序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 에너지 저장 장치를 사용하여 전력을 피킹하기 위한 시스템들 및 방법들 KR1020157037147 2014-05-22 KR1020160040147A 2016-04-12 데이비슨찰에스.; 라이트스티븐에이.
개시된예시적인실시예들은에너지저장을사용하여전력피킹을위한시스템들및 방법들을포함한다. 일예시적이고, 비한정적인실시예에서, 파워플랜트는내부에작용유체를담는열역학파이프회로를포함하고, 작용유체는플로우방향및 플로우레이트를갖는다. 파워플랜트컴포넌트들은열역학파이프회로내에개재된다. 파워플랜트컴포넌트들은압축시스템, 복열시스템, 열소스, 터빈시스템, 방열시스템, 열에너지저장시스템을포함한다. 밸브시스템은 Brayton 사이클, Brayton 사이클/냉각사이클의조합, 및 Rankine 사이클로부터선택된열역학적사이클을구현하기위해플로우방향및 플로우레이트를유지하는작용유체와열수력학적으로연통하는방열시스템, 열에너지저장시스템, 및압축시스템에선택적으로커플링하도록동작가능하다.
22 パワー生成のためのシステム及び方法 JP2018526635 2016-11-16 JP2018535356A 2018-11-29 ティモ・エラマー; ヘイッキ・イー・サルミネン
【課題】本発明の目的は、パワーを生成する時のレシプロ燃焼エンジン及びガスタービンの欠点を軽減する方法を実施するための方法及びシステムを提供することである。
【解決方法】本発明は、燃焼室(10)をタービン(22)の外側に配置し、直列に接続された複数のコンプレッサから、高圧の蒸気パルスにより補助される燃焼プロセスを実行するために空気が加熱された上で前記燃焼室へと排出される空気室に、圧縮空気を供給するというアイデアに基づく。
23 平行運動の熱エネルギー動機械及びその動作方法 JP2016565163 2014-09-23 JP6154967B1 2017-06-28 遠軍 郭
【課題】平行運動の熱エネルギー動機械及びその動作方法を提供することを課題とする。【解決手段】平行運動の熱エネルギー動力機械及びその動作方法であって、集熱器(1)と保温管(2)とガス化反応器(3)と霧化装置(4)とシリンダー(5)とピストン(6)とピストンリング(7)と自動排気弁(8)とクーラー(9)と貯液タンク(10)と圧力ポンプ(11)とプッシュプルロッド(12)と保温層(13)と筐体(14)とを含み;筐体(14)上に平行に対向して2個のシリンダー(5)を設け、シリンダー(5)内にピストン(6)を設け、ピストン(6)にピストンリング(7)を設け、ピストン(6)がプッシュプルロッド(12)両端に設けられ;集熱器(1)は保温管(2)を通じてガス化反応器(3)に連接され、ガス化反応器(3)の吸気側に霧化装置(4)を設け、霧化装置(4)がパイプを通じて圧力ポンプ(11)に連接し、圧力ポンプ(11)がパイプを通じて貯液タンク(10)に連接し;ガス化反応器(3)はシリンダー(5)の上死点に設けられ;シリンダー(5)の下死点に自動排気弁(8)を設けており、自動排気弁(8)がパイプを通じてクーラー(9)に連接する。該平行運動の熱エネルギー動力機器及びその動作方法の熱エネルギー変換効率が高く;出力が調整でき;機械構造が簡単で、製造コストが低く、仕事率が単気筒仕事率の2倍あり;従来のエネルギー消費に代替でき、経済便益が高く、省エネ・環境に配慮し、騒音も小さい。【選択図】図2
24 電気エネルギー蓄積および放出システム JP2016019806 2016-02-04 JP2016142272A 2016-08-08 ヴィプルヴ アガ; エンリコ コンテ
【課題】熱流体を利用してエネルギーを蓄積する電気エネルギー蓄積および放出システムを改善する。
【解決手段】電気エネルギーを熱エネルギーとして蓄積するための電気エネルギー蓄積および放出システムは、第1作動流体を含むヒートポンプサイクルと、第2作動流体を含む蒸気サイクルと、第1熱流体を含む第1蓄熱システムと、第2熱流体を含む第2蓄熱システムと、電気ヒータと、電調整装置とを含み、これらは互いに流体的に接続されている。第1蓄熱システムは、流体的に接続された第1の低温蓄熱タンクと高温蓄熱タンクとを含み、第2蓄熱システムは、流体的に接続された第2の低温蓄熱タンクと高温蓄熱タンクとを含む。電気ヒータは、蓄熱タンク間で作動的に接続されている。電力調整装置は、電源の過剰電気エネルギーの一部を、電気ヒータおよびヒートポンプサイクルへ供給するように調整する。
【選択図】図1
25 外部熱機関 JP2015511869 2013-05-13 JP2015516541A 2015-06-11 ハロルド エマーソン ゴッドウィン; ハロルド デヴィッサー
機関は複数の容器を含み、複数の容器は、回転可能なフレームに連結され、回転可能なフレームの回転の中心の周りに配置される。導管は、対の容器を接続し、質量体が、対の容器の間で、回転の中心の周りに重のモーメントを発生できるようにする。容器の各対は、熱源により加熱される流体を運ぶための経路を有することができる。経路は、熱源から、対の低い方の容器に延び、さらに、低い方の容器から、対の上方の容器に延びることができる。経路は、低い方の容器の揮発性物質が、質量体を、低い方の容器から上方の容器に押し込むようにし、上方の容器の揮発性物質が、質量体を、上方の容器に、低い方の容器から吸い込むようになっている。容器は、圧力に制御可能に接続されることができ、制御可能な圧力および温度分布システムを介して質量体を移動させる。【選択図】図1
26 Power generation system JP2012162120 2012-07-20 JP2014023364A 2014-02-03 HADIANTO ASHARI; RODIONOV MIKHAIL; OKITA NOBUO; TANIGUCHI MASAHIRO; YAMASHITA KATSUYA; FURUYA OSAMU; TAKAHATA KAZUO; TAKAYANAGI MIKIO
PROBLEM TO BE SOLVED: To provide a power generation system capable of obtaining electric energy efficiently by using a vapor generation source, supply of which is unstable in a time series.SOLUTION: A power generation system according to an embodiment comprises: a diverting section configured to divert a supplied first heating medium into a first duct and a second duct; and a heat storage section including the first heating medium transmitted via the second duct and configured to transmit the first heating medium in a flow quantity leveled in terms of time. The power generation system of the embodiment comprises: a heat exchanging section configured to transfer heat from the first heating medium transmitted via the first duct and the first heating medium transmitted from the heat storage section to a second heating medium having a boiling point lower than that of the first heating medium; and a turbine which makes a rotary motion by the second heating medium to which heat was transferred by the heat exchange section.
27 Heat energy recovery unit JP2005106310 2005-04-01 JP4497015B2 2010-07-07 信一 三谷
28 Combined gas/steam turbine power station plant JP693891 1991-01-24 JPH08114104A 1996-05-07 HANSUURURITSUHI FURUTSUCHI
PURPOSE: To boost up the start capability of combined gas/steam turbine power station plants independently of the electrical output at startups. CONSTITUTION: At least a gas turbine group consisting of a compressor 1, a gas turbine 2, and a combustion chamber 3, steam turbines 8 and 9, and a waste heat boiler 4 are connected to a steam accumulator 12. Steam in the steam accumulator 12 is constantly available for an autonomous startup of the steam turbines 8 and 9 making a steam circuit operationally couple to the gas turbine group. The arrangement increased the start capability of such a combined gas/steam turbine power station plant. COPYRIGHT: (C)1996,JPO
29 JPS5032301A - JP6328474 1974-06-04 JPS5032301A 1975-03-29
30 SYSTEM AND METHOD FOR GENERATING POWER US15777119 2016-11-16 US20180328291A1 2018-11-15 Timo Erämaa; Heikki J. Salminen
An object of the present invention is to provide a method and a system for implementing the method so as to alleviate the disadvantages of a reciprocating combustion engine and gas turbine when generating power. The invention is based on the idea of arranging a combustion chamber (10) outside a turbine (22) and providing compressed air from serially connected compressors to an air chamber in which the air is heated and then exhausted to the combustion chamber in order to carry out a combustion process supplemented with high pressure steam pulses.
31 Atmospheric storage and transfer of thermal energy US15395040 2016-12-30 US10082104B2 2018-09-25 Raj B. Apte
A heat engine system with pressure-regulating load-locks disposed between thermal medium storage containers and heat exchangers is disclosed. A load-lock connects one or more storage containers at atmospheric pressure to one or more heat exchangers at greater than or less than atmospheric pressure.
32 System and method for load balancing of intermittent renewable energy for an electricity grid US15315476 2014-06-16 US10066511B2 2018-09-04 Oliver Heid; Paul Beasley; Timothy Hughes
A system and method for load balancing of intermittent renewable energy for an electricity grid includes a production unit for producing Hydrogen and Nitrogen, a mixing unit to receive and mix the Hydrogen and the Nitrogen, an Ammonia source for receiving and processing the Hydrogen-Nitrogen mixture, an Ammonia power generator for generating energy for the energy grid, a Hydrogen injection system for extracting a Hydrogen portion from a stage of the system and for adding extracted Hydrogen to the gas stream to be provided to the Ammonia power generator, and a Hydrogen control system for controlling a flow rate of Hydrogen from the Hydrogen injection system to the gas stream to be provided to the Ammonia power generator, the flow rate determined in accordance with a data set which contains information about actual working conditions of the Ammonia power generator and which is received by the Hydrogen control system.
33 Atmospheric Storage and Transfer of Thermal Energy US15395040 2016-12-30 US20180187628A1 2018-07-05 Raj B. Apte
A heat engine system with pressure-regulating load-locks disposed between thermal medium storage containers and heat exchangers is disclosed. A load-lock connects one or more storage containers at atmospheric pressure to one or more heat exchangers at greater than or less than atmospheric pressure.
34 Variable Pressure Inventory Control of Closed Cycle System with a High Pressure Tank and an Intermediate Pressure Tank US15392927 2016-12-28 US20180179917A1 2018-06-28 Raj Apte; Philippe Larochelle
Systems and methods for variable pressure inventory control of a closed thermodynamic cycle power generation system or energy storage system, such as a reversible Brayton cycle system, with at least a high pressure tank and an intermediate pressure tank are disclosed. Operational parameters of the system such as working fluid pressure, turbine torque, turbine RPM, generator torque, generator RPM, and current, voltage, phase, frequency, and/or quantity of electrical power generated and/or distributed by the generator may be the basis for controlling a quantity of working fluid that circulates through a closed cycle fluid path of the system.
35 DISPATCHABLE COMBINED CYCLE POWER PLANT US15783975 2017-10-13 US20180038352A1 2018-02-08 William M. CONLON
A combined cycle power plant comprises a combustion turbine generator, another heat source in addition to the combustion turbine generator, a steam power system, and an energy storage system. Heat from the heat source, from the energy storage system, or from the heat source and the energy storage system is used to generate steam in the steam power system. Heat from the combustion turbine generator exhaust gas may be used primarily for single phase heating of water or steam in the steam power system. Alternatively, heat from the combustion turbine generator exhaust gas may be used in parallel with the energy storage system and/or the other heat source to generate steam, and additionally to super heat steam. Both the combustion turbine generator and the steam power system may generate electricity.
36 SYSTEM AND METHOD FOR LOAD BALANCING OF INTERMITTENT RENEWABLE ENERGY FOR AN ELECTRICITY GRID US15315476 2014-06-16 US20170122129A1 2017-05-04 Oliver Heid; Paul Beasley; Timothy Hughes
A system and method for load balancing of intermittent renewable energy for an electricity grid includes a production unit for producing Hydrogen and Nitrogen, a mixing unit to receive and mix the Hydrogen and the Nitrogen, an Ammonia source for receiving and processing the Hydrogen-Nitrogen mixture, an Ammonia power generator for generating energy for the energy grid, a Hydrogen injection system for extracting a Hydrogen portion from a stage of the system and for adding extracted Hydrogen to the gas stream to be provided to the Ammonia power generator, and a Hydrogen control system for controlling a flow rate of Hydrogen from the Hydrogen injection system to the gas stream to be provided to the Ammonia power generator, the flow rate determined in accordance with a data set which contains information about actual working conditions of the Ammonia power generator and which is received by the Hydrogen control system.
37 Systems and methods for power peaking with energy storage US14283671 2014-05-21 US09482117B2 2016-11-01 Chal S. Davidson; Steven A. Wright
Disclosed illustrative embodiments include systems and methods for power peaking with energy storage. In an illustrative, non-limiting embodiment, a power plant includes a thermodynamic piping circuit having a working fluid contained therein, and the working fluid has a flow direction and a flow rate. Power plant components are interposed in the thermodynamic piping circuit. The power plant components include a compressor system, a recuperator system, a heat source, a turbine system, a heat rejection system, and a thermal energy storage system. A valving system is operable to selectively couple the heat rejection system, the thermal energy storage system, and the compressor system in thermohydraulic communication with the working fluid maintaining the flow direction and the flow rate to implement a thermodynamic cycle chosen from a Brayton cycle, a combination Brayton cycle/refrigeration cycle, and a Rankine cycle.
38 Flexible Energy Balancing System US14666877 2015-03-24 US20150308298A1 2015-10-29 Paul C. MARLEY, II
An energy balancing system is provided that ensures continuous energy output to compensate for energy fluctuations commonly associated with wind power generation. The flexible energy balancing system employs a base load high-pressure steam boiler that is associated with one or more steam turbine generators. The steam turbine generators are also associated with one or more heat recovery steam generators whose temperature is controlled by the exhaust from combustion turbine generators and the base load high-pressure steam boiler. The energy balancing system can be selectively tuned to quickly compensate for energy fluctuations associated with wind power generation.
39 SYSTEMS, METHODS, AND DEVICES FOR POWER STORAGE, RECOVERY, AND BALANCING US14667631 2015-03-24 US20150300209A1 2015-10-22 ARNOLD J. GOLDMAN
An energy processing apparatus includes an energy input unit, a bulk storage unit, an auxiliary unit, and an energy output unit. The energy input unit can include conduits/devices for the input of electrical/thermal energy sources. The bulk storage unit can include a system, conduits/devices for electrical/thermal energy storage/release. The auxiliary unit can include a system, conduits/devices for the production of material products. The energy output unit can contain conduits/devices for the output of electrical energy. The energy input unit can be connected to the bulk storage unit, auxiliary unit, and energy output unit by conduits/devices for the transfer of electrical/thermal energy. The bulk storage unit and auxiliary unit can be connected by conduits/devices for the transfer of material products and/or thermal energy.The energy output unit can be connected to the energy input unit and/or bulk storage unit by conduits/devices for the transfer of electrical energy.
40 THERMAL ENERGY STORAGE FOR COMBINED CYCLE POWER PLANTS US14115174 2012-01-10 US20140202157A1 2014-07-24 Reuel Shinnar; Hitesh Bindra
Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications in combined cycle power plants are disclosed. In one embodiment of the method for efficient response to load variations in a combined cycle power plant, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure.
QQ群二维码
意见反馈