序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Measurement of steam quality in steam turbine EP10160408.0 2010-04-20 EP2243936B1 2012-12-19 Hannula, Scott Victor; Rosson, Randy Scott; Wilkes, Kevin Wood
142 Frischdampfbestimmung einer Expansionsmaschine EP10016063.9 2010-12-23 EP2469047A1 2012-06-27 Aumann, Richard; Schuster, Andreas; Sichert, Andreas

Die vorliegende Erfindung stellt ein Verfahren zur Steuerung oder Regelung und/oder Überwachung einer Vorrichtung mit einer Expansionsmaschine, der Frischdampf eines Arbeitsmediums zugeführt wird, der in der Expansionsmaschine zu Abdampf expandiert wird, mit den Schritten zur Verfügung: Bestimmen zumindest eines physikalischen Parameters des Abdampfes; Bestimmen zumindest eines physikalischen Parameters des Frischdampfes auf der Grundlage des bestimmten zumindest einen physikalischen Parameters des Abdampfes; und Steuern oder Regeln und/oder Überwachen der Vorrichtung auf der Grundlage des zumindest einen bestimmten physikalischen Parameters des Frischdampfes. Ebenso wird ein Wärmekraftwerk zur Verfügung gestellt, in dem das Verfahren realisiert ist.

143 Method for determining when to perform a test of an overspeed protection system of a powerplant machine EP11158422.3 2011-03-16 EP2372112A2 2011-10-05 Block, Frederick William; Nichols, Richard Lee; Law, Joseph Robert; Dalton, Bret Stephen; Ellis, George Allen

Various embodiments of the present invention are operable to determine when to test an overspeed protection system of a powerplant machine (105, 145). As described herein, embodiments of the present invention may be applied to a wide variety of powerplant machines, each comprising a shaft (137). After determining that test of the overspeed protection system should be performed, embodiments of the present invention may allow for a variety of methods to test the overspeed protection system.

144 Automated method for conducting a refurbishment measure on a turbine of a thermal power plant EP07003918.5 2007-02-26 EP1961914A1 2008-08-27 Bell, Ralf; Pickard, Andreas

An automated method for conducting a refurbishment measure on a turbine (10) for a thermal power plant is provided. The method comprises the following steps: determining a first value (x1) of an operational characteristic (12, 14, η, 16) of the turbine (10) prior to performing the refurbishment measure, providing a compensation function (c(i)) defining a compensation for the service of performing the refurbishment measure on the turbine (10), according to which compensation function (c(i)) the compensation depends on an improvement in the operational characteristic (12, 14, η, 16) obtained by the refurbishment measure, performing the refurbishment measure on the turbine (10), determining a second value (x2) of the operational characteristic (12, 14, η, 16) after the refurbishment measure was performed, determining an actual improvement (ia) in the operational characteristic (12, 14, η, 16) obtained by the performed refurbishment measure from the first value (x1) and the second value (x2), and determining an actual compensation (ca) for the performed refurbishment measure from the actual improvement (ia) using the compensation function (c(i)).

145 VERFAHREN ZUR DIAGNOSE UND PROGNOSE DES BETRIEBSVERHALTENS EINER TURBINENANLAGE EP95924844.4 1995-07-07 EP0770170B1 1999-09-22 GIRBIG, Paul
In order to detect a deviation from the current operating state (42) in the running of such a turbine plant (1) and forecast the reaction of the turbine plant (1) to changing boundary conditions, according to the invention, when an operating parameter (pn, Tn, Qn, P) is predetermined by means of a plant model obtained from characteristics (KG) specific to the plant, at least one further operating parameter is found. In order to calculate individual operating parameters (pn, Tn, Qn, P) using the plant model, the device (22) comprises a computer unit (30) referring to a model store (28) for the plant model.
146 VERFAHREN ZUR ERKENNUNG EINER UNDICHTEN STELLE IN EINEM WÄRMERÜCKGEWINNUNGSSYSTEM EP17742937.0 2017-07-12 EP3485148A1 2019-05-22 GLENSVIG, Michael; MAHLER, Susanne; THALER, Martin
147 STEAM TURBINE INLET TEMPERATURE CONTROL SYSTEM, COMPUTER PROGRAM PRODUCT AND RELATED METHODS EP16195952.3 2016-10-27 EP3165720A1 2017-05-10 TONG, Leslie Yung Min; MUNDRA, Kamlesh; NARAYANASWAMY, Kowshik; RANCRUEL, Diego Fernando; RIPLEY, Tad Russel

Various embodiments include a system (2) having: a computing device configured to control a power plant system (4) including a steam turbine (ST (6)), a gas turbine (GT (16)), and a heat recovery steam generator (HRSG (14)) fluidly connected with the ST (6) and the GT (16), by performing actions including: obtaining data representing a target steam specific enthalpy in a bowl section (30) of the ST (6); determining a current steam pressure at an outlet of the HRSG (14) and a current steam temperature at the outlet of the HRSG (14); calculating an actual steam specific enthalpy in the bowl section (30) of the ST (6) based upon the current steam pressure at the outlet of the HRSG (14) and the current steam temperature at the outlet the HRSG (14); and modifying a temperature of steam entering the ST (6) in response to determining that the calculated actual steam specific enthalpy in the bowl section (30) differs from the target steam specific enthalpy in the bowl section (30) by a threshold.

148 VERFAHREN ZUM ABKÜHLEN EINER DAMPFTURBINE EP15173619.6 2015-06-24 EP3109418A1 2016-12-28 Greis, Jan; Stawarski, Oliver

Die Erfindung betrifft ein Automatisierungssystem, das die theoretisch maximale Abkühlrate einer Dampfturbine (2) bestimmt und einen Dampferzeuger (6) derart betreibt, dass die thermische Energie des Dampfes die vorgegebene Abkühlrate weder überschreitet noch unterschreitet.

149 Vorrichtung und Verfahren zur Erkennung von Leckagen in geschlossenen Kreisprozessen EP14164959.0 2014-04-16 EP2933442B1 2016-11-02 Grill, Andreas; Springer, Jens-Patrick; Aumann, Richard; Langer, Roy; Gewald, Daniela; Schuster, Andreas
150 ENERGY RECOVERY DEVICE AND COMPRESSION DEVICE, AND ENERGY RECOVERY METHOD EP15175440.5 2015-07-06 EP2998524A1 2016-03-23 HASHIMOTO, Koichiro; MATSUDA, Haruyuki; NISHIMURA, Kazumasa; ADACHI, Shigeto; NARUKAWA, Yutaka; KAKIUCHI, Tetsuya; FUKUHARA, Kazunori

An energy recovery device includes a plurality of heat exchangers connected in parallel with each other into which a plurality of heat sources flow, an expander for expanding a working medium, a dynamic power recovery unit, a condenser, a pump for sending the working medium which has flown out from the condenser to the plurality of heat exchangers, and a regulator for regulating inflow rates of the working medium flowing into the plurality of heat exchangers. The regulator regulates the inflow rates of the liquid phase working medium flowing into the plurality of respective heat exchangers such that a difference of temperatures or a difference of degrees of superheat of the gas phase working medium which has flown out from the plurality of respective heat exchangers falls within a certain range. Thereby, heat energy can be efficiently recovered from the plurality of heat sources having temperatures different from each other.

151 EVAPORATOR, RANKINE CYCLE APPARATUS, AND COMBINED HEAT AND POWER SYSTEM EP15171741.0 2015-06-11 EP2957734A1 2015-12-23 Kosuda, Osamu; Okaichi, Atsuo; Kido, Osao; Hikichi, Takumi; Nakamura, Takahiro

An evaporator which heats working fluid with high-temperature fluid to evaporate the working fluid includes: a working fluid channel which is arranged in a flow direction of the high temperature fluid and through which the working fluid flows; and a temperature sensor which is provided for the working fluid channel. A part of the working fluid channel is exposed to outside of a housing of the evaporator, and the temperature sensor is provided in the part of the working fluid channel exposed to the outside of the housing of the evaporator in a region other than an inlet of the working fluid channel into which the working fluid flows from the outside of the evaporator and other than an outlet of the working fluid channel through which the working fluid flows out of the evaporator. The output value of the temperature sensor is used to adjust the temperature of the working fluid in the evaporator.

152 A METHOD FOR MEASURING CONDITIONS IN A POWER BOILER FURNACE USING A SOOTBLOWER EP09746874 2009-05-13 EP2274566A4 2015-04-01 DAHLÉN ERIK; NIKLASSON MIKAEL
The present invention relates to a method for measuring the conditions inside a power boiler wherein a sootblower is used as a measuring probe. The invention also relates to a system for measuring the conditions in a power boiler, comprising a control unit, at least one sensor and a measuring probe placed inside said furnace, wherein said probe is arranged on a soot blower.
153 Steam turbine performance testing EP13153325.9 2013-01-30 EP2623733A1 2013-08-07 Hannula, Scott Victor; Watts, Duncan George

A steam turbine performance testing system (16), including at least one computer hardware device, including a neural network (18) created using a dynamic steam turbine thermodynamic model (20) and preliminary data collected from a steam turbine (14); a network tester (32) for testing the neural network (18) with testing data; a current performance calculator (34) for calculating a current performance of the steam turbine (14) from operation data of the steam turbine (14); and a projected performance calculator (36) for calculating a projected performance of the steam turbine (14) from the current performance.

154 Verfahren zur Simulation des Betriebsverhaltens einer Dampfturbinenanlage EP05022172.0 2005-10-11 EP1647677B1 2013-02-20 Rothe, Klaus; Zimmer, Gerta, Dr.
155 Power recovery EP12170077.7 2009-05-06 EP2495405A2 2012-09-05 Carrick, Harald, B.; Aird, Graham, Robert; Humphries, Graeme

The invention relates to a method and apparatus for recovering power from the gaseous stream produced by an oxidation reaction. Specifically, the invention is based on heating the gaseous stream from the oxidation reaction to a temperature of at least 800 DEG C and recovering energy through a gas turbine. The compressor stage of the gas turbine compresses the oxidant feed to the reactor thereby at least partially offsetting the cost of providing the high temperature and pressure reaction conditions in the reactor. The invention also provides improved control of the power recovery system by optimising the efficiency of the gas turbine by feeding gas to the gaseous stream to modulate the flow of gas to the turbine relative to the compressor discharge flow in order to compensate for the consumption of oxidant in the reactor.

156 A METHOD FOR MEASURING CONDITIONS IN A POWER BOILER FURNACE USING A SOOTBLOWER EP09746874.8 2009-05-13 EP2274566A1 2011-01-19 DAHLÉN, Erik; NIKLASSON, Mikael
The present invention relates to a method for measuring the conditions inside a power boiler wherein a sootblower is used as a measuring probe. The invention also relates to a system for measuring the conditions in a power boiler, comprising a control unit, at least one sensor and a measuring probe placed inside said furnace, wherein said probe is arranged on a soot blower.
157 Physikalische Test-Vorrichtung für ein Inselkraftwerk und Inbetriebsetzung eines Inselkraftwerks EP08010724.6 2008-06-12 EP2228519A1 2010-09-15 Kleiner, Fritz; Speith, Markus

Die Erfindung betrifft eine physikalische Testvorrichtung (17) für ein Inselkraftwerk, umfassend ein physikalisches Ersatz-Lastelement (18), welches eine reale Last des Inselkraftwerks zumindest annähernd nachbildet und ein Verfahren zur Inbetriebsetzung eines Inselkraftwerks wobei ein physikalisches Ersatz-Lastelement (18), welches eine künftige reale Last des Inselkraftwerks zumindest annähernd nachbildet, bereitgestellt wird, mit dem Inselkraftwerk verbunden wird und das Inselkraftwerk in Betrieb gesetzt wird und nach Abschluss der Inbetriebsetzung des Inselkraftwerks das physikalische Ersatz-Lastelement (18) vom Inselkraftwerk abgekoppelt wird.

158 Verfahren zur Simulation des Betriebsverhaltens einer Dampfturbinenanlage EP05022172.0 2005-10-11 EP1647677A1 2006-04-19 Rothe, Klaus; Zimmer, Gerta, Dr.

Es wird ein verbessertes Verfahren zur Simulation des Betriebsverhaltens einer Dampfturbinenanlage (1) angegeben, bei welchem die Dampfturbinenanlage (1) in mindestens zwei Anlagenelemente (2,3,4) und mindestens ein Referenzvolumen (8a,8b) gegliedert wird, so dass zwei aneinander angrenzenden Anlagenelementen (2,3;3,4) mindestens ein Referenzvolumen (8a;8b) zwischengeschaltet ist, bei welchem jedem Referenzvolumen (8a,8b) ein Speicherelement (9a-9f,77) für Masse und Energie zugeordnet wird, das einen anhand eines vorgegebenen Sets thermodynamischer Größen (pi,vi,hi,Ti; i=1-9) definierten zeitabhängigen thermodynamischen Zustand (Zi;i=1-9) aufweist, und bei welchem dem oder jedem Anlagenelement (2,3,4) eine Durchflussfunktion (10,10a,10b,11,11a,11b,12,12a,12b,76) zur Ermittlung eines Massenstroms (mi;i=1-10) und einer Enthalpie (h'i;i=1-13) am Ein- und Austritt des Anlagenelements (2,3,4) zugeordnet wird. Im Zuge einer Simulationsphase wird für jedes Speicherelement (9a-9f,77) ausgehend von einem vorgegebenen Anfangszustand anhand der Durchflussfunktionen (10,11, 12) der Masseninhalt (M) und die innere Energie (u) ermittelt und hieraus ein Ausgabezustand berechnet.

159 Verfahren und Anordnung zur Ermittlung einer Dampfmenge EP03005764.0 2003-03-14 EP1347235A1 2003-09-24 Melles, Günter, Dipl.-Ing.

In einem Verfahren zur Ermittlung einer Dampfmenge, die in einem mit mindestens einem Überhitzer ausgerüsteten Dampferzeuger erzeugt wird, werden der Druckverlust (ΔpMs) über der letzten Überhitzerstufe, die Temperatur (Tvor UE, Tnach UE) vor und hinter dieser Überhitzerstufe und der Druck (pnach UE) des Dampfes hinter dieser Überhitzerstufe kontinuierlich gemessen. Bei Volllast oder bei einer Last im oberen Lastbereich werden in dem Dampferzeuger der Druckverlust (ΔpRef), die Menge (mDampf Ref) an Dampf und das Volumen (vRef) des Dampfes ermittelt und als Referenzwerte festgehalten. Die erzeugte Dampfmenge (mDampf) der jeweiligen Last wird über das Verhältnis der gemessenen Werte zu den Referenzwerten bestimmt.

160 VERFAHREN UND VORRICHTUNG ZUR DIAGNOSE UND PROGNOSE DES BETRIEBSVERHALTENS EINER TURBINENANLAGE EP95924844.0 1995-07-07 EP0770170A1 1997-05-02 GIRBIG, Paul
In order to detect a deviation from the current operating state (42) in the running of such a turbine plant (1) and forecast the reaction of the turbine plant (1) to changing boundary conditions, according to the invention, when an operating parameter (pn, Tn, Qn, P) is predetermined by means of a plant model obtained from characteristics (KG) specific to the plant, at least one further operating parameter is found. In order to calculate individual operating parameters (pn, Tn, Qn, P) using the plant model, the device (22) comprises a computer unit (30) referring to a model store (28) for the plant model.
QQ群二维码
意见反馈