序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 KRAFT-WÄRME-KOPPLUNGSANLAGE ZUR DEZENTRALEN STROM- UND WÄRMEVERSORGUNG EP15756889.0 2015-08-25 EP3138148B1 2018-04-18 TREMEL, Alexander; SCHÄFER, Jochen; VORTMEYER, Nicolas; LENK, Uwe
142 Co-generation power station with heat accumulator and increased electric power output EP10001130.3 2010-02-04 EP2354474B8 2017-01-25 Legin, Matthias; Kitzmann, Ewald; Schüle, Volker
143 EXTERNAL HEAT ENGINES EP13791386 2013-05-13 EP2877744A4 2016-06-22 GODWIN HAROLD EMERSON; DEVISSER HAROLD
144 METHOD AND APPARATUS TO STORE ENERGY EP10740245.5 2010-06-30 EP2449218B1 2016-05-04 WHITTAKER, Kenneth; ELLIS, David
145 Heat energy recovery apparatus EP06111110.0 2006-03-14 EP1752613B1 2016-04-27 Mitani, Shinichi
146 QUINTUPLE-EFFECT GENERATION MULTI-CYCLE HYBRID RENEWABLE ENERGY SYSTEM WITH INTEGRATED ENERGY PROVISIONING, STORAGE FACILITIES AND AMALGAMATED CONTROL SYSTEM EP15275151.7 2015-06-10 EP2955372A2 2015-12-16 Friesth, Kevin Lee

Provided is a consumer to industrial scale renewable energy based quintuple-generation systems and energy storage facility. The present invention has both mobile and stationary embodiments. The present invention includes energy recovery, energy production, energy processing, pyrolysis, byproduct process utilization systems, separation process systems and handling and storage systems, as well as an open architecture for integration and development of additional processes, systems and applications. The system of the present invention primarily uses adaptive metrics, biometrics and thermal imaging sensory analysis (including additional input sensors for analysis) for monitoring and control with the utilization of an integrated artificial intelligence and automation control system, thus providing a balanced, environmentally-friendly ecosystem.

147 HIGH EFFICIENCY ABSORPTION HEAT PUMP AND METHODS OF USE EP07716676 2007-01-16 EP1977174A4 2015-07-29 GURIN MICHAEL H
148 ERWEITERTES GASKRAFTWERK ZUR STROMSPEICHERUNG EP13729740.4 2013-06-19 EP2880273A1 2015-06-10 VORTMEYER, Nicolas; BRUNHUBER, Christian; KNOBLOCH, Katja; MENAPACE, Wolfgang; STROBELT, Frank; ZIMMERMANN, Gerhard
The invention relates to a method for the operation of a gas power plant (1), and to a gas power plant (1) of this type, comprising a gas turbine (10), which is connected to a generator (14) that can also be operated as a motor and which is thermally coupled to a water vapour circuit (20) by way of a first heat exchanger (25), which method comprises the following steps: - operation of the generator (14) as a motor in such a way that a heated gas flow (16) is discharged from the gas turbine (10); - thermal treatment of water in the water vapour circuit (20) via the first heat exchanger (25) by means of the heated gas flow (16); - storage of the water thermally treated in this way in a vapour accumulator (40); - operation of a steam turbine (50) with water vapour taken from the vapour accumulator (40); - diversion of the water vapour after interaction with the steam turbine (50) into a vapour chamber (60) for condensation ; - collection of the condensed water in a condensate reservoir (70).
149 Auxiliary steam supply system in solar power plants EP14189910.4 2014-10-22 EP2871359A1 2015-05-13 Terdalkar, Rahul J.; Girard, Romain

An auxiliary steam supply system in a solar power plant includes a solar receiver having a superheater section, a turbine, a steam circuit, a thermal energy storage arrangement and an auxiliary steam circuit. The thermal energy storage arrangement, including a thermal energy storage medium, is configured for the steam circuit to receive a portion of the steam to heat the thermal energy storage medium. The thermal energy storage arrangement may receive the steam from any location across the superheater section. Moreover, the auxiliary steam circuit generating auxiliary steam flow, which thermally communicates with the thermal energy storage arrangement to be heated, is introduced to any location across the superheater section. Capacity of the thermal energy storage arrangement may be relatively small as compared to the solar receiver and may be compact for placement on top of a tower.

150 Solar Thermal Power System EP13151511.6 2013-01-16 EP2757259B1 2014-12-24 Conte, Enrico; Marchal, Nicolas
151 Solar Thermal Power System EP13151511.6 2013-01-16 EP2757259A1 2014-07-23 Conte, Enrico; Marchal, Nicolas

A solar thermal power system 100 includes a solar receiver 110 and a thermal energy storage arrangement 120 including thermal energy storage fluid to be circulated through the solar receiver 110 to store thermal energy. The system 100 includes a multistage steam turbine 130 operable on variable pressure steam generated by primary and secondary arrangements 140, 150, by utilizing the fluid. The primary arrangement 140 generates and supplies a high pressure steam to a high pressure turbine inlet 132a, and exits from a high pressure turbine outlet 132b. The secondary arrangement 150 having a reheat assembly 158, to generate an intermediate pressure steam from the fluid, received from the storage arrangement 120 through the reheat assembly 158. The intermediate pressure steam and released steam from a high pressure turbine outlet 132b are mixed and reheated in the reheat assembly 158 to be supplied to an intermediate pressure turbine inlet 134a.

152 Gasturbinenkraftwerk mit einer Gasturbinenanlage und Verfahren zum Betreiben eines Gasturbinenkraftwerks EP11189545.4 2011-11-17 EP2594746A1 2013-05-22 Hein, Olaf; Kliemke, Hardy; Waruschewski, Andreas

Die Erfindung betrifft ein Gasturbinenkraftwerk (1) und ein Verfahren zum Betreiben eines Gasturbinenkraftwerks (1). Erfindungsgemäß weist das Gasturbinenkraftwerk (1) eine ein Stromnetz (50) mit elektrischer Leistung versorgbare Gasturbinenanlage (2) mit zumindest einem Verdichter (3) und einer zugehörigen ersten Gasturbine (4) auf. Abweichend von bisherigen Gasturbinenanlagen ist erfindungsgemäß vorgesehen, dass der Verdichter (3) dieser Gasturbinenanlage (2) und die erste Gasturbine (4) dieser Gasturbinenanlage (2) voneinander entkoppelt sind. Die Erfindung sieht dann eine zweite Turbine (5), insbesondere zweite Gasturbine (5), vor, unter Verwendung derer der Verdichter (3) antreibbar ist bzw. angetrieben wird (100).

Dadurch kann der Verdichter (3) der Gasturbinenanlage (2) (drehzahl-)unabhängig von der ersten Gasturbine (4) betrieben werden. Stromnetzseitige Einflüsse, wie Erzeugungsdefizite im Stromnetz (50), welche durch Drehzahlabsenkung auf die erste Gasturbine (4) einwirken, können demzufolge auch nicht auf den - von der ersten Gasturbine (4) entkoppelten - Verdichter (3) durchschlagen. Dieses gestattet dem erfindungsgemäßen Gasturbinenkraftwerk (1), sehr schnell auf Schwankungen in dem Stromnetz (50) regieren zu können.

153 Co-generation power station with heat accumulator and increased electric power output EP10001130.3 2010-02-04 EP2354474A1 2011-08-10 Legin, Mathhias; Kitzmann, Ewald; Schüle, Volker

A co-generation power station with a steam turbine (1) is suggested, the feed water preheater (28,18) of which can be deactivated during an especially highly demanded load and the feed water is preheated by means of the energy accumulated in the heat accumulator (12).

154 Thermoelectric energy storage system and method for storing thermoelectric energy EP08160520.6 2008-07-16 EP2182179B1 2011-03-30 Ohler, Christian; Mercangoez, Mehmet
155 Verfahren zur bedarfsabhängigen Regelung und Glättung der elektrischen Ausgangsleistung eines Energie-Wandlers sowie Vorrichtung zur Durchführung dieses Verfahrens EP09450070.9 2009-04-01 EP2236822A1 2010-10-06 Hermeling, Werner

Bei einem Verfahren zur bedarfsabhängigen Regelung und Abgabe der elektrischen Ausgangsleistung eines mit regenerativer Energie betriebenen Energie-Wandlers, insbesondere elektrischen Kraftwerks, wird ein Gas in einer mit dem Energie-Wandler gekoppelten Vorrichtung verflüssigt. Das verflüssigte Gas wird vorzugsweise drucklos gespeichert und bei Bedarf regasifiziert, wobei die freiwerdende Energie in elektrische Energie umgewandelt und elektrischen Verbrauchern zur Verfügung gestellt wird. Die Vorrichtung zur bedarfsabhängigen Regelung und Glättung der elektrischen Ausgangsleistung eines mit regenerativer Energie betriebenen Energie-Wandlers, insbesondere elektrischen Kraftwerks, ist gekennzeichnet durch eine mit dem Energie-Wandler gekoppelte Gasverflüssigungsvorrichtung (4), einen Speicherbehälter (5) zur Speicherung des verflüssigten Gases, eine an den Speicherbehälter (5) angeschlossene Regasifizierungseinrichtung zum Regasifizieren des verflüssigten Gases, eine Expansionsmaschine, insbesondere Turbine (10), zum Entspannen des regasifizierten Gases und einen von der Expansionsmaschine angetriebenen elektrischen Generator (11), wobei die vom Generator (11) gelieferte elektrische Energie elektrischen Verbrauchern zur Verfügung gestellt ist. (Fig. 2)

156 Thermoelectric energy storage system and method for storing thermoelectric energy EP08160520.6 2008-07-16 EP2182179A1 2010-05-05 Ohler, Christian; Mercangoez, Mehmet

A system and method for thermoelectric energy storage is described. A thermoelectric energy storage system having at least one hot storage unit (x, y, z) is described. In a preferred embodiment each hot storage unit (x, y, z) comprises a hot tank and a cold tank connected via a heat exchanger and containing a thermal storage medium. The thermoelectric energy storage system (10) also comprises a working fluid circuit for circulating working fluid through each heat exchanger (24, 30, 36, 38, 40) for heat transfer with the thermal storage medium. Improved roundtrip efficiency is achieved by minimizing the temperature difference between the working fluid and the thermal storage medium in each heat exchanger (24, 30, 36, 38, 40) during heat transfer. This is realized through modification of thermal storage media parameters.

157 温跃层系统 CN201721199867.X 2017-09-19 CN207393340U 2018-05-22 R.阿普特
本实用新型涉及一种温跃层系统,其包括多个容器,所述多个压力容器被用于替代闭式热动力循环系统诸如闭式布莱敦循环发电或能量存储系统中的热交换器。每个压力容器被构造成连接到工作流体或与工作流体隔离。
158 DISPATCHABLE SOLAR HYBRID POWER PLANT PCT/US2015032643 2015-05-27 WO2015187423A2 2015-12-10 CONLON WILLIAM M
A solar hybrid power plant comprises a combustion turbine generator, a steam power system, a solar thermal system, and an energy storage system. Heat from the solar thermal system, from the energy storage system, or from the solar thermal system and the energy storage system is used to generate steam in the steam power system. Heat from the combustion turbine generator exhaust gas may be used primarily for single phase heating of water or steam in the steam power system. Alternatively, heat from the combustion turbine generator exhaust gas may be used in parallel with the energy storage system and/or the solar thermal system to generate steam, and additionally to super heat steam. Both the combustion turbine generator and the steam power system may generate electricity.
159 SYSTEM AND METHOD FOR STORING ENERGY PCT/US2013057646 2013-08-30 WO2014036476A3 2014-04-24 INGRAM-GOBLE ROBBIE; HARADA KEVIN J; WANG HAILEI; PETERSON RICHARD B
Embodiments of a system for storing and providing electrical energy are disclosed. Also disclosed are embodiments of a system for purifying fluid, as well as embodiments of a system in which energy storage and fluid purification are combined. The system may comprise a latent heat storage device, a sensible heat storage device, a vapor expander/compressor device mechanically coupled to a motor/generator device, a heat-exchanger, and a liquid pressurization and depressurization device. The devices are fluidly coupled in a closed-loop system, and a two-phase working fluid circulates therein. Embodiments of a method for operating the system to store and generate energy also are disclosed. Embodiments of a method for operating the system to purify fluid, as well as embodiments of a method for operating a combined energy storage and fluid purification system are disclosed. Embodiments of a method for operating the system to service an external thermal load are disclosed.
160 THERMOELECTRIC ENERGY STORAGE SYSTEM AND METHOD FOR STORING THERMOELECTRIC ENERGY PCT/EP2009058475 2009-07-06 WO2010006942A2 2010-01-21 OHLER CHRISTIAN; MERCANGOEZ MEHMET
A system and method for thermoelectric energy storage is described. A thermoelectric energy storage system having at least one hot storage unit (x, y, z) is described. In a preferred embodiment each hot storage unit (x, y, z) comprises a hot tank and a cold tank connected via a heat exchanger and containing a thermal storage medium. The thermoelectric energy storage system (10) also comprises a working fluid circuit for circulating working fluid through each heat exchanger (24, 30, 36, 38, 40) for heat transfer with the thermal storage medium. Improved roundtrip efficiency is achieved by minimizing the temperature difference between the working fluid and the thermal storage medium in each heat exchanger (24, 30, 36, 38, 40) during heat transfer. This is realized through modification of thermal storage media parameters.
QQ群二维码
意见反馈