序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
201 Production method of ultra fine grain steel EP00301483.4 2000-02-24 EP1031632B1 2005-06-01 Torizuka, Shiro; Umezawa, Osamu; Tsuzaki, Kaneaki; Nagai, Kotobu
202 METHOD OF PRODUCING A HOT ROLLED SHEET HAVING ULTRA FINE GRAINS EP98941810.8 1998-09-10 EP0945522B1 2005-04-13 YASUHARA, Eiko, Kawasaki Steel Corporation; MORITA, Masahiko, Kawasaki Steel Techno-Rch. Corp.; FURUKIMI, Osamu, Kawasaki Steel Corporation; OKADA, Susumu, Kawasaki Steel Corporation
A hot rolled steel plate to be processed capable of being manufactured easily in a general hot strip mill, and having a low mechanical anisotropy and, moreover, final hyperfine particles of ferrite of less than 2 mu m which could not be attained by conventional techniques; and a method of manufacturing the same. This hot rolled steel plate contains ferrite as a main phase, and has an average ferrite particle size of less than 2 mu m and an aspect ratio of the same of less than 1.5, the hot rolled steel plate being obtained by carrying out the draft of the steel plate in a dynamic recrystallization zone in a draft path of not less than five stands during a finishing hot rolling operation.
203 TRIPLE-PHASE NANO-COMPOSITE STEELS EP02797338.7 2002-12-12 EP1461467A1 2004-09-29 KUSINSKI, Grzegorz, J.; POLLACK, David; THOMAS, Gareth
Carbon steels of high performance are disclosed that contain a three-phase microstructure consisting of grains of ferrite (11) fused with grains that contain dislocated lath structures in which laths of martensite (13) alternate with thin films of austenite (14). The structure includes the ferrite grains (11) fused with martensite-austenite grains (12), and each of the martensite-austenite grains (12) is of the dislocated lath structure, with substantially parallel laths (13) consisting of grains of martensite-phase crystals, the laths separated by thin films (14) of retained austenite phase. The microstructure can be formed by a unique method of austenization followed by multi-phase cooling in a manner that avoids bainite and pearlite formation and precipitation at phase interfaces. The desired microstructure can be obtained by casting, heat treatment, on-line rolling, forging, and other common metallurgical processing procedures, and yields superior combinations of mechanical and corrosion properties.
204 Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge EP02020294.1 2002-09-11 EP1398390A1 2004-03-17 Nuss, andreas; Heller, Thomas, Dr.-Ing.; Engl, Bernhard, Dr.-Ing.

Die Erfindung betrifft ein Verfahren zum Erzeugen eines hochfesten Warmbands mit einer Zugfestigkeit von mindestens 700 MPa und einer ultrafeinen ferritisch/martensitischen und perlitfreien Kornstruktur, bei der der durchschnittliche Durchmesser der Ferritkörner weniger als 2,5 µm beträgt. Dies wird erreicht durch folgende Schritte:

  • a) Vergießen einer (in Masse-%) C: 0,05 - 0,2 %, Si: < 0,9 %, P: < 0,06 %, Mn: 0,6 - 1,2 %, Al: < 0,05 %, Cr: 0,02 - 0,6 %, Nb: ≤ 0,08 %, Ti: ≤ 0,08 %, V: ≤ 0,08 %, Mo: ≤ 0,4 %, Cu: ≤ 1 %, Ni: ≤ 1 %, Rest Eisen und unvermeidbare Verunreinigungen enthaltenden Stahlschmelze zu einem Vormaterial, wie Brammen oder Dünnbrammen,
  • b) Warmwalzen des Vormaterials zu einem Warmband bei einer 750 °C bis 950 °C betragenden Warmwalzendtemperatur,
  • c) Kühlen des erhaltenen Warmbands auf eine Raumtemperatur bis 250 °C betragenden Haspeltemperatur mit einer mindestens 10 K/s betragenden Abkühlgeschwindigkeit,
  • d) Haspeln des abgekühlten Warmbands.

Die Veröffentlichung soll ohne Figur erfolgen.

205 HIGH STRENGTH AND HIGH DUCTILITY STEEL PLATE HAVING HYPERFINE CRYSTAL GRAIN STRUCTURE PRODUCED BY SUBJECTING ORDINARY LOW CARBON STEEL TO LOW STRAIN WORKING AND ANNEALING, AND METHOD FOR PRODUCTION THEREOF EP02713191.1 2002-03-25 EP1394279A1 2004-03-03 SAITO, Yoshihiro; TSUJI, Nobuhiro; UEJI, Rintaro

A high strength and high ductility low carbon steel having a tensile strength of 800MPa or more, an uniform elongation of 5% or more, and an elongation to failure of 20% or more which is produced by a method comprising subjecting an ordinary low carbon steel or an ordinary low carbon steel added with boron in an amount being 0.01% or less and effective for accelerating martensitic transformation to processing and heat treatment to prepare a product having coarser size of austenite crystal grains and then to water-quenching, to provide a steel product having a martensite phase in an amount of 90% or more, and subjecting the steel product to a low strain processing, specifically a cold rolling at a total rolling reduction in thickness of 20% or more and less than 80%, and to a low temperature annealing at 500°C to 600°C, and a method for producing said high strength and high ductility low carbon steel.

206 STEEL MATERIAL HAVING HIGH DUCTILITY AND HIGH STRENGTH AND PROCESS FOR PRODUCTION THEREOF EP98917694 1998-04-27 EP0940476A4 2004-03-03 TOYOOKA TAKAAKI; YORIFUJI AKIRA; NISHIMORI MASANORI; ITADANI MOTOAKI; HASHIMOTO YUJI; OKABE TAKATOSHI; TANAKA NOBUKI; KANAYAMA TARO; FURUKIMI OSAMU; MORITA MASAHIKO; HIRA TAKAAKI; MATSUOKA SAIJI
A process for the production of a steel material comprising rolling a steel material having a structure mainly comprising ferrite or ferrite plus pearlite or ferrite plus cementite at a percentage reduction of area of at least 20 % in a ferrite recrystallization temperature region to achieve such characteristics as a crystal particle diameter of not greater than 3 mu m, preferably not greater than 1 mu m, an elongation of at least 20 %, a value of tensile strength (TS: MPa) x elongation (El: %) of at least 10,000 or a percent ductile fracture of at least 95 %, preferably 100 %, in an actual pipe Charpy impact test at -100 DEG C. Particularly, this process yields a steel material containing 0.05 to 0.30 wt.% of C, 0.01 to 3.0 wt.% of Si, 0.01 to 2.0 wt.% of Mn and 0.001 to 0.10 wt.% of Al and having a structure comprising ferrite alone or ferrite and a second phase, wherein the ferrite particle diameter is not greater than 3 mu m and the areal ratio of the second phase is not greater than 30 %. An untreated steel pipe having the composition described above is heated to (Acl + 50 DEG C) to 400 DEG C and subjected to stretch reduction at a cumulative diameter reduction ratio of at least 20 % in a rolling temperature range of (Acl + 50 DEG C) to 400 DEG C. In this case, the rolling process preferably contains at least one rolling pass having a diameter reduction ratio of at least 6 % in the stretch reduction. When the contents of C, Si, Mn and other alloy elements are kept at low levels and stretch reduction is carried out in the temperature range described above, a steel pipe having high ductility and strength and improved toughness and stress corrosion crack resistance can be manufactured and the resulting pipe can be used as a line pipe. The fatigue resistance can be improved, too.
207 Production method of ultra fine grain steel EP00301483.4 2000-02-24 EP1031632A2 2000-08-30 Torizuka, Shiro; Umezawa, Osamu; Tsuzaki, Kaneaki; Nagai, Kotobu

A method of producing a ultra fine grain steel made of ferrite having a mean grain size of not larger that 3 µm as the base phase, after ingoting raw materials, by austenitizing the ingot by heating it to a temperature of at least an Ac 3 point, then, applying compression working of a reduction ratio of at least 50% at a temperature of from an Ae 3 point or lower to an Ar 3 point - 150°C, or at a temperature of at least 550°C, and thereafter, cooling, wherein the strain rate as compression working is in the range of from 0.001 to 10/second.

208 STEEL MATERIAL HAVING HIGH DUCTILITY AND HIGH STRENGTH AND PROCESS FOR PRODUCTION THEREOF EP98917694.6 1998-04-27 EP0940476A1 1999-09-08 TOYOOKA, Takaaki Technical Research Laboratories; YORIFUJI, Akira Technical Research Laboratories; NISHIMORI,Masanori Technical Research Laboratories; ITADANI, Motoaki Technical Research Laboratories; HASHIMOTO, Yuji Technical Research Laboratories; OKABE, Takatoshi Technical Research Laboratories; TANAKA, Nobuki Chita Works; KANAYAMA, Taro Chita Works; FURUKIMI, Osamu Technical Research Laboratories; MORITA, Masahiko Technical Research Laboratories; HIRA, Takaaki Technical Research Laboratories; MATSUOKA, Saiji Technical Research Laboratories

A steel product having a structure composed mainly of ferrite or ferrite plus pearlite or ferrite plus cementite. A steel pipe produced from this steel product by rolling at a ferrite recrystallization temperature such that the reduction of area is greater than 20%. This steel pipe is characterized by grain size not greater than 3 µm, preferably not greater than 1 µm, elongation greater than 20%, tensile strength (TS : MPa) and elongation (El : %) whose product is greater than 10000, and percent ductile fracture greater than 95%, preferably 100%, measured by Charpy impact test on an actual pipe at -100°C. The structure is characterized by C : 0.005-0.03%, Si : 0.01-3.0%, Mn : 0.01-2.0%, and Al : 0.001-0.10% on a weight basis, and is composed of ferrite or ferrite and a secondary phase, with ferrite grains being not greater than 3 µm and the secondary phase having an areal ratio not more than 30%. The steel pipe is produced from a steel pipe stock having the above-mentioned composition by heating at a temperature of (Ac1 + 50°C) to 400°C and subsequently performing reducing on it at a rolling temperature of (Ac1 + 50°C) to 400°C such that the cumulative reduction of diameter is greater than 20%. The reducing is preferably performed such that at least one of rolling passes reduces the diameter by more than 6% per pass. The steel pipe will have high ductility and high strength and will be superior in toughness and stress corrosion cracking resistance, if the content of C, Si, Mn, and other alloying elements is limited low and reducing is performed at the temperature specified above. The resulting steel pipe has good fatigue resistance and is suitable for use as line pipe.

209 ULTRAFINE-GRAIN STEEL PIPE AND PROCESS FOR MANUFACTURING THE SAME EP98929659.5 1998-06-24 EP0924312A1 1999-06-23 TOYOOKA, Takaaki, Techn. Res. Lab.; YORIFUJI, Akira, Techn. Res. Lab.; NISHIMORI, Masanori, Techn. Res. Lab.; ITADANI, Motoaki, Techn. Res. Lab.; HASHIMOTO, Yuji, Techn. Res. Lab.; OKABE, Takatoshi, Techn. Res. Lab.; KANAYAMA, Taro, Chita Works; MORITA, Masahiko, Tech. Res. Lab. Kawasaki; MATSUOKA, Saiji, Tech. Res. Lab. Kawasaki; TANAKA, Nobuki, Chita Works; FURUKIMI, Osamu, Techn. Res. Lab.; HIRA, Takaaki, Techn. Res. Lab.

A steel pipe containing fine ferrite crystal grains, which has excellent toughness and ductility and good ductility-strength balance as well as superior collision impact resistance, and a method for producing the same are provided. A steel pipe containing super-fine crystal grains can be produced by heating a base steel pipe having ferrite grains with an average crystal diameter of di (µm), in which C, Si, Mn and Al are limited within proper ranges, and if necessary, Cu, Ni, Cr and Mo, or Nb, Ti, V, B, etc. are further added, at not higher than the Ac3 transformation point, and applying reducing at an average rolling temperature of θm (°C) and a total reduction ration Tred (%) within s temperature range of from 400 to Ac3 transformation point, with di, θm and Tred being in a relation satisfying a prescribed equation.

210 새로운 성질을 갖는 용접 조인트 및 초음파 충격 처리에의한 이러한 성질의 제공 KR1020077014167 2005-11-14 KR101313526B1 2013-10-01 스타트니코프에핌에스.
본 발명은 어떤 새로운 또는 개선된 성질을 갖는 분리 불가능한 용접 조인트 그리고 초음파 충격 처리에 의한 이러한 분리 불가능한 용접 조인트의 제공에 관한 것으로, 미리 결정된 성질의 형성을 제어하고 그에 의해 용접 조인트에 의해 수행될 역할을 기초로 하여 조인트에 개선된 품질 및 신뢰성을 제공하기 위해 선택 처리 파라미터를 조정하는 단계를 포함한다. 처리 파라미터는 초음파 충격의 반복 속도 및 길이, 처리될 표면에 대해 초음파 충격 공구 상에서 인가되는 압력 그리고 충격 진폭을 포함한다. 용접 조인트, 초음파 충격 처리, 초음파 충격의 반복 속도 및 길이, 처리될 표면에 대한 초음파 충격 공구 상에서 인가되는 압력, 충격 진폭
211 금속체의 가공 방법 및 금속체의 가공 장치 KR1020057016817 2004-03-10 KR101140918B1 2012-07-03 나카무라가쓰아키; 호리따젠지; 네이시고지; 나까가끼미찌히꼬; 가네꼬겐지
본 발명의 과제는 금속체의 금속 조직을 세분화함으로써 고강도화 혹은 고연성화한 금속체의 가공 방법 및 상기 금속체의 가공 장치를 제공하는 것이다. 이 금속체의 가공 방법 및 가공 장치에서는 금속체에 변형 저항을 국부적으로 낮춘 저변형 저항 영역을 형성하고, 이 저변형 저항 영역을 전단 변형시킴으로써 금속체의 금속 조직을 세분화하는 금속체의 가공 방법 및 가공 장치이며, 저변형 저항 영역에 있어서 저하되어 있는 변형 저항을 증대시켜 비 저변형 저항 영역을 형성하는 비 저변형 저항 형성 수단에 의해 저변형 저항 영역을 따라서 비 저변형 저항 영역을 형성하고 있는 것이다. 금속체, 저변형 저항 영역, 전단 변형부, 회전부, 냉각부, 분무 노즐, 케이싱
212 열연 강판 KR1020097001588 2004-09-02 KR1020090016518A 2009-02-13 요꼬이다쯔오; 야마다데쯔야; 가와노오사무
A hot rolled steel sheet, which has a chemical composition, in mass %, that C: 0.01 to 0.2 %, Si: 0.01 to 2 %, Mn: 0.1 to 2 %, P: 0.1 % or less, S: 0.03 % or less, Al: 0.001 to 0.1 %, N: 0.01 % or less, and the balance; Fe and inevitable impurities, has a microstructure being composed mainly of a uniform continuous cooling transformation structure and having an average grain diameter of greater than 8 mum and 30 mum or less; and a method for producing the hot rolled steel sheet which comprises a step of subjecting a steel billet having the above composition to rough rolling, to make a rough bar, a step of subjecting the rough bar to a finish rolling under a condition involving an ending temperature of (the Ar3 transformation temperature thereof + 50°C) or higher, to prepare a rolled material, and a step comprising starting to cool the rolled material at the Ar3 transformation temperature thereof or higher after the elapse of 0. 5 sec or more from the end of the finish rolling, cooling it at a cooling rate of 80°C/sec or higher at least in a temperature region of from the Ar3transformation temperature to 500°C, and further cooling it to a temperature region of 500°C or lower, followed by winding it up as a hot-rolled steel sheet.
213 합금 탄소강 및 이의 제조 방법 KR1020047009225 2002-12-12 KR100860292B1 2008-09-25 쿠진스키그르제고르제제이; 폴락데이비드; 토마스개리쓰
마르텐사이트(13)의 래스(lath)가 오스테나이트(14)의 박막과 교대로 배치된 전위 래스 조직을 포함하는 결정립과 융합된 페라이트 결정립으로 이루어진 3상 미세 조직을 포함하는 고성능의 탄소강이 개시된다. 상기 조직은 마르텐사이트-오스테나이트 결정립(12)과 융합된 페라이트 결정립(11)을 포함하며, 각 마르텐사이트-오스테나이트 결정립(12)은, 실질적으로 평행한 래스(13)가 마르텐사이트 결정립으로 이루어져 있고, 이들 래스는 잔류 오스테나이트상의 박막(14)에 의해 분리되어 있는 전위 래스 조직을 갖는다. 그러한 미세 조직은, 오스테나이트화 후에, 베이나이트 및 펄라이트의 형성 및 상 계면에서의 석출을 피하도록 다단계의 냉각을 행하는 독특한 방법에 의해 형성될 수 있다. 원하는 미세 조직은, 주조, 열처리, 실시간 단조, 기타 통상의 야금학적 처리 과정에 의해 얻어질 수 있으며, 기계적 성질과 부식 성질의 우수한 조합을 얻을 수 있다.
214 냉간압연된 마레이징 강 띠강판에서 절삭된 띠강판 또는부품을 제조하는 방법 KR1020087009332 2001-11-16 KR1020080048544A 2008-06-02 꾸뛰,뤼시앙
The invention concerns a method for making a strip or a workpiece cut out from a cold rolled maraging steel strip and hardened by a hardening heat treatment, which consists, prior to the heat treatment, in subjecting the strip or the workpiece to cold plastic deformation with a rate of strain hardening more than 30 % and in subjecting the strip or the workpiece to a recrystallization annealing so as to obtain a fine grain of ASTM index more than 8. The maraging steel composition comprises, by weight: 12 % <= Ni <= 24.5 %; 2.5 % <= Mo <= 12 %; 4.17 % <= Co <= 20 %; Al <= 0.15 %; Ti <= 0. 1 %; N <= 0.003 %; Si <= 0.1 %; Mn <= 0.1 %; C <= 0.005 %; S <= 0.001 %; P <= 0.005 %; H <= = 0.0003 %; O <= 0.001 %; the rest being iron and impurities resulting from preparation of the composition, the composition further satisfying the following relationships: 20 % <= Ni + Mo <= 27 %; 50 <= Co x Mo <= 200<; Ti x N <= 2 x 10-4. The invention also concerns the resulting strip.
215 초미세조직강의 제조방법 KR1020000009032 2000-02-24 KR100522418B1 2005-10-19 토리즈카시로우; 우메자와오사무; 쯔자키카네아키; 나가이코토부
본 출원의 발명은, 초미세조직강의 제조방법에 관한 것으로, 보다 자세하게는 본 발명은 고강도의 용접용 강 등으로서 유용한 초미세조직강을 높은 생산성으로 제조하는 방법에 관한 것이다. 본 출원의 발명은 보다 낮은 변형저항 하에서, 보다 적은 압하량과 특히 느린 냉각속도로, 평균입경 3미크론 이하의 페라이트를 모상으로 하는 초미세조직강을 제조하는 새로운 방법을 제공하는 것을 과제로 한다. 이를 위한 해결수단으로 본 발명은 원료를 용융조제 후에 Ac3점 이상의 온도로 가열하여 오스테나이트화하고, 이어서 Ae3점 이하 Ar3-l50℃, 또는 550℃ 이상의 온도로, 압하율 50% 이상의 압축가공을 가하고, 그 후 냉각하여 평균입경 3㎛ 이하의 페라이트를 모상으로 하는 초미세조직강의 제조방법에 있어서, 압축가공시의 비틀림 속도를 0.001∼10/S의 범위의 것으로 한다. 본 출원의 발명에 의해서 보다 낮은 변형저항하에서 보다 적은 압하량과 특히 느린 냉각속도로 평균입경 3㎛ 이하의 페라이트를 모상으로 하는 초미세조직강을 제조하는 새로운 방법이 제공된다.
216 초미세 입자 강관 및 그 제조방법 KR1019997001507 1998-06-24 KR100330432B1 2002-03-27 도요오카다카아키; 요리후지아키라; 니시모리마사노리; 이타다니모토아키; 하시모토유지; 오카베다카토시; 가나야마타로; 다나카노부키; 모리타마사히코; 마츠오카사이지; 후루키미오사무; 히라다카아키
본발명은초미세입자강관및 그제조방법에관한것으로서, 페라이트결정입자가미세화되어인성·연성이뛰어나고연성-강도밸런스및 내충격특성이뛰어난강관및 그제조방법을제공하는것으로, C,Si,Mn,Al을적정범위로한정하고필요에따라서 Cu,Ni,Cr,Mo나 Nb,Ti,V,B 등을첨가한페라이트의평균결정입자직경(di)(㎛)의소재강관을 Ac3 변태점이하로가열하고평균압연온도(θm)(℃), 합계축경율(Tred)(%)의드로잉압연을 400∼Ac3 변태점의온도범위이고, di,θm 및 Tred의관계가소정의관계식을만족하는드로잉압연을실시함으로써초미세입자를갖는강관을제조할수 있는것을특징으로한다.
217 초미세 입자를 함유하는 가공용 열간 압연 강판과 이의 제조방법, 및 냉간 압연 강판의 제조 방법 KR1019997004147 1998-09-10 KR1020000068956A 2000-11-25 야스하라에이코; 후루키미오사무; 모리타마사히코; 오카다스스무
본발명은일반고온스트립밀로용이하게실시가능하고또한기계적성질의이방성이적고, 더구나종래기술로달성할수 없는최종페라이트의입경이 2㎛미만인초미세입자를수득하는, 가공용열간압연강판및 그의제조방법에관한것이다. 본발명은페라이트을주상으로하는열간압연강판으로써, 평균페라이트의입경이 2㎛미만이고, 페라이트입자의양태비가 1.5 미만인열간압연강판에관한것으로, 본열간압연강판은열간마무리압연을시행할때 동적재결정조건하에서압연분쇄를 5개이상의스탠드의압연분쇄패스에서수행함으로써수득될수 있다.
218 고연성고강도강관및그제조방법 KR1019980711000 1998-04-27 KR1020000022552A 2000-04-25 도요오카다카아키; 요리후지아키라; 니시모리마사노리; 이타다니모토아키; 하시모토유지; 오카베다카토시; 다나카노부키; 가나야마타로; 후루키미오사무; 히라다카아키; 모리타마사히코; 마츠오카사이지
PURPOSE: A steel pipe having high ductility and strength and improved toughness and stress corrosion crack resistance can be manufactured and the resulting pipe can be used as a line pipe, and can be improved fatigue resistance, when the contents of C, Si, Mn and other alloy elements are kept at low levels and stretch reduction is carried out in the temperature range CONSTITUTION: A process for the production of a steel material comprising rolling a steel material having a structure mainly comprising ferrite or ferrite plus perlite or ferrite plus cement at a percentage reduction of area of at least 20 % in a ferrite recrystallization temperature region to achieve such characteristics as a crystal particle diameter of not greater than 3 micrometer preferably not greater than 1 micrometer, an elongation of at least 20 %, a value of tensile strength (TS: MPa) x elongation (El: %) of at least 10,000 or a percent ductile fracture of at least 95 %, preferably 100 %, in an actual pipe Charpy impact test at -100°C. Particularly, this process yields a steel material containing 0.05 to 0.30 wt.% of C, 0.01 to 3.0 wt.% of Si, 0.01 to 2.0 wt.% of Mn and 0.001 to 0.10 wt.% of Al and having a structure comprising ferrite alone or ferrite and a second phase, wherein the ferrite particle diameter is not greater than 3 micrometer and the areal ratio of the second phase is not greater than 30 %. An untreated steel pipe having the composition described above is heated to (Acl + 50°C) to 400°C and subjected to stretch reduction at a cumulative diameter reduction ratio of at least 20 % in a rolling temperature range of (Acl + 50°C) to 400°C. In this case, the rolling process preferably contains at least one rolling pass having a diameter reduction ratio of at least 6 % in the stretch reduction.
219 BEARING STEEL MATERIAL HAVING SUPERIOR ROLLING FATIGUE CHARACTERISTICS AND A METHOD FOR PRODUCING SAME EP13768602.8 2013-03-05 EP2832893B1 2017-05-31 KAIZUKA, Masaki; SHINDO, Yosuke; FUJITA, Manabu
220 METHOD OF PRODUCING A NANO-TWINNED TITANIUM MATERIAL BY CASTING EP11807911.0 2011-12-21 EP2655682B1 2017-02-22 CHAI, Guocai
QQ群二维码
意见反馈