序号 | 专利名 | 申请号 | 申请日 | 公开(公告)号 | 公开(公告)日 | 发明人 |
---|---|---|---|---|---|---|
1 | 用于修复周围神经损伤的细胞基质修饰的组织工程神经移植物及其制备方法 | CN201310028903.6 | 2013-01-25 | CN103041450B | 2015-06-10 | 顾晓松; 丁斐; 顾芸; 薛成斌; 杨宇民; 王勇军; 龚蕾蕾 |
本发明公开了一种用于修复周围神经缺损的组织工程神经移植物及制备方法,组织工程神经移植物由神经导管和细胞基质构建而成。制备方法包括含支持细胞的组织工程神经移植物的构建及细胞基质修饰的组织工程神经移植物的构建。本发明优点明显,神经导管及支架上的细胞基质是由培养的细胞形成后脱细胞获得,是完全天然的细胞基质,更利于细胞的黏附,并对轴突再生的方向性具有一定的导向作用,因而更利于加快神经再生的进程。同时去细胞后可降低或免除同种异体细胞移植的免疫原性,建立一个有利于再生轴突生长的环境,以达到神经快速生长、功能恢复的理想目标,为临床治疗提供可行方案。 | ||||||
2 | 用于修复周围神经损伤的细胞基质修饰的组织工程神经移植物及其制备方法 | CN201310028903.6 | 2013-01-25 | CN103041450A | 2013-04-17 | 顾晓松; 丁斐; 顾芸; 薛成斌; 杨宇民; 王勇军; 龚蕾蕾 |
本发明公开了一种用于修复周围神经缺损的组织工程神经移植物及制备方法,组织工程神经移植物由神经导管和细胞基质构建而成。制备方法包括含支持细胞的组织工程神经移植物的构建及细胞基质修饰的组织工程神经移植物的构建。本发明优点明显,神经导管及支架上的细胞基质是由培养的细胞形成后脱细胞获得,是完全天然的细胞基质,更利于细胞的黏附,并对轴突再生的方向性具有一定的导向作用,因而更利于加快神经再生的进程。同时去细胞后可降低或免除同种异体细胞移植的免疫原性,建立一个有利于再生轴突生长的环境,以达到神经快速生长、功能恢复的理想目标,为临床治疗提供可行方案。 | ||||||
3 | 提高人干细胞活性的方法 | CN201180018007.0 | 2011-04-05 | CN102822331A | 2012-12-12 | 金孝洙; 姜炫在; 李银珠 |
本发明提供一种制备高活性人间充质干细胞的方法,其包括通过在克服重力的条件下培养人间充质干细胞以形成球状细胞团块;由此方法制备的高活性干细胞团块;含有所述干细胞团块的细胞治疗剂;以及通过培养人间充质干细胞以形成球状细胞团块的方法,其中所述间充质干细胞中上皮钙粘附蛋白的量在培养过程中增加。 | ||||||
4 | 细胞聚集体的制备方法 | CN201680008039.5 | 2016-01-26 | CN107208065A | 2017-09-26 | 堀口一树; 酒井康行; 伊吹将人 |
本发明的课题在于提供一种基于悬浮培养的细胞聚集体的制备方法,该方法是易于将细胞聚集体调整至适于培养的大小、且对细胞造成损伤的可能性低的方法。本发明涉及一种细胞聚集体的制备方法,该方法包括在含有溶血磷脂的液体培养基中使细胞悬浮并进行培养的工序。 | ||||||
5 | 一种动物肌卫星细胞的分离培养技术 | CN201510997218.3 | 2015-12-29 | CN105505861A | 2016-04-20 | 邬江; 陈旭升; 孙晓静 |
本发明属于细胞生物学、组织工程学交叉学科技术领域且公开了一种动物肌卫星细胞的分离培养技术,大鼠1%戊巴比妥钠腹腔麻醉(40mg/kg)成功后,无菌条件下取出前肢三头肌,随即用D-Hank’s液冲洗3遍,采用酶消化法分离培养。该发明具有双酶消化,分步离心,多目过滤,双面贴壁,等好处,操作简便,培养纯度高。 | ||||||
6 | 培养多能干细胞的方法和设备 | CN02830112.9 | 2002-12-27 | CN1717479A | 2006-01-04 | 弓削类; 植村胜 |
在培养多能干细胞的方法中,在对密封在第一培养容器中该多能干细胞的分化进行抑制的同时,培养所述多能干细胞。然后在对密封在第二培养容器中的所述经过培养的多能干细胞施加力以促进该经过培养的多能干细胞的分化的同时,培养所述经过培养的多能干细胞。 | ||||||
7 | Multi-cellular, three-dimensional living mammalian tissue | US939791 | 1992-09-03 | US5308764A | 1994-05-03 | Thomas J. Goodwin; David A. Wolf |
The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly. | ||||||
8 | Method for culturing mammalian cells in a horizontally rotated bioreactor | US687605 | 1991-04-15 | US5153133A | 1992-10-06 | Ray P. Schwarz; David A. Wolf; Tinh T. Trinh |
A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane. | ||||||
9 | TGP含有保存液と微小重力負荷による免疫細胞及び血液細胞の機能増強方法 | JP2016051739 | 2016-03-15 | JP2017163894A | 2017-09-21 | 森 有一; 吉岡 浩; 照沼 裕; サミュエル アブラハム |
【課題】 この発明は、NK細胞のNO産生能など、各種細胞の機能をより増強する方法を提供することを目的としている。 【解決手段】 細胞を、その水溶液が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示すハイドロゲル形成性の高分子を少なくとも含む水溶液中に低温ゾル状態で包埋した後、前記細胞を含む前記水溶液を高温ゲル状態とし、該細胞を微小重力下で培養する工程を少なくとも含むことを特徴とする細胞機能の増強方法。 【選択図】なし |
||||||
10 | A method for manufacturing a living tissue | JP2009005185 | 2009-01-13 | JP5407343B2 | 2014-02-05 | 政彦 長谷 |
This invention provides a method for preparing biological tissue in which the thickness (i.e., the number of cell layers) can be easily regulated, culture can be conducted within a shorter period of time than is possible with conventional techniques, and addition of unfavorable components is not necessary. The method of the invention comprises adding a cell-containing culture solution to a culture vessel having a non-cell-adhesive inner bottom surface, conducting cell culture while centrifugal force toward the inner bottom surface is applied to the cells in the vessel, forming tissue via intercellular adhesion, and detaching and collecting the resulting tissue from the inner bottom surface. | ||||||
11 | Cartilage tissue construction method using the cell scaffold material in 擬微 microgravity culture | JP2007521382 | 2006-06-15 | JP4974082B2 | 2012-07-11 | 淑美 大藪; 壽公 植村; 順三 田中; 義人 筏 |
12 | Media compositions for three-dimensional mammalian tissue growth under microgravity culture conditions | US600793 | 1996-02-13 | US5846807A | 1998-12-08 | Thomas J. Goodwin |
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. | ||||||
13 | Three-dimensional co-culture process | US170488 | 1993-12-17 | US5627021A | 1997-05-06 | Thomas J. Goodwin; David A. Wolf |
The process of the present invention relates to a three dimensional co-culture process. | ||||||
14 | Horizontally rotated cell culture system with a coaxial tubular oxygenator | US213558 | 1988-06-30 | US5026650A | 1991-06-25 | Ray P. Schwarz; David A. Wolf; Tinh T. Trinh |
A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane. | ||||||
15 | Cultured high-fidelity three-dimensional human urogenital tract carcinomas and process | US172962 | 1993-12-27 | US5851816A | 1998-12-22 | Thomas J. Goodwin; Tacey L. Prewett; Glenn F. Spaulding; David A. Wolf |
Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. | ||||||
16 | Method for producing non-neoplastic, three dimensional, mammalian tissue and cell aggregates under microgravity culture conditions and the products produced therefrom | US66292 | 1993-05-25 | US5496722A | 1996-03-05 | Thomas J. Goodwin; David A. Wolf; Glenn F. Spaulding; Tacey L. Prewett |
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. | ||||||
17 | Three-dimensional cell to tissue assembly process | US317776 | 1989-03-02 | US5155034A | 1992-10-13 | David A. Wolf; Ray P. Schwarz; Marian L. Lewis; John H. Cross; Mary H. Huls |
The present invention relates to a 3-dimensional cell to tissue and maintenance process, more particularly to methods of culturing cells in a culture environment, either in space or in a gravity field, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region. | ||||||
18 | Three-dimensional co-culture process | US317931 | 1989-03-02 | US5153132A | 1992-10-06 | Thomas J. Goodwin; David A. Wolf |
The process of the present invention relates to a three dimensional co-culture process. Wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes the rotation of the bioreactor is adjusted accordingly. | ||||||
19 | 미세중력을 이용한 세포내 AMP 활성화 단백질 키나아제의 활성화 방법 | KR1020120066195 | 2012-06-20 | KR1020130142724A | 2013-12-30 | 박준수; 류현욱; 김한성 |
The present invention relates to a method for activating amp activation protein kinase in cells by cultivating cells in micro-gravity where gravity is almost non-existent. The cultivation of cells in micro-gravity according to the present invention activates AMPK inside cells to improve metabolism, and also activates AMPK when cultivating cells in bulk for producing proteins. The cultivation of AMPK according to the present invention inhibits the synthesis of fatty acid or cholesterol, so that the method is useful in the cell treatment field improving metabolism. | ||||||
20 | 細胞凝集塊の作製方法 | JP2016572045 | 2016-01-26 | JPWO2016121737A1 | 2017-10-19 | 一樹 堀口; 酒井 康行; 康行 酒井; 将人 伊吹 |
本発明の課題は、浮遊培養による細胞凝集塊の作製方法であって、細胞凝集塊を培養に適した大きさに調整することが容易な、細胞へ障害を与える可能性の低い方法を提供することである。本発明は、リゾリン脂質を含む液体培地中で浮遊させながら細胞を培養する工程を含む、細胞凝集塊の作製方法に関する。 |