序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Dual turbine power plant and a reheat steam bypass flow control system for use therein US618096 1975-09-30 US4007595A 1977-02-15 Andrew S. Braytenbah; Karl O. Jaegtnes
An electric power plant having dual turbine-generators connected to a steam source that includes a high temperature gas cooled nuclear reactor. Each turbine comprises a high pressure portion operated by superheat steam and an intermediate-low pressure portion operated by reheat steam; a bypass line is connected across each turbine portion to permit a desired minimum flow of steam from the source at times when the combined flow of steam through the turbine is less than the minimum. Coolant gas is propelled through the reactor by a circulator which is driven by an auxiliary turbine which uses steam exhausted from the high pressure portions and their bypass lines. The pressure of the reheat steam is controlled by a single proportional-plus-integral controller which governs the steam flow through the bypass lines associated with the intermediate-low pressure portions. At times when the controller is not in use its output signal is limited to a value that permits an unbiased response when pressure control is resumed, as in event of a turbine trip.
102 Method of effecting fast turbine valving for improvement of power system stability US522681 1974-11-11 US3999787A 1976-12-28 Robert H. Park
As an improved way of effecting fast valving of turbines of power system steam-electric installations of types that incorporate by-pass systems for by-passing steam from a point ahead of the high pressure turbine either directly to the condenser or to the cold reheat line, and in the latter case also from the hot reheat line to the condenser, and where the purpose of employment of fast valving is to improve the stability of power transmission over transmission circuits to which the generators of the installations in question make connection, when stability is threatened by line faults and certain other stability endangering events, the approach of rapidly closing intercept valves at fastest available closing speed in response to a fast valving signal, is supplemented by bringing into effect preprogrammed processes of control valve repositioning, plus intercept valve reopening, so effected as to cause turbine driving power subsequent to generator rotor first forward swing to hold below a preset value that is less than the driving power that applied prior to the event that brought about development of the signal.When high pressure by-pass valves discharge steam directly to the condenser, and there is a need to protect the reheater from overheating preprogrammed provision is made for runback of rate of steam production within the steam generator to a value that will cause termination of the discharge of steam through the said high pressure by-pass valves that will at first take place, with provision so that said runback is effected rapidly enough to avoid damage to the reheater.
103 Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated US495736 1974-08-08 US3974644A 1976-08-17 Lyle F. Martz; Richard J. Plotnick
A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher than, is lowered toward a value substantially equal to that of the first setpoint.
104 Turbine by-pass arrangement for thermal power plants US42584373 1973-12-18 US3919846A 1975-11-18 LECOCQ FRANCOIS
A turbine by-pass arrangement for use in thermal power plants serves to by-pass a portion of the steam delivered by the steam generator around the turbine and discharge it into the coupling sleeve located between the turbine outlet and the condenser inlet. The by-passed steam is divided into two parts, one of which is de-compressed as well as de-superheated while the other part is merely de-compressed. The two parts are admitted into the coupling sleeve in such manner that each constitutes a screen with respect to the other as regards protection for the turbine and condenser components of the installation.
105 Overflow valve for a steam plant US3616787D 1970-01-02 US3616787A 1971-11-02 VOGELI ERNST
THE OVERFLOW VALVE IS COMBINED WITH A SERVO-PISTON WHICH OPENS AND CLOSES THE VALVE. THE SERVO-PISTON IS ACTUATED BY THE OPENING OF A VALVE IN A BRIDGING CIRCUIT OF THE SERVO-PISTON WHICH THUS ALLOWS A FLOW OF OIL FROM ONE SIDE OF THE SERVO-PISTON TO THE OTHER VIA A PAIR OF COIL CONDUITS.
106 Liquid flow control valve US7102660 1960-11-22 US3110320A 1963-11-12 ROSENBERGER ALBERT J
107 Once-through vapor generator US84044659 1959-09-16 US3019774A 1962-02-06 HERBERT BEYERLEIN
108 Safety arrangement for high pressure elastic fluid turbines US6695836 1936-03-03 US2095132A 1937-10-05 KARL HOFFMANN
109 Verfahren zur Regelung eines Niederdruckbypassystems EP02405597.2 2002-07-12 EP1288761B1 2017-05-17 Schnaithmann, Kurt; Klatt, Stefan
110 Wasserdampfkreislauf sowie ein Verfahren zum Betreiben eines Wasserdampfkreislaufes EP14167157.8 2014-05-06 EP2942493A1 2015-11-11 Leu, Bernd; Ophey, Martin; Rothe, Klaus; Veltmann, David; Brune, Kai; Heue, Matthias; Pötter, Rudolf; Schütz, Michael

Die Erfindung betrifft einen Wasserdampfkreislauf (10) für ein Kraftwerk, sowie ein Verfahren zum Betrieb, insbesondere zum Anfahren, eines Wasserdampfkreislaufes (10). Dabei weist der Wasserdampfkreislauf (10) eine Hochdruckturbine (12), einen Kondensator (40) sowie einen Dampferzeuger (30) auf. Der Dampferzeuger (30) ist über eine erste Leitung (17) mit der Hochdruckturbine (12) verbunden. In Strömungsrichtung des Dampfes zwischen Dampferzeuger (30) und Hochdruckturbine (12) sind Frischdampfschnellschlussventile (14) und Frischdampfregelventile (15) zur Versorgung der Hochdruckturbine (12) angeordnet. In Strömungsrichtung des Dampfes ist hinter der Hochdruckturbine (12) eine Anfahrleitung (23,25) angeordnet, welche einen Abdampfbereich (13) hinter der Hochdruckturbine (12) mit dem Kondensator (40) verbindet. Es ist mindestens ein Regler (26,29) vorgesehen, welcher in Abhängigkeit von Drehzahl, einer Temperatur und Lastzustand der Hochdruckturbine (12) ein Schließen eines Anfahrventils (27) zum Verschließen der Anfahrleitung (25) und ein Öffnen der Frischdampfventile (15) regelt.

111 Turbinenkondensator für eine Dampfturbine EP13178234.4 2013-07-26 EP2829693A1 2015-01-28 Deister, Frank; Förster, Ingo; Hecker, Simon, Dr.; Musch, Christian, Dr.; Stüer, Heinrich, Dr.

Die Erfindung betrifft einen Turbinenkondensator mit einem Bereich mit Kondensatorrohren zur Verflüssigung von Abdampf aus der Dampfturbine, einem durch Kondensatorwände ausgebildeten Raum zur Aufnahme des Abdampfes und einer Umleitdampfeinleitungseinrichtung (1) zum Einleiten von Umleitdampf (D) in diesen Raum des Turbinenkondensators, wobei die Umleitdampfeinleitungseinrichtung (1) eine in den Turbinenkondensator (2) hineinreichende ringförmige Düse (4) umfasst, deren Austrittsende einen nicht gleichmäßigen Rand (R) aufweist.

112 WATER/STEAM CYCLE AND METHOD FOR OPERATING THE SAME EP13704080.4 2013-02-08 EP2812543A2 2014-12-17 LENHERR, Hans-Ulrich
A water/steam cycle comprises a steam generator, a steam turbine, a water cooled condenser (13) and a feedwater pump, whereby the condenser (13) comprises within a condenser shell (28) at least one tube bundle (18) with an internal air cooler (21), which is connected to an external ejector/vacuum pump (25) by means of a suction line (23). In order to reduce the condenser evacuation time at the start-up of the water/steam cycle (10) without using auxiliary steam an additional evacuation line (26) with a motorized isolating valve (27) connects the external ejector/vacuum pump (25) with the condenser shell (28). The action of the isolating valve (27) is controlled by means of a control (29).
113 Combined cycle plant EP08016898.2 2003-07-31 EP2103785A3 2013-11-13 Hattori, Youichi; Inui, Taiji

A conventional thermal power plant is remodelled into a combined cycle plant by additionally installing a gas turbine plant. The existing conventional thermal power plant comprises a boiler (10), a boiler pipe including a main steam pipe (60), a cold reheat pipe (61) and a hot reheat pipe (62), a steam turbine (21, 22, 23), a condenser (25), a condensate water/feedwater system (30, 36), and a superheater bypass system (6) which connects the boiler pipe (60, 61, 62) and the condenser (25), and dumps the steam generated by the boiler (10) into the condenser (25) bypassing the steam turbine (21, 22, 23). The added gas turbine plant comprises a gas turbine (40), a heat recovery steam generator (50) that recovers heat from the gas turbine exhaust, and a heat recovery steam generator pipe (70, 71) that supplies the generated steam from the heat recovery steam generator (50) to the steam turbine (21, 22, 23). A pipe (2) is provided which connects the heat recovery steam generator pipe (70) and the superheater bypass system (6).

114 EINSPRITZBLENDE FÜR EIN DAMPFKRAFTWERK EP12704399.0 2012-02-09 EP2655834A1 2013-10-30 GRASSMANN, Arne; MINUTH, Stephan; NASKIDASHVILI, Kakhi; RIEMANN, Stefan
The aperture (1) has two injection pipes (9, 10) for injecting water into an injection aperture flow channel, where the flow channel is formed by an inner-sided injection aperture-flow surface (5) that is designed as a Laval nozzle. Steam and water flow through the respective pipes. The flow channel is tapered in a flow direction (2) of steam, where one of the pipes is arranged at an angle opposite to the flow surface. Regulating and control valves (13, 14) are arranged in the respective pipes, where the aperture is designed rotationally-symmetric to a rotational symmetry axis. An independent claim is also included for a method for cooling steam.
115 Einspritzblende für ein Dampfkraftwerk EP11158049.4 2011-03-14 EP2500549A1 2012-09-19 Graßmann, Arne; Minuth, Stephan; Naskidashvili, Kakhi; Riemann, Stefan

Die Erfindung betrifft eine Einspritzblende (1) zur Vermischung von Wasser und Dampf in ersten Rohrleitung (3), wobei statt einer Einspritzleitung mehrere Einspritzleitungen (9, 10), insbesondere zwei Einspritzleitungen (9, 10) berücksichtigt werden.

116 NOISE ABATEMENT DEVICE AND METHOD FOR AIR-COOLED CONDENSING SYSTEMS EP04716086.6 2004-03-01 EP1608847B1 2012-04-25 DePENNING, Charles, Lawrence; CATRON, Frederick, Wayne; FAGERLUND, Allen, Carl; MCCARTY, Michael, Wildie
A noise abatement device and rpethod to direct flow in a predetermined manner to substantially reduce the aerodynamic noise and structural vibrations produced by steam entering an air-cooled condenser (16) in a power generating system. The interactive flow between the spargers (42 c-d) that produces the aerodynamic noise and structural vibrations is largely eliminated by prohibiting fluid flow through selected flow regions (70a, 70b) within the spargers (42 c-d). The spargers include a stack of disks with fluid passageways., The fluid passageways are -interrupted with continuous and undivided regions of the sparger to direct radial-flow away from adjacent spargers, substantially eliminating the interactive flow.
117 NOISE LEVEL REDUCTION OF SPARGER ASSEMBLIES EP04778585.2 2004-07-20 EP1663463B1 2011-02-16 CATRON, Frederick, Wayne; DEPENNING, Charles, Lawrence; FAGERLUND, Allen, Carl
A method results in a system configuration wherein positioning a plurality of spargers reduces noise levels caused by fluid passing through the plurality of spargers. The method includes providing the plurality of spargers, each sparger having a center line access and an outer diameter measurement. Each of the plurality of spargers is positioned in a manner such that a ratio of the distance between the center line access of each sparger to the outer diameter measurement of each sparger is greater than a predetermined ratio value. A greater ratio results in a reduction of noise emitted.
118 FLEXIBLE SIZE SPARGER FOR AIR COOLED CONDENSERS EP05810429.0 2005-10-17 EP1809864A1 2007-07-25 MARTIN, Robert, Tucker
A flexible size diffuser grid assembly (20) formed up of individual sparger units (22) for use as a noise abatement device to reduce the fluid pressure in a predetermined manner to substantially reduce the aerodynamic noise and structural vibrations produced by a fluid moving therethrough. The sparger grid assembly (20) is formed in a window pane grid-like arrangement of individual sparger pane units (22), each of which are mounted in a support frame (23), and each of which utilize individual stack of flat plates (38), the plates respectively having inlet slots (40) and outlet slots (42), and interconnecting plenums (44), to create a series of passageways to ,substantially subdivide the flow stream of steam into smaller portions to reduce fluid pressure.
119 NOISE LEVEL REDUCTION OF SPARGER ASSEMBLIES EP04778585.2 2004-07-20 EP1663463A1 2006-06-07 CATRON, Frederick, Wayne; DEPENNING, Charles, Lawrence; FAGERLUND, Allen, Carl
A method results in a system configuration wherein positioning a plurality of spargers reduces noise levels caused by fluid passing through the plurality of spargers. The method includes providing the plurality of spargers, each sparger having a center line access and an outer diameter measurement. Each of the plurality of spargers is positioned in a manner such that a ratio of the distance between the center line access of each sparger to the outer diameter measurement of each sparger is greater than a predetermined ratio value. A greater ratio results in a reduction of noise emitted.
120 Verfahren zur Regelung eines Niederdruckbypassystems EP02405597.2 2002-07-12 EP1288761A3 2005-02-09 Schnaithmann, Kurt; Klatt, Stefan

Bei einem Verfahren zur Regelung einer Dampfturbinenanlage mit einem zwischen Hochdruckturbine (2) und Mitteldruck- (3) oder Niederdruckturbine (4) angeordneten Zwischenüberhitzer (7), wobei weiterhin ein Niederdruckbypass (18) mit einem ND-Umleitventil (19) vorhanden ist, welcher vom Zwischenüberhitzeraustritt in einen Kondensator (5) führt, wird eine in Bezug auf variable Hochdruckturbinen-Abdampftemperatur (THD) flexible und optimale Regelung dadurch erreicht, dass zur Regelung des ND-Umleitventils (19) beim Hochfahren, bei (Teil-)Lastabschaltungen oder bei Leerläufen Kennlinien für den Zwischenüberhitzer-Drucksollwert verwendet werden, welche sowohl abhängig sind von der an der Anlage anliegenden Last (L), und/oder vom Druck (P) vor der Hochdruckturbinenbeschaufelung und/oder von der Zwischenüberhitzerdampfmenge (M), als auch von der Hochdruckturbinen-Abdampftemperatur (THD), und/oder von der Temperatur (TFD) und/oder vom Druck (pFD) des in die Hochdruckturbine eingeleiteten Frischdampfes, und/oder vom Zwischenüberhitzerdruck (P2).

QQ群二维码
意见反馈