
17 Flow control system US768952 1996-12-18 US5819721A 1998-10-13 Larry L. Carr; Dennis S. Mizerak
A control system for regulating a flow rate of a heat transfer fluid in a heat transfer system, the heat transfer system having a heat transfer fluid flow path, flow control device for creating flow along the path, a fuel source for providing a combustible fuel to the path, an air source for providing combustion air to the path, and an assembly for combusting the fuel and air, the control system comprising a sensor for sensing a measured flow value at the air source, a controller for storing an optimum flow value at the air source and for storing a range of operating control values for the flow control device, the operating control values corresponding to the optimum flow value, a system for calculating a deviation between the measured flow value and the optimum flow value, and a system for varying the operation of the flow control means in accordance with the deviation.
18 Safety shut-off device for liquid fuel burners US559922 1995-11-17 US5551865A 1996-09-03 Richard W. Henderson; Samuel R. Henderson
A safety device for preventing uncontrolled burning in wick-fed liquid fuel burners employs a solenoid (76) and a thermocouple (18) in combination with a microswitch (80). When excess fuel enters the fuel chamber (40), a float (30) is urged upward, which forces a pin (28) upward, causing a microswitch (80) to open, thereby interrupting the electrical communication between the solenoid and thermocouple. As a result, a spring (24) can act to force an arm (14) upward, actuating the automatic wick extinguishing unit (42). Also, the mechanism prevents re-ignition of the wick (54) until the excess fuel is removed from the fuel chamber. When the fuel in the fuel chamber exceeds a predetermined level, a warning gauge needle (84) is deflected, alerting the user of the liquid fuel burner to a dangerous condition.
19 Gas control device for controlling the fuel gas and oxidizing agent supply to a burner in an atomic absorption spectrometer US863770 1986-05-16 US4681530A 1987-07-21 Bernhard Huber
The present invention is directed to a gas control device for controlling the fuel gas and the oxidizing agent supplied to a burner in an atomic absorption spectrometer. The device includes a pressure controller and a downstream flowmeter, connected to the aforesaid pressure controller in each of the device's supply conduits to an atomizer, oxidizing agent port and full gas port of the burner. Each flowmeter employed in the preferred embodiment of the invention is comprised of a turbine wheel which is exposed to the gas flowing through the flowmeter. By the rotation of the turbine wheel output, signals are generated depending on the angular rate thereof and thus as a function of the gas flow rate. These output signals are input into a control unit and a set of servomotors, each associated with one of said pressure controllers, are reproducibly adjusted under the control of said control unit, even under unstable pressure conditions, to selected gas flow rates.
20 Fuel combustion control system US444686 1982-11-26 US4545009A 1985-10-01 Ryoji Muraki; Seiiti Numata; Kanji Hayashi
Estimated fuel flow rate is calculated by reading first data of the relationship between the opening degree of a fuel control valve and a fuel flow rate. Then, a compensation coefficient is calculated based on the estimated fuel flow rate, and the actual fuel flow rate is controlled on the basis of the compensation coefficient. Estimated excess air ratio is calculated by reading second data representing the relationship between the opening rate of an air control damper and the air flow rate. Then, the actual fuel flow rate and the air flow rate are controlled depending on the predetermined relationship of values between the estimated excess air ratio and the desired excess air ratio.
QQ群二维码
意见反馈