Document Document Title
US11496654B2 Projection-type video conference device and system there of
A projection-type video conference device comprises a camera assembly configuring to acquire a panoramic video of a conference scene, an audio input assembly configuring to collect voice signals of the conference scene, a projection assembly configuring to display images or information of a conference video and an audio output assembly configuring to broadcast a voice signal of the projection assembly or a voice signal of the audio input assembly, wherein the camera assembly is embedded in a housing of the projection-type video conference device and is liftable. And a projection-type video conference system comprises projection-type video conference devices which are connected with each other.
US11496652B2 Electronic apparatus, method for controlling same, and computer readable medium
An electronic apparatus provided with a display unit configured to display image data, comprises a synchronization control unit that generates a synchronization signal based on a display rate of the display unit, and an image processing unit that operates in accordance with an operating clock and execute image processing on image data to be displayed on the display unit at a display rate synchronized with the synchronization signal. The operating clock is not changed when the synchronization control unit changes a period of the synchronization signal in accordance with a change in a display rate of the display unit.
US11496648B2 Image-processing apparatus, image-forming apparatus, method of processing image, and storage medium
An image processing apparatus includes one or more processors and one or more memories, the one or more memories including one or more programs. The one or more programs cause the one or more processors (a) to acquire first shape data that represents a three-dimensional shape of unevenness, (b) to generate edge data for specifying a first area that corresponds to an edge of a convex portion and a second area that does not correspond to the edge of the convex potion in the unevenness, based on the first shape data, and (c) to generate, based on the edge data, data to form the first area and not the second area on a recording medium.
US11496644B2 Image processing system and non-transitory computer-readable recording medium having stored thereon image processing program
A CNN of an image forming apparatus includes: an encoder which compresses, for each tile image obtained by dividing an image into specific size pieces, information of the tile image; a decoder which restores the information of the tile image compressed by the encoder; and a blank sheet determination portion which determines whether the tile image corresponds to a blank sheet image. A segmentation image generation portion uses, when the blank sheet determination portion determines the tile image as being the blank sheet image, the blank sheet image for an image of a part corresponding to the tile image in a segmentation image, and uses, when the blank sheet determination portion determines the tile image as not being the blank sheet image, an output image of the decoder for an image of a part corresponding to the tile image in the segmentation image.
US11496643B2 Information processing apparatus and control method for determining whether to limit processing based on switch information
To provide an apparatus for performing operation relating to switching of a power switch while power is supplied from an auxiliary power source, the apparatus acquires switch information indicating whether the power switch is in an on state from a BMU of a battery pack and determines whether to limit processing based on a user instruction based on the acquired switch information.
US11496642B2 Image forming apparatus, image forming method, and image forming system for calculating an image forming condition based on characteristic information of a recording medium
An image forming apparatus includes processing circuitry and an image forming device. The processing circuitry is configured to acquire characteristic information of a recording medium measured, and apply a preset calculation criterion to the characteristic information to calculate an image forming condition. The image forming device is configured to form an image on the recording medium based on the image forming condition calculated by the processing circuitry.
US11496641B2 Image reading apparatus and image forming apparatus
An image reading apparatus connectable to an image forming apparatus includes a feeding roller pair configured to nip and feed a sheet discharged from the image forming apparatus, a contact image sensor configured to read an image on a first surface of the sheet fed by the feeding roller pair, a light-transmissive plate provided opposed to the contact image sensor and having a light-transmission property, a first roller opposing the light-transmissive plate with a gap therebetween on a side opposite from the contact image sensor with respect to the light-transmissive plat, and a second roller positioned upstream of the first roller with respect to a sheet feeding direction and opposing the light-transmissive plate with a gap therebetween on the same side as the first roller.
US11496639B2 Image reading apparatus for generating a cutout image from input image
The image reading apparatus includes a separation roller, an imaging device to generate an input image, a conveyance roller to convey the medium separated by the separation roller to the imaging device, a first medium sensor located between the separation roller and the conveyance roller, a second medium sensor located between the conveyance roller and the imaging device, a processor to start imaging by the imaging device in response to detection of the medium by the first medium sensor and generate a cutout image from the input image in response to detection of the medium by the second medium sensor, and an output device to output the cutout image. The processor generates the cutout image based on a position imaged by a predetermined amount before a position imaged at a timing when the second medium sensor detects the medium, in the input image.
US11496636B2 System and method for character recognition processing
An image processing system includes an information processing apparatus and an image processing apparatus. The image processing apparatus generates a plurality of pieces of image data by scanning a plurality of documents, associates, with image data generated by scanning a handwritten document out of the plurality of pieces of image data, information indicating that the image data is image data generated by scanning a handwritten document, and transmits, to the information processing apparatus, the plurality of pieces of image data and the information. The information processing apparatus receives the information and the plurality of pieces of image data; and executes character recognition processing on first image data with which the information is not associated, and obtains character information based on the first image data, wherein character information based on second image data with which the information is associated is obtained by executing processing different from the character recognition processing.
US11496633B2 Image processing apparatus and server apparatus with interactive refinement of streak detection, control method therefor, and storage medium
There is provided an information processing apparatus. The information processing apparatus acquires image data of a document read via a scanner; detects a streak included in the image data acquired by the acquisition unit by using a parameter for detection processing of detecting a streak; transmits the image data, the parameter, and a detection result obtained by the detection unit to an external apparatus; and changes the parameter used by the detection unit upon reception of a change in the parameter from the external apparatus.
US11496632B2 Image forming apparatus
An apparatus including: a forming unit configured to form a measurement image on a sheet; a fixing unit configured to fix the measurement image; a measurement unit provided downstream of the fixing unit in a sheet conveyance direction and configured to measure a color of the fixed measurement image; a detector configured to detect whether a cooling device having a cooling function valid is connected between the fixing unit and the measurement unit; and a controller configured to determine, in a case in which the color of the measurement image is measured, a time to be taken after the sheet has passed through the fixing unit until the measurement unit starts measuring the color of the measurement image based on a result of the detector, and to control sheet conveyance based on the determined time.
US11496631B2 Measurement apparatus, information processing apparatus, and non-transitory computer readable medium storing program comprising a processor that controls the light irradiator that includes a first light source row and a second light source row having different positions and covering a majority of a reading unit, a third light source and a fourth light source having different positions in the intersecting direction
A measurement apparatus includes a light irradiator that irradiates a measurement target with light and a processor that controls the light irradiator, in which the processor is configured to irradiate a specific place of the measurement target with the light from plural places having different positions in one direction, and irradiate the specific place of the measurement target with the light from the plural places having different positions in a direction intersecting the one direction.
US11496629B2 Flexible charging mechanism for shared spectrum usage
A spectrum access system (SAS) grants one or more channels of a shared spectrum to a base station, e.g., in response to receiving a registration request from the base station. The SAS increments a usage of a connection between the base station and the SAS in response to the SAS receiving information indicating that the base station has an active connection with the apparatus during a service time interval. The processor does not increment the usage if the base station does not have an active connection with the apparatus during the service time interval. In some cases, the active connection is indicated by heartbeat messages exchanged between the base station and the SAS. A customer associated with the base station is charged a cost based on the usage determined by the SAS.
US11496624B2 System and methods for operating and testing real-time communications between web browsers and contact centers
A system and method for operating and testing real-time communications between web browsers and contact centers, comprising an operator network, cloud contact center, cloud contact center agent application, and a synthetic software agent comprised of agent automation software, injected API shim code, virtual audio devices, audio processing applications, and media servers, capable of performing automated and to end communication testing. In order to provide end to end testing, especially with respect to voice quality, the synthetic agent software may control and monitor the audio channels (both send and receive) of the browser communication session.
US11496618B2 Mobile terminal device with function limitation, function limitation method thereof, and processing program used in same
The purpose is to provide a mobile terminal device that can limit the use of the application by detecting the user position of the mobile terminal device and the speed of the vehicle by itself. To this end, provided is a function limitation method of a mobile terminal device with function limitation capable of limiting a use of an application, including, a step of determining whether or not a limitation target application of the mobile terminal device is in activation, a usage position check step of determining, by the mobile terminal device, a user of the mobile terminal device is on a driver seat, and a speed check step of calculating, by the mobile terminal device, a vehicle in which the user of the mobile terminal device is riding is traveling, in which the use of the application is limited or terminated when the user of the mobile terminal device is on the driver seat, and the vehicle is traveling.
US11496617B2 Car surveillance system
A safety system particularly for a transport service software application. The system integrates into an existing transport service software application communicates with a cellular network mobile device of a transport service driver or at least one passenger located in a vehicle offering rideshare services. In an emergency, a user of the system may press a panic button on the application. The mobile device activates its camera and microphone turns on to livestreams audio and video to emergency personnel, and transmits GPS data to said emergency personnel.
US11496616B2 Hands-free device, data transfer method, and computer program product
A hands-free device according to the present disclosure includes a memory and a processor coupled to the memory. The processor is configured to: connect to a cellular phone in a hands-free telephone conversation-enabled manner pursuant to HFP; receive from the cellular phone at least one of outgoing call history data, incoming call history data, unattended incoming call history data, and telephone directory data stored in the cellular phone by a communication protocol pursuant to PBAP; and receive, when the cellular phone receives a voice message or an answerphone record, at least one of information on the voice message and information on the answerphone record from the cellular phone.
US11496615B2 Universal bracket for a telecommunication terminal
A bracket for a telecommunication terminal has a first jaw formed with a first receptacle for a first edge side of the telecommunication terminal and a second jaw with a second receptacle for a second edge side, opposite the first edge side, of the telecommunication terminal. The first and second receptacles, in an initial position of the bracket, form one side of a V-shaped insertion opening. At least one of the jaws is mounted rotatably on a housing of the bracket. The receptacle of the rotatably mounted jaw has a first section in front of the axis of rotation of the jaw in the direction of insertion of the telecommunication terminal and a second section arranged behind the axis of rotation of the jaw in the direction of insertion. The rotatably mounted jaw is rotatable counter to the restoring force of a first spring element.
US11496614B2 Hands-free apparatus, method of data transfer, and computer-readable medium
A hands-free apparatus includes a memory and a hardware processor coupled to the memory. The hardware processor is configured to: connect to a mobile phone to enable a hands-free telephone conversation; receive at least one data of outgoing call history data, incoming call history data, missed call history data, and phonebook data stored in the mobile phone; and execute synchronization permission checking processing to check whether transfer of the at least one data is permitted in the mobile phone before receiving the at least one data from the mobile phone.
US11496613B2 Detecting user interest in presented media items by observing volume change events
An electronic device monitors audible output for media content being presented in its vicinity. It detects a volume change event within the monitored audible output. It obtains identification of the media content. Based on the identification, the device obtains a list of expected volume change events within the media content. It determines whether the detected volume change event correlates with one of the expected volume change events. In accordance with a determination that there is no correlation, the device determines that the detected volume change event comprises a volume change event from a user of the device. It analyzes the detected volume change event to determine user interest in the presented media content. The determined level of interest is sent to a server system. The device receives from the server system one or more recommendations based on the determined level of interest, and presents to the user the recommendations.
US11496610B2 Network management data translation, querying, and discrepancy detection
A network device receives a first configuration management message from a first network element, where the first configuration management message has a first data format. The network device translates the first configuration management message from the first data format to a Common Network Data (CND) model format to produce a first translated message, where the CND model format comprises a graph schema based on nodes, edges, and properties to represent and store configuration management message data. The network device stores the first translated message in a CND model format data structure for subsequent use in message querying, message comparison, message anomaly detection, or message discrepancy detection.
US11496606B2 Sticky service sessions in a datacenter
Some embodiments provide novel inline switches that distribute data messages from source compute nodes (SCNs) to different groups of destination service compute nodes (DSCNs). In some embodiments, the inline switches are deployed in the source compute nodes datapaths (e.g., egress datapath). The inline switches in some embodiments are service switches that (1) receive data messages from the SCNs, (2) identify service nodes in a service-node cluster for processing the data messages based on service policies that the switches implement, and (3) use tunnels to send the received data messages to their identified service nodes. Alternatively, or conjunctively, the inline service switches of some embodiments (1) identify service-nodes cluster for processing the data messages based on service policies that the switches implement, and (2) use tunnels to send the received data messages to the identified service-node clusters. The service-node clusters can perform the same service or can perform different services in some embodiments. This tunnel-based approach for distributing data messages to service nodes/clusters is advantageous for seamlessly implementing in a datacenter a cloud-based XaaS model (where XaaS stands for X as a service, and X stands for anything), in which any number of services are provided by service providers in the cloud.
US11496603B2 Providing content based on event related information
Systems and methods for selecting content based on an event associated with a device identifier are provided. One or more processors can receive a request to serve content. The processors can identify a device identifier associated with the request. The processors can determine, from the device identifier, an event for which to serve content. The processors can determine, from the request, a length of time between a time the request to serve content is received and a time at which the event is scheduled to occur. The processors can select, based on the determined length of time and event parameters associated with the event, content for display and provide the selected content for display at a computing device associated with the device identifier.
US11496599B1 Efficient flow management utilizing control packets
Techniques are disclosed for utilizing control packets to manage flows by a smart network interface card (smartNIC). In one example, an accelerator of the smartNIC determines that a cache entry of a cache that is managed by the accelerator is a candidate for removal. The cache entry stores flow state of a particular flow. The accelerator generates a control packet that includes flow information of the particular flow that is formatted utilizing a particular header format, the flow information operable for generating a hash that indexes to the cache entry. The accelerator includes an instruction within the control packet that requests a programming data plane of the smartNIC to provide instructions for removing the cache entry from the cache. Upon receiving the control packet, the programming data plane generates and transmits a second instruction to the accelerator for removing the cache entry from the cache.
US11496597B2 Methods and apparatuses for content delivery over mobile networks with multi-access edge computing (MEC) control and user plane separation (CUPS)
A method is performed at a mobile core, including assigning a first cache servicing a client device in response to a first request for a media content item based at least in part on a first IP address of the client device associated with a first edge location. The method further includes providing a first portion of the media content item from the first cache. The method additionally includes triggering a plurality of caches at edge locations proximate to the first edge location to retrieve a second portion of the media content item. The method also includes receiving a continuation request from the client device with a second IP address associated with a second edge location. The method further includes selecting a second cache from the plurality of caches based at least in part on the second IP address and continuing providing the media content item from the second cache.
US11496596B2 Streaming network monitoring caching infrastructure
Systems and methods of network telemetry caching and distribution are provided. The system can receive network telemetry data and store it as a plurality of data nodes. The system can maintain a node pointer map and a node pointer queue. If the system receives an update to a data node having a corresponding node pointer not already present in the node pointer map, the system can add the node pointer to the node pointer queue and to the node pointer map with a count of zero. If the node pointer is already present in the node pointer map, the system can increment the node count for the node pointer in the node pointer map and not add the node pointer to the node pointer queue. The system can transmit data values and node counts to the client device for each node pointer in the node pointer queue.
US11496592B2 Generating application configurations based on user engagement segments
In some implementations, a server device can generate configuration data for an application based on user engagement segments associated with a user of the application. For example, a server device can receive information identifying user engagement segments associated with a particular user. When the server device receives a request for configuration data for the application that identifies the particular user, the server device can obtain the engagement segment identifiers associated with the particular user. The server device can use the engagement segment identifiers to obtain segment configuration data for each engagement segment identifier, combine the segment configuration data into a combined configuration, and send the combined configuration to the application on the user device. The application can then determine what content to present and how to present the content on the user device based on the combined configuration data.
US11496589B2 Zero day zero touch providing of services with policy control
Services with policy control may be provided. A computing device may receive registration information associated with a border device. The registration information may comprise information identifying a service provided by a server associated with the border device, information identifying the border device, and policies associated with the service. Then an address for the server may be determined. Next a request may be received comprising the information identifying the service provided by the server. In response to receiving the request comprising the information identifying the service provided by the server, the address for the server, the information identifying the border device, and the policies associated with the service may be provided.
US11496587B2 Methods and systems for specification file based delivery of an immersive virtual reality experience
An exemplary virtual reality media provider system (“system”) receives, from a media player device (“device”) by way of a network, a request for the device to provide a user with an immersive virtual reality experience. The system transmits, to the device by way of the network and in response to the request, a specification file corresponding to the immersive virtual reality experience. The specification file comprises data that defines a plurality of elements included in the immersive virtual reality experience, associates an event with a particular element included in the plurality of elements, and associates a behavior with the event that is associated with the particular element, the behavior configured to be performed with respect to the particular element in response to an occurrence of the event within the immersive virtual reality experience. The device uses the specification file to provide the user with the immersive virtual reality experience.
US11496583B2 System and method for ordering media content for shuffled playback based on user preference
In accordance with an embodiment, described herein is a system and method for providing media content to a media playback device that includes a media server. In response to the initiation by a user of the media playback device to provide media content in shuffle mode, the media server determines a set of media content items based on a context of the initiation. The media server then determines whether a preference profile exists for the user that includes one or more media content items from the set of media content items. If the preference profile exists, the media server orders the one or more media content items from the set of media content items for insertion into a queue according to the preference profile. Thereafter, a remainder of the set of media content items is ordered for insertion into the queue according to rules.
US11496580B2 Indirect transmission of session data
The systems and methods described herein can enable the indirect transmission of session data between different domains. The system can pass the session data through a hashing function so that the data from a given domain remains private and secure to the specific domain. The system can generate clusters of associated domains for a given client device that the system can use to maintain a session between the client device and the domain.
US11496579B2 Connection manager
Systems and methods are described for monitoring, maintaining, and selecting one or more network connections. One or more network connections may be selected based on preferences. A connection manager may create a consistent access point for connecting devices. The connection manager may manage transmissions between the devices and the one or more network connections, such that the devices maintain consistent connectivity. The connection manager may detect erratic behavior in one or more of the connections, and may take action to enhance performance, consistency, and quality of the connection. The connection manager may respond to heartbeat or keep-alive type requests on behalf of a temporarily unavailable network connection, thereby maintaining a data state or preventing data loss by the connected device. The connection manager may also provide for secure VPN tunnels over the one or more networks.
US11496575B2 Enhanced messaging as a platform
Aspects of the invention enhance the capabilities of the MaaP by adding interfaces thereto so that the platform directly interfaces with the OCS, the PCRF, the EIR, the CDB and the HSS without middle layer or without using RCS as an intermediary. Moreover, embodiments of the invention may create a user interface of the MaaP so that users may configure parameters to interact with the network nodes right from the user interface.
US11496574B2 Method for setting up an uninterrupted communication connection and communication device
A method in which a monitoring unit allocated to a communication device checks, based on a name resolution protocol, whether a second communication network address allocated to the first communication device becomes valid in order to set up an uninterrupted communication connection to the communication device that is allocated to an industrial automation system, where in cases of an allocation of a new valid communication network address and an existing communication connection, the monitoring unit initiates a set-up of an additional communication connection using the new communication network address.
US11496571B2 Systems and methods for moving content between virtual and physical displays
Systems, methods, and non-transitory computer readable media for transferring virtual content to a physical display device are disclosed. An extended reality environment may be presented in a room via a wearable extended reality appliance configured to be paired with multiple display devices located in the room. Each display device may be associated with a unique network identifier. Input to cause presentation of a specific virtual object in the extended reality environment on a target display device and image data depicting the target display device may be received. The image data may be analyzed to identify the target display device. A network identifier of the target display device may be determined. A communications link with the target display device may be established. Data representing the specific virtual object may be transmitted to the target display device, to enable the target display device to present the specific virtual object.
US11496570B1 System for sharing tangible objects
A system is configured to provide managed services for deployment of shared tangible objects by an operator. The system includes cloud resources provided by the system administrator. In one embodiment, the cloud resources include a sharable-object command module configured to communicate signals employed in activating shared tangible objects for use when the end user is successfully authorized by the device activation module. The system includes an API provided by the system administrator. The API is configured to facilitate a communication of object activation signals from the sharable-object command module to allow the end user to use the shared tangible object. The same API is employed to facilitate the communication of object activation signals for different types of shared tangible objects that can be provided in different vertical markets.
US11496564B2 Device state synchronization method and common capability component
This application discloses a device state synchronization method. The method performed by a common capability component, the method includes: receiving a first representation state instance resource creation request sent by an application, where the first representation state instance resource creation request includes a device state attribute; creating a first representation state instance resource based on the first representation state instance resource creation request and a created second representation state instance resource; sending a device state update request to a device, where the device state update request includes the device state attribute; receiving an actual state instance resource creation request sent by the device; creating an actual state instance resource based on the actual state instance resource creation request; and sending to the application, information indicating that an actual state resource is successfully created.
US11496552B2 Intent tracking for asynchronous operations
Systems and methods are provided for intent tracking asynchronous operations. An example method can include receiving, at a content management system (CMS), a first request to perform an operation on a content item stored at the CMS; adding the request to perform the operation to a queue of operations to be processed by the CMS; and prior to completing the operation: receiving, from a client device associated with a user account registered at the CMS, a second request to access the content item; in response to the second request, determining a predicted state of the content item, the predicted state of the content item reflecting a result of performing the operation on the content item; and providing, to the client device, a response including the predicted state of the content item.
US11496551B2 Systems and methods for using a distributed game engine
A method for using a distributed game engine includes receiving a request from a user account via a computer network to play a game, identifying processing power assignment for the user account, and determining node assembly for the user account to utilize two or more processing nodes for the play of the game based on the processing power assignment. The method further includes initializing the two or more processing nodes for execution of the game for the user account. The operation of initializing is performed to set up a transfer of processing code for the game from one processing nods to another processing node. The method includes defining an internal communication channel between the two or more processing nodes for exchange of state information of the game. The exchange of state information is performed to enable shared processing of the game by the two or more nodes.
US11496548B2 Decentralized management of collaborative operations for distributed systems
Some embodiments provide a program executable by a first device in a distributed system. The program publishes a first request for a collaborative operation to a first log of the first device. The program further receives, at the first log, a second request for the same collaborative operation. The second request is requested by a second device in the distributed system. The program also publishes a command to a second log of the first device. The command specifies the collaborative operation, the first device and the second device as participants of the collaborative operation, a first set of operations to be performed by the first device as part of the collaborative operations, and a second set of operations to be performed by the second device as part of the collaborative operation. The program further performs the first set of operations as part of the collaborative operation.
US11496547B2 Storage system node communication
Provided is a storage system capable of avoiding the increase in communication between nodes in the coordination of the file service and the block service. This is a storage system in which a plurality of nodes, which provide a file service for performing I/O in file units and a block service for performing I/O in block units, are connected via a network, and the storage system comprises a management unit which manages the first file processing unit and the second file processing unit as a pair, sets the first file processing unit to be operable, manages the first block processing unit and the second block processing unit as a pair, and sets the first block processing unit to be operable.
US11496544B2 Story and sub-story navigation
Systems and methods for generating and managing stories and sub-stories presented to a user's client device are described. In one example embodiment, a server system communicates a portion of a first story to a first client device based on a first client device association with a user segment assigned to the first story. The server system receives a first selection communication associated with a first piece of content of the first story, accesses a second story based on the selection, and communicates a portion of the second story to the first client device.
US11496543B2 System and method for configuration and interchanging of business functionality implementations
A system and method are presented for invoking integration actions in a unified collaboration system. A client communicates with a bridging web server through a ReST. The bridging web server comprises a cloud service which facilitates communication with integration servers, which may be located on-premises. In an embodiment, the integration server(s) host a number of plugins which are capable of implementing integration actions. The bridging web server decides which action implementation is the best one to service a request. The implementation may be based on prior configuration. Routing decisions on the bridging web server may be automatically selected based on prior configuration.
US11496539B2 Spatially unequal streaming
Various concepts for media content streaming are described. Some allow for streaming spatial scene content in a spatially unequal manner so that the visible quality for the user is increased, or the processing complexity or used bandwidth at the streaming retrieval site is decreased. Others allow for streaming spatial scene content in a manner enlarging the applicability to further application scenarios.
US11496537B2 Method and apparatus for reverse address mapping when using content preparation in 5G networks
A method, computer program, and computer system is provided for media content preparation for 5G networks. A reverse address mapping process for 5G media streaming associated with a content preparation process is identified. A media content address is calculated based on the identified reverse address mapping process. A workflow is generated for the content preparation process based on the calculated media content address. 5G media streaming content preparation is performed according to the workflow of the content preparation process.
US11496529B2 Method and device for providing multimedia service in electronic device
Various embodiments of the present invention disclose a method and device for an electronic device to provide a multimedia service in an IMS network environment. According to various embodiments of the present invention, an electronic device includes: a wireless communication module; a processor operatively connected with the wireless communication module; and a memory operatively connected with the processor, wherein the memory may store instructions which, when executed, cause the processor to: establish a session for a media service with a counterpart electronic device by using the communication module; transmit a packet including a first message related to the use of a quality service to the counterpart electronic device after the session is established; determine whether the counterpart electronic device can use the quality service on the basis of a second message in a packet received from the counterpart electronic device; enable at least one quality improvement function on the basis of the second message if the counterpart electronic device can use the quality service; and while the media service is being performed, transmit to the counterpart electronic device, a packet having improved quality on the basis of the quality improvement function. Various other embodiments are also possible.
US11496526B2 Service request processing method, apparatus, and communications system
Embodiments provide a service request processing method, a related device, and a communications system in an IMS network. In some embodiments, because 5GC network slices correspond to different services, P-CSCFs in the IMS also correspond to different service information. After receiving a terminated service request sent by an I-CSCF, a first S-CSCF can obtain an address of a corresponding P-CSCF based on terminated service information carried in the terminated service request. Then, the first S-CSCF sends the terminated service request to the P-CSCF corresponding to the address, and the P-CSCF processes the terminated service request.
US11496525B2 ACR buffering in the cloud
A network element of an Internet Protocol multimedia subsystem buffers network resource usage information in the cloud. After generating network resource usage information based on an observation of network resource usage, the network element transmits the network resource usage information to a cloud-based storage service for buffering. Once a network resource usage collection function is available, the network element retrieves the network resource usage information from the cloud-based storage service and transmits it to a charging collection function for generation of call detail records.
US11496524B2 Securely managing network connections
The disclosure relates generally to methods, systems, and apparatuses for managing network connections. A method may include comparing a list of expected connections among a set of endpoints of a network with one or more of the actual connections indicated by configuration files of the set of endpoints to determine one or more differences between the list of expected connections and the actual connections and updating at least one of the configuration files of the set of endpoints to reflect the one or more differences detected between the list of expected connections and the actual connections.
US11496521B2 Feedback loop for security audit logs
A method for controlling transmission of security audit logs based on a model, a method for controlling transmission of log data based on a model, and a logging system. One embodiment may comprise receiving transmitted log information from a plurality of nodes, applying a rule-based algorithm to the transmitted log information to categorize a first batch of data as included in a security analysis, a second batch of data as excluded from the security analysis, and a third batch of data as actually reviewed in the security analysis based on a user selection, training a classifier based on outcomes of the rule-based algorithm, converting the classifier to run as a trained model executable on the plurality of nodes, and transmitting the trained model executable to the plurality of nodes.
US11496520B2 Method for operating a communications system
A method for operating a communications system, in particular a communications system based on software-defined networking, which has at least one network infrastructure component, in particular an SDN switch, and at least one communications device, the network infrastructure component being developed for forwarding data to and/or from the at least one communications device. The method includes the following steps: allocating the communications device to at least one security zone; specifying at least one forwarding rule for forwarding data by the network infrastructure component to and/or from the communications device, the specification of the forwarding rule taking place under consideration of the security zone.
US11496519B1 Managing security in isolated network environments
Security can be provided for data stored using resources that are deployed in an environment managed by a third party. Physical and logical detection mechanisms can be used to monitor various security aspects, and the resulting security data can be used to identify potential threats to these resources. In some embodiments, suspicious activity can cause resources such as data servers to be automatically and remotely rebooted such that keys stored in volatile memory on those data servers will be lost from those servers, such that an attacker will be unable to decrypt data stored on those servers. Once a determination of safety is made, the keys can be provided to the respective data servers such that data operations can resume.
US11496518B2 System and method for distributed network access control
Various embodiments of network access control (NAC) systems and methods are provided herein to control access to a network comprising a plurality of network endpoint nodes, where each network endpoint node includes a policy information point and a policy decision point. The policy information point within each network endpoint node stores a distributed ledger including one or more client policies that must be satisfied to access the network, and a smart contract including a set of predefined rules defining network access behaviors and actions. Upon receiving a network access request from a client device outside of the network, the policy decision point within each network endpoint node executes the smart contract to determine whether the client device should be granted access, denied access or have restricted access to the network, and executes consensus algorithm to select one of the network endpoint nodes to be a policy decision point leader.
US11496514B2 Systems and methods for security awareness using ad-based simulated phishing attacks
Systems and methods are described for modifying one or more advertisements of a webpage or a social media feed to create a simulated cybersecurity attack. Initially, content responsive to a request by a user via a user device to access a webpage or social media feed with one or more advertisements is received. One or more advertisements are detected within the content. An advertisement of the one or more advertisements is modified or replaced with simulated cybersecurity attack advertisements. The webpage or social media feed with the modified advertisement is displayed to the user device. User interactions with the simulated cybersecurity attack content are tracked and training is provided based on user interactions.
US11496512B2 Detecting realtime phishing from a phished client or at a security server
Disclosed herein are techniques for detecting phishing websites. In one embodiment, a method is disclosed comprising receiving, at a server, a request for a webpage from a client device; generating, by the server, and inserting an encoded tracking value (ETV) into the webpage; inserting, by the server, dynamic tracking code (DTC) into the webpage, the inserting of the DTC further comprising obfuscating the DTC; and returning, by the server, the webpage including the ETV and DTC to the client device, the DTC configured to execute upon receipt at the client device and validate the ETV upon executing.
US11496509B2 Malicious software detection in a computing system
A computer system identifies malicious Uniform Resource Locator (URL) data items from a plurality of unscreened data items that have not been previously identified as associated with malicious URLs. The system can execute a number of pre-filters to identify a subset of URLs in the plurality of data items that are likely to be malicious. A scoring processor can score the subset of URLs based on a plurality of input vectors using a suitable machine learning model. Optionally, the system can execute one or more post-filters on the score data to identify data items of interest. Such data items can be fed back into the system to improve machine learning or can be used to provide a notification that a particular resource within a local network is infected with malicious software.
US11496508B2 Centralized security package and security threat management system
A network security system centrally manages security packages and deploy them to a network host that is identified as potentially compromised. A security package is selected or assembled to be targeted to the identified host. Security packages are designed to isolate identified hosts from other network resources and collect forensic information from the hosts without interfering with operations of the hosts. Once forensic information is collected, software packages can be dissolved from hosts. Collected forensic information can be used to analyze and mitigate threats on hosts.
US11496507B2 Abnormality detection device, abnormality detection method and abnormality detection program
An abnormality detection device 10, which detects an abnormality of a data series to be detected that has regularity in a sequence of data forming the data series, is provided with: a determination unit 11 which refers to a data series of a normal model composed of a prescribed permutation as a data series that indicates a state in which a system to be detected is normal, and which, every time one piece of data is input, in light of a permutation indicated by a pair of the one piece of input data and another piece of data input immediately before the one piece of data is input, determines that the data series to be detected is locally abnormal when the permutation is not included in the normal model, and determines that the data series to be detected is locally normal when the permutation is included in the normal model.
US11496506B2 Program generation method and electronic control unit for changing importance of functions based on detected operation state in a vehicle
A program generation method includes extracting a control flow that represents a call/return relationship between functions as well as extracting the functions themselves from a program code, determining an importance of the extracted functions; and inserting an instruction into the program code, to properly perform the control flow based on the importance of the extracted functions. Overhead that occurs during an execution of the program execution is reducible by using control flow integrity (CFI) technique that does not depend on domains.
US11496505B2 Detection and prevention of external fraud
Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.
US11496503B2 Event data fencing based on vulnerability detection
A method for event data fencing includes initializing a media monitoring algorithm, wherein the media monitoring algorithm scans for one or more words relating to a data breach in publicly available reports. Responsive to identifying a report from the publicly available reports relating to a vulnerability associated with the data breach, the method determines whether the vulnerability is associated with event data utilized for an authentication process. Responsive to determining the vulnerability is associated with a portion of the event data utilized for the authentication process, the method fences the portion of event data associated with the vulnerability, wherein fencing prevents the portion of event data from being utilized in the authentication process.
US11496501B1 Systems and methods for an adaptive sampling of unlabeled data samples for constructing an informative training data corpus that improves a training and predictive accuracy of a machine learning model
A system and method for adaptively sampling a corpus of data samples for improving an accuracy of a predictive machine learning model includes: identifying the corpus of data samples, wherein each data sample of the corpus of data samples is associated with a machine learning-derived threat inference value; stratifying the corpus of data samples into a plurality of distinct strata based on the machine learning-derived threat inference value associated with each data sample of the corpus of data samples; adaptively sampling the plurality of distinct strata; constructing a machine learning training corpus comprising a plurality of data samples based on the adaptive sampling of the plurality of distinct strata; and training the predictive machine learning model based on the machine learning training corpus.
US11496499B2 Preventing scheduling or executing a resource on an inconsistent host node
Examples relate to preventing scheduling or executing a resource on an inconsistent host node in a networked system. Some examples track a taint status of the host node and identify whether the host node is inconsistent based on the taint status of the host node over a predefined period of time. Upon identifying that the host node is inconsistent, a master taint is applied on the inconsistent host node, which prevents scheduling or executing a resource on the identified inconsistent host node.
US11496496B2 Method and system for user plane traffic characteristics and network security
A method at a network element for monitoring user plane traffic for a user equipment, the method including configuring a set of characteristics and a range of values for each of the set of characteristics for user plane traffic between the user equipment and the network element; monitoring user plane traffic for the user equipment at the network element, the monitoring determining whether at least one characteristic of the user plane traffic falls outside of the configured range of a values, resulting in a characteristic violation; and if the at least one characteristic of the user plane traffic falls outside the configured range of a values, performing an action resulting from the characteristic violation.
US11496495B2 System and a method for detecting anomalous patterns in a network
The present invention discloses a system and a method for detecting anomalous patterns in a network such as a LAN, WAN, MAN, internet of things (Iot), cloud networks, or any other network. In operation, the system and method of the present invention determines a generic pattern of behavior associated with a plurality of anomaly classes based on a plurality of feature values using reinforcement learning technique. The generic pattern is fixed as a boundary for each of the plurality of anomaly classes and is representative of behavior which substantially simulates the network behavior on attack by any of the plurality of anomaly classes. Further, the present invention, provides for updating the generic pattern using reinforcement learning. The updated generic pattern is implemented to analyze and detect anomalous behavior in the incoming network traffic in real time.
US11496494B2 Systems and methods for detecting anomalous behaviors based on temporal profile
The present disclosure is directed to a method of detecting anomalous behaviors based on a temporal profile. The method can include collecting, by a control system comprising a processor and memory, a set of network data communicated by a plurality of network nodes over a network during a time duration. The method can include identifying, by the control system, one or more seasonalities from the set of network data. The method can include generating, by the control system, a temporal profile based on the one or more identified seasonalities. The method can include detecting, by the control system and based on the temporal profile, an anomalous behavior performed by one of the plurality of network nodes. The method can include identifying, by the control system and based on the temporal profile, a root cause for the anomalous behavior.
US11496492B2 Managing false positives in a network anomaly detection system
Systems and methods are provided for managing false positives in a network anomaly detection system. The methods may include receiving a plurality of anomaly reports; extracting fields, and values for the fields, from each of the anomaly reports; grouping the anomaly reports into a plurality of groups according to association rule learning, wherein each group is defined by a respective rule; for each group, creating a cluster based on common values for the fields; and marking each cluster as a possible false positive anomaly cluster.
US11496491B2 Method for sensing fraudulent frames transmitted to in-vehicle network
A fraud detecting method for use in an in-vehicle network system including a plurality of electronic control units that communicate with each other via a network includes detecting whether a state of a vehicle satisfies a first condition or a second condition, and switching, upon detecting that the state of the vehicle satisfies the first condition or the second condition, an operation mode of a fraud-sensing electronic control unit connected to the network between a first mode in which a first type of detecting process for detecting a fraudulent message in the network is performed and a second mode in which the first type of detecting process is not performed.
US11496490B2 Notification of a security breach on a mobile device
A method and device for providing notification of improper access to secure data on a mobile device. The mobile device detects a request to record content displayed on a display of the mobile device. A determination is then made regarding whether the content that was displayed on the screen when the request to record was received is protected content. If the displayed content was protected, then a third party is notified that a security breach has been detected. A remedial action is also performed regarding the security breach.
US11496489B1 Knowledge-aware detection of attacks on a client device conducted with dual-use tools
Knowledge-aware detection of attacks on a client device conducted with dual-use tools. A method may include obtaining dual-use tool data related to a plurality of dual-use tools; collecting from a client device, by the computing device, user input related to the use of a dual-use tool of the plurality of dual-use tools; determining that the user input contains a feature of the dual-use tool data; creating a behavioral index of the user input, the behavioral index stored on the client device; detecting new input on the client device; determining a similarity level between the user input and the new input; flagging a malicious attack on the client device based on determining that the similarity level does not satisfy a pre-determined threshold; and implementing a security action on the client device based on flagging the malicious attack.
US11496488B2 Risk score calculation and distribution
A system, method, and computer-readable medium are disclosed for performing a security operation. The security operation includes monitoring a plurality of electronically-observable actions of an entity, the plurality of electronically-observable actions of the entity corresponding to a respective plurality of events enacted by the entity, the monitoring comprising monitoring the plurality of electronically-observable actions via a protected endpoint; converting the plurality of electronically-observable actions of the entity to electronic information representing the plurality of actions of the entity; generating a representation of occurrences of a particular event from the plurality of events enacted by the entity; and performing an anomaly detection operation based upon the representation of occurrences of the particular event from the plurality of events enacted by the entity, the anomaly detection operation determining when the representation of occurrences of the particular event exceeds a predetermined threshold.
US11496485B2 Task completion using a blockchain network
Methods, systems, and computer readable media for distributing tasks using a blockchain network. A method includes generating a task for completion via an interactive application and distributing, using the blockchain network, the task via a block in a blockchain associated with the blockchain network. The blockchain network includes a plurality of nodes and is accessible by a plurality of client devices associated with the interactive application. The method further includes receiving, from one or more of the client devices, data associated with results of processing the task via the interactive application and validating completion of the task based on the received data. Validating completion of the task may include receiving a set of user inputs from a set of the client devices, respectively, as to whether the task was completed and making a consensus determination as to whether the task was completed based on the received set of user inputs.
US11496482B2 Methods and systems for memory tracing in asset management systems
Techniques are disclosed for tracing memory components in asset management systems. A computing device may receive an indication that a new device has been connected to a network. The computing device receives a first set of memory specifications from the new device and a second set of memory specifications from a SoV database. The computing device then generates a memory-asset data structure that stores a third set of memory specifications, each memory specification of the third set of memory specifications being a memory specification that is in both the first set of memory specifications and the second set of memory specifications. The computing device assigns, memory specifications of the third set of memory specifications, a data privacy level that is based on a sensitivity of data stored in the component of the new device. The computing device may then transmit the memory-asset data structure.
US11496481B2 Efficient and secure authentication system
A system and method of establishing a resource provider as a trusted listing are disclosed. The method includes receiving, by a directory server computer, an indication from a user that a resource provider is trusted. The directory server computer is programmed to provide a first level of authentication. The method then includes storing, in a database, data representing the indication from the user that the resource provider is trusted. The method then includes receiving an authentication request message from the user conducting an interaction at the resource provider computer and determining that the data representing the indication from the user that the resource provider is trusted is present. In response to determining, the method includes providing a second level of authentication to the user before the user is allowed to complete the interaction. The second level of authentication is lower than the first level.
US11496479B2 Privacy preference based device controls
A method for controlling application enabling includes receiving from a user an indication of data for sharing and an indication of one or more recipients with which to share the data. A multidimensional zone is determined based on the indication of the data and the indication of the one or more recipients. A request from the user to enable an application via a computing device is detected. Data permission requirements of the application are accessed, and a multidimensional coordinate is determined based on the data permission requirements of the application. The multidimensional zone is compared to the multidimensional coordinate, and the user is notified via the computing device of the comparing of the multidimensional zone to the multidimensional coordinate. An affirmation of the request is received from the user via the computing device, and the application is enabled responsive to the affirmation of the request.
US11496477B2 Systems and methods for onboarding and managing applications over networks
This disclosure relates to systems, methods, and apparatuses for determining access models for applications. The access models can be determined using various techniques described herein. The access models can enable the applications to be onboarded into the enterprise system and, in some cases, can be utilized by an identity and access management (IdAM) system and/or identity and governance administration (IGA) system to facilitate ongoing identity management and access control functions for the applications in the enterprise system.
US11496471B2 Mobile enrollment using a known biometric
A system performs mobile biometric identification system enrollment using a known biometric. The system receives a digital representation of a first biometric for a person. Prior to using the digital representation of the first biometric to identify the person, the system compares a received digital representation of a second biometric for the person to known biometric data for the person. When the digital representation of the first biometric has been thus verified, the system is operative to identify the person using the digital representation of the first biometric.
US11496467B2 Biometric validation process utilizing access device and location determination
A biometric matching process is disclosed. The biometric matching process may be used to obtain access to a resource managed by an access device using only biometric information. In some embodiments, a biometric template is stored in relation to a user device and/or account information, and is obscured. Upon receiving a request for access to a resource from an access device, the system may identify a number of user devices in proximity to the access device. Biometric templates associated with each of those user devices may be compared to a biometric template received from the access device. Upon identifying a match, the system may provide the access device with account information stored in relation to the matched biometric template. The access device may then complete a transaction using the provided account information and grant access to the requested resource.
US11496466B2 Using an enrolled biometric dataset to detect adversarial examples in biometrics-based authentication system
A computer-implemented method for improving security of a biometrics-based authentication system comprises receiving, by one or more servers, enrolled biometric samples of an enrolled user during an enrollment stage of the biometrics-based authentication system. Augmented biometric samples are created by adding learned perturbations to the enrolled biometric samples of the enrolled user. During a request for authentication, submitted biometric samples are received from a second user. The submitted biometric samples of the second user are compared to the enrolled biometric samples and to the augmented biometric samples of the enrolled user based on predefined metrics. Based on the comparison it is determined whether the submitted biometric samples of the second user have been modified to impersonate the enrolled user.
US11496465B2 Methods and systems for verifying an identity of a user through contextual knowledge-based authentication
Methods and systems are described for verifying an identity of a user through contextual knowledge-based authentication. The system described uses contextual knowledge-based authentication. By verifying an identity of a user through contextual knowledge-based authentication, the verification is both more secure and more intuitive to the user. For example, by relying on confidential and/or proprietary information, the system may generate verification questions, the answers to which are known only by the user.
US11496463B2 Information processing terminal, information processing device, information processing method, and information processing system
There is provided an information processing terminal including an acquisition unit that acquires biometric information for biometric authentication and identification information of a device to which a service is supplied, and a transmission unit that transmits the identification information in accordance with success of the biometric authentication.
US11496462B2 Secure multifactor authentication with push authentication
Improved systems and methods of authenticating a user using a mobile device to access a secure electronic portal are provided. A user may be enabled to quickly and securely log onto a website or other electronic portal using a handheld electronic device. In certain embodiments, multifactor authentication is utilized to improve the security of the authentication process.
US11496461B2 Gateway management for a zero trust environment
A virtualized gateway for applications in a zero trust network access environment is managed from a cloud-based threat management facility for an enterprise network. In order to facilitate creation of a new, centrally managed gateway, a one-time passcode for registration of the gateway to the threat management facility is encoded onto a virtual disk and distributed to a host platform along with a base gateway image for the gateway. This advantageously permits the new gateway to boot and securely register with the threat management facility without further administrative intervention.
US11496460B2 Dynamic, customizable, controlled-access child outcome planning and administration resource
A cloud-based access to child care planning and outcome resource is described. The resource allows multiple end-users to access content related to child care. Such content includes reports, table, graphs, multimedia, lists, forms, reminders, and/or other appropriate elements. The content may be presented via one or more graphical user interfaces (GUIs). Each such GUI may include various input elements such as tabs, buttons, icons, etc. and various content elements such as portlets, or frames, etc. Each GUI may be customized for a particular end-user and/or a particular group of end-users. In this way, an administrator or super-user may generate multiple GUIs, where each is associated with a user group (e.g., parents, teachers, administrators, etc.). In addition, each end-user may be able to customize the GUIs available to the end user. Such customization may include selection of input and/or content elements, layout of elements, graphical features, and/or other appropriate customizations.
US11496458B1 Apparatuses and methods for improved session authentication
A method, apparatus, and computer program product for establishing an authenticated online session are provided. An example method includes receiving a request for an authenticated online session and causing, by display circuitry, presentation of an input pattern to a user. The method further includes receiving, by gaze detection circuitry, one or more images of the user's eye captured during presentation of the input pattern, and determining, by the gaze detection circuitry, an identification code represented by the one or more images. The method also includes receiving, by contextual evaluation circuitry, contextual device data of a user device associated with the user during presentation of the input pattern. The method further includes establishing, by authentication circuitry, the authenticated online session based upon the identification code and the contextual device data.
US11496455B2 Systems and methods for managing secure sharing of online data
Systems and methods are disclosed for managing online advertising data secure sharing. One method includes receiving, at a server, a request for proprietary data from a data consumer, the request including a data consumer identifier; retrieving, from a database of proprietary data, proprietary data based on the request; determining, by the server, whether the retrieved proprietary data is at least one of: designated to be processed and designated to have privileges set; processing, by the server, the proprietary data when the server determines the proprietary data is designated to be processed; setting one or more privileges to the proprietary data using the certificate associated with the data consumer identifier when the server determines the proprietary data is designated to have privileges set; encrypting the proprietary data using the certificate associated with the data consumer identifier; and transmitting the encrypted proprietary data to the data consumer.
US11496452B2 Non-repeatable challenge-response authentication
User data is aggregated across a plurality of electronic communication channels and domains. An online system initially authenticates a user for access to the online system over a network. The online system provides a user identifier for the user to an authentication service. The authentication service generates a non-repeatable challenge from the aggregated user data for the user identifier and provides the non-repeatable challenge to the online system. The online system provides the challenge to the user and receives a response from the user. The online system provides the response to the authentication service and the authentication sends a success or failure back to the online system based on the response to the challenge, and based on the success or failure the online system makes a final determination for authenticating the user for accessing to the online system.
US11496450B2 Protecting user identity and personal information by sharing a secret between personal IoT devices
A wearable device provides protection for personal identity information by fragmenting a key needed to release the personal identity information among members of a body area network of wearable devices. A shared secret algorithm is used to allow unlocking the personal identity information with fragmental keys from less than all of the wearable devices in the body area network. The wearable devices may also provide protection for other personal user data by employing a disconnect and erase protocol that causes wearable devices to drop connections with an external personal data space and erase locally stored personal information if a life pulse from a connectivity root device is not received within a configurable predefined period.
US11496448B2 Systems and methods of creating and operating a cloudless infrastructure of computing devices
Aspects involve an apparatus, device, systems, and methods for instantiating and operating a cloudless infrastructure of computing devices that communicate peer-to-peer and mostly off-grid (or otherwise without communicating through a conventional centralized network) to share resources, access, and provide services and applications, store and access data and other information, and the like. The systems may provide services to connecting computing devices, such as user devices, personal computing devices, mobile devices, laptops, personal computers, Internet of Things (IoT) devices etc., in communication with one or more of the nodes of the infrastructure. The infrastructure exchanges or manages communications, transactions, and/or data in a cloudless and/or decentralized environment to freely exchange information between the nodes to allow the infrastructure to scale in response to client demands, adapt the infrastructure to a failed node with minimal impact on connected computing devices, and provide robust security to customer information, communications, and devices.
US11496445B2 Electronic device for secure communications with an automobile
A mobile device securely communicates with an electronic device within an automobile. The mobile device transmits encrypted spatial state information and the electronic device provides commands to the automobile in response. Spatial state information may include location, motion, or the like. Commands to the automobile may include door unlock commands, remote start commands, horn honk commands, or the like.
US11496439B1 Stateless high-capacity network address translation service
Systems and methods are described for communications between computing devices via a stateless high-volume network address translation (“NAT”) service. The stateless high-volume NAT service manages high volumes of connections between networks by encoding at least part of the information needed to manage a connection in an encoded IPv6 address, which is then used by a NAT device or application as its sending address when relaying data from a source to a destination. The encoded IPv6 address may contain information such as the IPv4 address of the source, the IPv4 address of the destination, the protocol used to communicate, the source and destination ports, and the like. When the destination sends a response to the encoded IPv6 address, the NAT device decodes the IPv6 address to obtain the encoded information, and then uses that information to deliver the response to the source.
US11496438B1 Methods for improved network security using asymmetric traffic delivery and devices thereof
Methods, non-transitory computer readable media, application delivery controller (ADC) apparatuses, and network traffic management systems that receive a request including an Internet Protocol (IP) version 6 (IPv6) source address and an IPv6 destination address. A client IP version 4 (IPv4) address of a client from which the request originated and a server IPv4 address of a server are determined from one or more extracted portions of one or more of the IPv6 source address or the IPv6 destination address. The request is modified to include an IPv4 source address and an IPv4 destination address. The IPv4 source address and the IPv4 destination address include the client IPv4 address and the server IPv4 address, respectively. The modified request is sent to the server based on the server IPv4 address included in the IPv4 destination address of the modified request.
US11496430B2 Configurable offline messaging management using user presence information
Methods, systems, computer-readable media, and apparatuses may provide management of messaging for one or more devices of a user according to the user's configurable presence schedule. A messaging management server may receive notifications of messages and the messages themselves from a messaging service provider. The messages may have originated from a first user and be intended for receipt by a second user. After a preset time period has elapsed, a notification of the message may be sent from the messaging management server to each of the second user's devices in accordance with the second user's presence schedule. Subsequent messages from the first user and intended for the second user may be routed from the messaging management server to the device on which the second user responded to the notification of the initial message and might not be routed to the second user's other devices.
US11496426B2 Apparatus and method for context-driven determination of optimal cross-protocol communication delivery
This disclosure relates generally to apparatus, methods, and computer readable media for composing communications for computing devices across multiple formats and multiple protocols. More particularly, but not by way of limitation, this disclosure relates to apparatus, methods, and computer readable media to permit computing devices, e.g., smartphones, tablets, laptops, and the like, to send communications in a number of pre-determined and/or ‘determined-on-the-fly’ optimal communications formats and/or protocols. Determinations of optimal delivery methods may be intelligently based on the sender individually or the relationship with the sender in the context of a group of recipients—including the format of the incoming communication, the preferred format of the recipient and/or sender, and an optimal format for a given communication message. The techniques disclosed herein allow communications systems to become ‘message-centric’ or ‘people-centric,’ as opposed to ‘protocol-centric,’ eventually allowing consideration of message protocol to fall away entirely for the sender of the communication.
US11496425B1 Modifying message content based on user preferences
A messaging system receives a message including a recipient ID and a message body, the message body containing one or more customizable fields. The messaging system receives a user preference model based on the recipient ID. The user preference model identifies message elements and content preferred by the recipient of the message. Based on the user preference model, the messaging system modifies the customizable fields in the message body, generating a modified message. The modified message is transmitted to a client device associated with the recipient ID for presentation to the recipient.
US11496422B2 Conversational bot evaluation and reinforcement using meaningful automated connection scores
Disclosed embodiments provide a framework to assist bot managers and builders in identifying particular friction points between bots and customers to allow for real-time identification of bot conversation issues and to train bots to improve conversation flows. Conversation data is processed using machine learning models to detect bot states within conversations and calculate a Meaningful Automated Connection Score (MACS) for these conversations. The MACS for a conversation is provided to bot builders to allow the bot builders to identify friction points and update bots accordingly.
US11496420B2 Contact system and non-transitory computer readable medium storing contact program
A contact system includes an ID information management section that discloses and manages ID information for specifying a user to a third party; a contact information management section that gives priorities to respective pieces of contact information of the user of a plurality of contact tools, and manages the respective pieces of contact information in a private manner to the third party; a reception section that receives a contact request designating the ID information as a contact destination from the third party; a selection section that selects contact information to be used, from the respective pieces of contact information of the user according to the received ID information, based on the priorities; and a contact relay section that relays contact by the corresponding contact tool, by using the selected contact information.
US11496419B2 Reliable transport offloaded to network devices
Examples described herein relate to a reliable transport protocol for packet transmission using an Address Family of an eXpress Data Path (AF_XDP) queue framework, wherein the AF_XDP queue framework is to provide a queue for received packet receipt acknowledgements (ACKs). In some examples, an AF_XDP socket is to connect a service with a driver for the network device, one or more queues are associated with the AF_XDP socket, and at least one of the one or more queues comprises a waiting queue for received packet receipt ACKs. In some examples, at least one of the one or more queues is to identify one or more packets for which ACKs have been received. In some examples, the network device is to re-transmit a packet identified by a descriptor in the waiting queue based on non-receipt of an ACK associated with the packet from a receiver.
US11496414B2 Interoperable cloud based media processing using dynamic network interface
A method of processing media content in Moving Picture Experts Group (MPEG) Network Based Media Processing (NBMP) includes obtaining a plurality of tasks for processing the media content, providing an interface between an NBMP workflow manager and a cloud manager by providing an NBMP Link application program interface (API), which links the plurality of tasks together, identifying an amount of network resources to be used for processing the media content, by using the NBMP Link API, and processing the media content in accordance with the identified amount of network resources.
US11496405B2 Method and apparatus for transmitting service flow based on flexible ethernet, and communication system
A method and apparatus for transmitting a service flow based on a flexible Ethernet, where a bandwidth resource corresponding to a bundling group (BG) of a flexible Ethernet is divided into M timeslots, service data of a service flow is encapsulated in N timeslots in the M timeslots, and the method includes: when a first PHY in the BG fails, determining, based on a preconfigured first timeslot configuration table (TCT), a target timeslot (TTS) in the N timeslots that is mapped to the first PHY; searching the M timeslots for an idle timeslot (ITS) based on the first TCT; adjusting the first TCT when a quantity of ITSs is greater than or equal to a quantity of TTSs, so that all the N timeslots are mapped to PHYs other than the first PHY; and transmitting the service flow by using the mapped PHYs of the bundling group.
US11496403B2 Modifying the congestion control algorithm applied to a connection based on request characteristics
An edge server receives a first request message for transmission to the host device. The edge server determines a first congestion control algorithm based on the first request message, including characteristics of the first request message. The edge server applies the first congestion control algorithm to the transport connection for application to the transmission of the first request message. Subsequently, the edge server receives a second request message for transmission to the host device over the transport connection. Based on the second request message, including characteristics of the second request message, the edge server determines and applies a second congestion control algorithm to the transport connection for application to the transmission of the second request message, wherein the second congestion control algorithm is different from the first congestion control algorithm
US11496402B2 System and method for supporting aggressive credit waiting in a high performance computing environment
System and method for aggressive credit waiting in a high performance computing environment. In accordance with an embodiment, systems and methods can provide for an indexed matrix of credit wait policies between ports within a single switch. In addition, systems and methods can provide for an array of credit wait polices at an egress port from a switch, the array being indexed by virtual lane.
US11496399B2 Dynamically balancing traffic in a fabric using telemetry data
Techniques for improved routing based on network traffic are provided. Telemetry data relating to a first network node of a plurality of network nodes in a locator ID separation protocol (LISP) fabric is received. A first portion of the telemetry data that relates to a first destination of a plurality of destinations is identified. Further, a first routing weight associated with a first interface of the first network node is revised based on the first portion of the telemetry data, where the first interface is associated with the first destination. The revised first routing weight is published to a second plurality of network nodes in the LISP fabric, wherein the second plurality of network nodes route packets to the first network node based in part on the revised first routing weight.
US11496395B2 Method for implementing a consistent hashing in a communication network
A method for use in a communication network is provided. The method comprises the steps of: (i) providing a plurality of network processing units (NPU's) comprised in the communication network; (ii) establishing a replication of at least one of the NPU's; (iii) virtually arranging the NPU's and the replication(s) in a ring configuration; (iv) associating a unique primary virtual identification and a corresponding unique backup virtual identification with each active and available entity selected from among the plurality of NPU's and replication(s); (v) establishing a list of hash values, each associated with the primary virtual identification or the backup virtual identification of a corresponding active and available entity; (vi) implementing a ring consistent hashing algorithm for carrying out a search resolution for a consistent hashing; and (vii) in a case of a change in an active and available entity having a certain primary virtual identification, using the corresponding backup virtual identification to maintain the ring continuity.
US11496394B2 Internet of things (IoT) device identification on corporate networks via adaptive feature set to balance computational complexity and model bias
Systems and methods for efficient kernel space packet processing and IoT device classification are provided. According to one embodiment, a computer system performs IoT device detection processing. Packet header information is received for multiple packets. Based on the packet header information, multiple Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) flows between a given source device of multiple devices and a given destination device of the multiple devices are identified. For each TCP or UDP flow: a variable-length feature set is created having a size limited by a predetermined or configurable aggregate number of packets sent and received for the TCP or UDP flow; and it is inferred whether the TCP or UDP flow represents an IoT device communication or a non-IoT device communication by applying a machine-learning model to the variable length feature set. The devices are then each classified as either an IoT device or a non-IoT device by aggregating one or more results of the inference processing for each device of the multiple devices with a voting classifier.
US11496391B1 Defining non-forwarding adjacencies in bipartite networks, such as Clos networks, having a level 2 backbone and level 1 nodes
Problems associated with providing a large Clos network having at least one top of fabric (ToF) node, a plurality of internal nodes, and a plurality of leaf nodes may be solved by: (a) providing L2 tunnels between each of the leaf nodes of the Clos and one or more of the at least one ToF node to ensure a non-partitioned IGP L2 backbone, and (b) identifying the L2 tunnels as non-forwarding adjacencies in link state topology information stored in ToF node(s) and leaf node(s) such that the L2 tunnels are not used for forwarding traffic. Tunnel formation is prevented over L2.
US11496389B2 Utilizing egress peer engineering to determine optimized traffic plans and to implement an optimized traffic plan
A device determines traffic and costs associated with a network that includes network devices interconnected by links, and determines traffic assignments for the network based on the traffic and the costs associated with the network. The device determines tunnel use for the network based on the traffic assignments, and determines peer link use for the network based on the tunnel use. The device determines costs associated with the traffic assignments, the tunnel use, and the peer link use for the network, and generates traffic plans based on the traffic assignments, the tunnel use, the peer link use, and the costs associated with the traffic assignments, the tunnel use, and the peer link use. The device causes one of the traffic plans to be implemented in the network by the network devices and the links.
US11496386B2 Systems and methods for identifying correlations of certain scenarios to performance of network communications
Systems and methods are provided for receiving a set of feature vectors. Each feature vector in the set may comprise feature values for a plurality of features associated with network communications. A first score for a first subset of the feature vectors that have at least one common feature value for a first feature of the plurality of features may be determined. A second score for a second subset of the feature vectors may be determined. The second subset may comprise the first subset and other feature vectors that have a different feature value for the first feature. Based on a change between the first score and the second score, whether to group the common feature value and the different feature value together may be determined.
US11496381B2 Reducing startup delays for presenting remote media items
In some implementations, a computing system can reduce startup delays for presenting remote media items. For example, when a user requests media content from a media service, the computing system can include information about the first media item to be played in the initial startup messages to reduce the number of roundtrips needed between client and server devices to present the first media item. A media item can include an introductory asset. The introductory asset can be a portion of the full media item that can be decrypted with a local key or not encrypted at all so that a media client can receive and start presenting the introductory media asset quickly while the full media item is being processed by the media client. In some implementations, the system can remove leading silence from the media item so that the amount of delay perceived by the user is reduced.
US11496377B2 Anomaly detection through header field entropy
An approach for detecting anomalous flows in a network using header field entropy. This can be useful in detecting anomalous or malicious traffic that may attempt to “hide” or inject itself into legitimate flows. A malicious endpoint might attempt to send a control message in underutilized header fields or might try to inject illegitimate data into a legitimate flow. These illegitimate flows will likely demonstrate header field entropy that is higher than legitimate flows. Detecting anomalous flows using header field entropy can help detect malicious endpoints.
US11496375B2 In-flow packet prioritization and data-dependent flexible QoS policy
A method, operational at a device, includes receiving at least one packet belonging to a first set of packets of a packet flow marked with an identification value, determining that the at least one packet is marked with the identification value, determining to change a quality of service (QoS) treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received, and sending a request to change the QoS treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received to trigger a different QoS treatment of packets within the packet flow, responsive to determining to change the QoS treatment. Other aspects, embodiments, and features are also claimed and described.
US11496367B2 Service continuity for network management systems in IPv6 networks
Systems and methods for reducing bandwidth loss in IPv6 packet switching networks. A network appliance is configured to sample IPv6 packets and mirror sampled packets to a working memory or memory structure, such as a queue. A transport layer payload is extracted from each sampled packet and a transport layer checksum validation operation is performed. Upon detecting an error, the network appliance updates a dropped packet rate or other metric.
US11496364B1 Logical rack controller
Example implementations relate to a logical rack controller. In an example, a logical rack controller receives an inventory of a plurality of physical computing racks. The logical rack controller receives a logical rack definition that indicates selected physical infrastructure from among the inventory to form a logical rack. The logical rack controller validates the logical rack definition by verifying network connectivity of the selected physical infrastructure. After validation of the logical rack definition, the logical rack controller provides, to a provisioning controller, an interface to the logical rack. The provisioning controller can utilize the interface to access the logical rack.
US11496362B2 Using legacy devices in a web-of-things
According to an aspect of an embodiment, a method may include obtaining a JavaScript Object Notation (JSON) schema that corresponds to legacy data. The legacy data may include a plurality of legacy data points corresponding to device features of a legacy device. The plurality of legacy data points may be delimited according to a legacy data format. The JSON schema may include a plurality of property definitions corresponding to the legacy data points. The JSON schema may additionally include a legacy object that describes the legacy data format in a manner that allows for processing of the legacy data using the JSON schema. The method may also include processing the legacy data using the plurality of property definitions and the legacy object included in the JSON schema in a manner that allows the legacy device to be used as a web-of-things Thing.
US11496358B2 HealthCheck access point
A wireless configuration network may be provided by a Wi-Fi hotspot active at the wireless access station. The Wi-Fi hotspot may be connected to by a wireless network-capable device, such as a tablet computer, e.g., an Apple iPad, or a Wi-Fi enabled smartphone, e.g., an Android or Apple iOS device. This allows a technician to stand on the ground below the wireless access station but still have access to various configuration features of the wireless access station. The wireless configuration network may also be referred to herein as a “debug SSID” or a “debug access point.”
US11496356B2 Device lifecycle management via a central identity service
Managing devices in an IoT environment. A method includes, as a result of a device being provisioned by a special-purpose solution, storing at a central unified registry a correlation of the device and the given special purpose solution. The method further includes correlating the device to a different special-purpose solution at the unified registry. As a result, the method further includes causing subsequent configuration of the device to be performed by the different special-purpose solution.
US11496355B2 Method for processing forwarding device fault, device, and controller
A method for processing a forwarding device fault, a device, and a controller are provided, and relate to the communications field. The method is as follows. An SNC receives a notification message sent by a first forwarding device, where the notification message includes a fault parameter of the first forwarding device, and the fault parameter includes a device identifier of the first forwarding device, a port identifier of a degraded port, and a degradation value of the port identified by the port identifier. The SNC determines, according to the device identifier and the port identifier, at least one forwarding path that passes through the port identified by the port identifier. The SNC also determines, according to the fault parameter of the first forwarding device and the fault parameters of other forwarding devices on one forwarding path, whether to update the forwarding path.
US11496354B2 ECMP fast convergence on path failure using objects in a switching circuit
A switching circuit includes circuitry configured to manage a plurality of Equal Cost Multiple Paths (ECMPs) through a plurality of shared protection group objects, wherein each of the plurality of shared protection group objects is connected to two paths in the ECMPs, and wherein a number of shared protection group objects equals a number of next-hops, cause distribution of packets based on a setting of the shared protection group object for each next-hop, and responsive to a failure of a next-hop, change the setting of the shared protection group object for the failed next-hop.
US11496352B2 Heterogeneous and/or hosted physical layer management system
One embodiment is directed to a heterogeneous physical layer management system comprising first devices, each comprising first physical layer information acquisition technology to obtain physical layer information about cabling attached to the first devices. The system further comprises second devices, each comprising second physical layer information acquisition technology to obtain physical layer information about cabling attached to the second devices, wherein the second physical layer information acquisition technology differs from the first physical layer information acquisition technology. The system further comprises a common management application communicatively coupled to the first devices and the second devices, wherein the common management application is configured to aggregate physical layer information from the first devices and the second devices. Another embodiment is directed to providing a physical layer management application as a service hosted by a third party. Other embodiments are disclosed.
US11496351B2 Modulating and demodulating data
It is presented a method for modulating data for transmission over a communication channel to a receiver network entity. The method is performed in a transmitter network entity and comprises the step of: modulating data in accordance with a modulation scheme, the modulation scheme comprising a first set of constellation points respectively representing only one bit sequence and a second set of constellation points respectively representing two different bit sequences.
US11496349B2 Systems and methods for a universal data link
A method for transmitting data through a multi-media communication network includes converting transmission entities into data symbols at a first communication device, transmitting the data symbols from the first communication device to a second communication device through at least two different types of communication media using only lower PHY layers of the at least two different types of communication media, and converting the data symbols into transmission entities at the second communication device. A network implementing a universal data link includes a first communication device configured to convert transmission entities into data symbols, a second communication device configured to convert the data symbols into transmission entities, at least a first communication medium and a second communication medium communicatively coupled between the first communication device and the second communication device, and a first physical-layer translator configured to translate data symbols without converting the data symbols into transmission entities. In order to reduce processing time and end-to-end latency, the physical-layer translator only performs demodulation and modulation operations, optionally also equalization.
US11496347B2 Terminal, base station, and communication method for reference signals with phase shift indexes
In the multiple short sequence based SRS, multiple items of sequence data having a short sequence length corresponding to a partial band are used for transmitting SRS in discontinuous bands. In the multiple short sequence based SRS, a terminal specifies a frequency domain to be used for transmitting a reference signal using predetermined sequence data, applies a phase shift index associated with the specified frequency domain to the reference signal, and transmits the reference signal to which the phase shift index is applied by using the specified frequency domain.
US11496346B2 Transmitting apparatus for transmitting an OFDM signal generated by performing IFFT processing on a preamble and one or more subframes into which pilot signals are inserted
A transmitting method includes: configuring a frame using a plurality of orthogonal frequency-division multiplexing (OFDM) symbols, by allocating a plurality of transmission data to a plurality of areas; and transmitting the frame. The plurality of areas are each identified by at least one time resource among resources and at least one frequency resource among frequency resources. The frame includes a first period in which a preamble is transmitted, and a second period in which the plurality of transmission data are transmitted by at least one of time division and frequency division. The second period includes a first area, and the first area includes a data symbol generated from first transmission data, a data symbol generated from second transmission data and subsequent to the data symbol generated from the first transmission data, and a dummy symbol subsequent to the data symbol generated from the second transmission data.
US11496345B2 Implicit signaling in OFDM preamble with embedded signature sequence, and cyclic prefix and postfix aided signature detection
A transmitter transmitting payload data using Orthogonal Frequency Division Multiplexed (OFDM) symbols, including: a frame builder configured to receive the payload data and to receive signalling data to use in detecting and recovering the payload data at a receiver, and to form the payload data with the signalling data into frames for transmission: a modulator configured to modulate a first OFDM symbol with the signalling data and to modulate one or more second OFDM symbols with the payload data; a signature sequence processor circuit providing a signature sequence; a combiner circuit combining the signature sequence with the first OFDM symbol; a prefixing circuit prefixing a guard interval to the first OFDM symbol to form a preamble; and a transmission circuit transmitting the preamble and the one or more second OFDM symbols. The guard interval is formed from time domain samples of a part of the signature sequence.
US11496344B2 Terminal, radio communication method, base station, and system to communicate using hybrid automatic repeat request acknowledgement
A user terminal according to one aspect of the present disclosure includes: a transmitting/receiving section that performs transmission and reception by using a first Component Carrier (CC) that uses a first Sub-Carrier Spacing (SCS), and a second CC that uses a second SCS larger than the first SCS; and a control section that, when a semi-static Hybrid Automatic Repeat reQuest Acknowledgement (HARQ-ACK) codebook related to both of the first CC and the second CC is transmitted on an uplink shared channel of the second CC, deletes an HARQ-ACK bit corresponding to a downlink shared channel candidate that does not satisfy a requirement of processing time. According to one aspect of the present disclosure, it is possible to appropriately transmit HARQ-ACK even when a semi-static HARQ-ACK codebook is configured.
US11496341B2 Wireless devices and systems including examples of compensating I/Q imbalance with neural networks or recurrent neural networks
Examples described herein include methods, devices, and systems which may compensate input data for I/Q imbalance or noise related thereto to generate compensated input data. In doing such the above compensation, during an uplink transmission time interval (TTI), a switch path is activated to provide converted input data to a receiver stage including a recurrent neural network (RNN). The RNN may calculate an error representative of the noise based partly on the input signal to be transmitted and a feedback signal to generate filter coefficient data associated with the I/Q imbalance. The feedback signal is provided, after processing through the receiver, to the RNN. During an uplink TTI, the converted input data may also be transmitted as the RF wireless transmission via an RF antenna. During a downlink TTI, the switch path may be deactivated and the receiver stage may receive an additional RF wireless transmission to be processed in the receiver stage.
US11496339B2 Doppler spread estimation based on supervised learning
A radio receiver includes a channel estimator processing circuit including: a feature extractor configured to extract one or more features from a received signal, the features including a channel correlation estimated based on a reference signal in a current slot, the estimated channel correlation indicating a rate of change of a wireless channel over time; and a Doppler spread estimator configured to estimate a Doppler spread of the wireless channel by supplying the features to one or more Doppler shift predictors trained on training data across a training signal-to-noise ratio (SNR) range and across a training Doppler shift range, each Doppler shift predictor being trained on a portion of the training data corresponding to a different portion of the training data.
US11496337B2 Openroaming based remote worker
A method for establishing a VPN with a client device is provided. In the method, an AP can receive an access request directed to an OpenRoaming (OR) Service Set Identifier (SSID) from the client device. The AP can send the access request to an OR connector. In response to the access request, the AP may receive an access response from the OR connector. The access response can include an attribute indicating an address to connect to a company Virtual Private Network (VPN) headend. The AP may then use the attribute to establish the VPN connection with the company VPN headend.
US11496327B1 Secure and trustworthy bridge for transferring assets across different networks
Described herein are systems and methods for providing the secure transfer of assets between blockchain networks. The system can include a storage device that can store a bridge program that is programmed to perform (i) lock operations that lock native assets from a first blockchain network and mint synthetic assets representing the native assets in a second blockchain network, and (ii) unlock operations that unlock the native assets by transferring the native assets to an address in the first blockchain network in response to the synthetic assets being returned or destroyed. The system can include a computer system that loads and executes the bridge program in a secure computing enclave that provides a trusted execution environment. The computer system can then perform the lock operations and the unlock operations to provide a bridge between the first blockchain network and the second blockchain network.
US11496326B2 Physical unclonable function-based encryption schemes with combination of hashing methods
A system is configured to derive a set of encryption keys from measured device characteristics of at least one PUF device and communicate with a remote device by performing a cryptographic operation secured by the set of encryption keys. The cryptographic operation includes segmenting a first data stream into a first plurality of data stream fragments, segmenting a first data stream fragment of the first plurality of data stream fragments into a first numeric value and a second numeric value, identifying, using the first numeric value, a first encryption key of the set of encryption keys, and applying a one-way cryptographic function to the first encryption key a first number of times determined by the second numeric value to generate a transformed fragment having a value that depends on the values of the first numeric value and the second numeric value from the first data stream fragment and a value of the first encryption key.
US11496325B2 Information handling system with overlay ownership certificates for ownership chaining
An information handling system includes a provisioning server and a server. The server includes a baseboard management controller (BMC) that configures a first ownership certificate for the server, and provides it to the provisioning server. The first ownership certificate is associated with a first owner. The BMC receives a first signed provisioning configuration content, and stores the first signed provisioning configuration content in an encrypted memory. The BMC configures a second ownership certificate for the server, and provides it to the provisioning server. The second ownership certificate is associated with a second owner. The BMC receives a second signed provisioning configuration content, and stores the second signed provisioning configuration content on top of the first signed provisioning configuration content in the encrypted memory. In response to an expiration of the second ownership certificate, the BMC removes the first signed provisioning configuration content, and applies the second signed provisioning configuration content.
US11496324B2 Enforceable pseudonymous reputation through chained endorsers
Techniques are disclosed to provide enforceable pseudonymous reputation through chained endorsers. In various embodiments, a request associated with a chained endorsement operation is received via a communication interface. A client identity information is extracted from the request. Data comprising or associated with the client identity information is combined with a secret value. A one-way transform of the combined value is performed. A result of the one-way transform is returned to a client with which the chained endorsement operation is associated.
US11496321B2 System and method of cryptographically signing web applications
Embodiments disclosed herein provide a method that includes receiving, at a client-side web browser, a minimal bootstrap payload from an application server; storing, by a client-side processor, the minimal bootstrap payload in a client-side local cache, where the locally cached minimal bootstrap payload is executed by the client-side processor before executing an application from the application server; the minimal bootstrap payload includes at least one public key and at least one Uniform Resource Location (URL) address of an application code payload.
US11496320B2 Registration method and apparatus based on service-based architecture
Embodiments of this application provide a registration method and apparatus based on a service-based architecture. In this method, a management network element determines configuration information of a function network element, where the configuration information includes a security parameter; and the management network element sends the configuration information to the function network element. The function network element receives the configuration information sent by the management network element; and the function network element sends a registration request to a control network element based on the configuration information, where the registration request includes the security parameter. The control network element receives the registration request sent by the function network element, where the registration request includes the security parameter; and the control network element verifies correctness of the security parameter, and determines validity of the registration request based on the correctness of the security parameter.
US11496317B2 Software validation for untrusted computing systems
A method of validating software including maintaining, in a trusted computing system, a copy of at least portions of data of the software, the software comprising data in an untrusted computing system. The method includes, with the trusted computing system, specifying selected data from data included in the copy as hash data, generating an executable file for generating a hash based on the specified hash data, executing the executable file to generate a check hash using the specified selected data from the copy as the hash data, and determining whether the software is valid based, at least in part, on a comparison of the check hash to an access hash generated by execution of the executable file by the untrusted computing system using the specified selected data from the untrusted computing system as the hash data.
US11496303B2 Technologies for collective authorization with hierarchical group keys
Technologies for secure collective authorization include multiple computing devices in communication over a network. A computing device may perform a join protocol with a group leader to receive a group private key that is associated with an interface implemented by the computing device. The interface may be an instance of an object model implemented by the computing device or membership of the computing device in a subsystem. The computing device receives a request for attestation to the interface, selects the group private key for the interface, and sends an attestation in response to the request. Another computing device may receive the attestation and verify the attestation with a group public key corresponding to the group private key. The group private key may be an enhanced privacy identifier (EPID) private key, and the group public key may be an EPID public key. Other embodiments are described and claimed.
US11496301B2 Publish/subscribe messaging
Some embodiments of the present invention comprise a method, system, and/or computer program product for a publish/subscribe messaging system. A processor identifies a subscriber of a pub/sub messaging system. The processor retrieves a stored encrypted key for the identified subscriber of the pub/sub messaging system. The processor communicates the retrieved encrypted key to a user selected from a group comprising a publisher of the pub/sub messaging system and the identified subscriber of the pub/sub messaging system. The processor implements end-to-end encryption of messages of the pub/sub messaging system based on key-groups.
US11496297B1 Low footprint resource sharing hardware architecture for CRYSTALS-Dilithium and CRYSTALS-Kyber
A low footprint resource sharing hardware architecture that is implemented as a co-processor and is operably configured to perform a plurality of cryptographic algorithms for Dilithium-DSA at all NIST-recommended post-quantum cryptography security levels and a plurality of cryptographic algorithms for Kyber-KEM at all NIST-recommended post-quantum cryptography security levels. The architecture also includes a singular arithmetic unit 104 operably configured perform all arithmetic operations required in the plurality of cryptographic algorithms for Kyber-KEM and the plurality of cryptographic algorithms for Dilithium-DSA and a singular sampling unit operably configured to sample all vectors and matrices required in the plurality of cryptographic algorithms for Kyber-KEM and the plurality of cryptographic algorithms for Dilithium-DSA.
US11496293B2 Service-to-service strong authentication
A request is received from a computing device for substitute data, with access to the substitute data being contingent upon successful multi-factor authentication of the first service. Signature data based on the request is generated using a first key of public-private key pair. Credential proof and the signature is provided to a second service, which verifies the credential proof as a first factor of the multi-factor authentication and verifies, using a second key, the signature as a second factor of the multi-factor authentication. The substitute data is obtained as a result of authentication by the second service. The computing device is caused, by providing the substitute data to the computing device, to input the substitute data into the interface in place of data associated with the first entity.
US11496286B2 Differential privacy with cloud data
Embodiments described herein enable data associated with a large plurality of users to be analyzed without compromising the privacy of the user data. In one embodiment, a user can opt-in to allow analysis of clear text of the user's emails. An analysis process can then be performed in which an analysis service receives clear text of an email of a client device; processes the clear text of the email into one or more tokens having one or more tags; enriches one or more tokens in the processed email using data associated with a user of the client device and the one or more tags; and processes the clear text and one or more enriched tokens to generate a data set of one or more feature vectors.
US11496281B2 Method and device for indicating transmission direction
A method and device for indicating a transmission direction are provided. The method includes: determining a detection mode for detecting a transmission direction of each of the at least one bandwidth part; detecting transmission direction indication information about a bandwidth part according to the detection mode; and determining the transmission direction of the bandwidth part according to the detected transmission direction indication information. In the present disclosure, a terminal can accurately know a transmission direction of each bandwidth part, thereby reducing the detection cost of the terminal.
US11496280B2 Method and apparatus for DMRS transmission
The present disclosure is related to a method and apparatus for DMRS transmission. According an embodiment of the disclosure, a method including determining at least one antenna port for a user equipment (UE); determining a demodulation reference signal (DMRS) resource for each of the at least one antenna port respectively; determining the number of symbols for carrying the determined DMRS resource in time domain; and indicating the determined DMRS resource of each of the at least one antenna port to the UE. Embodiments of the disclosure solve the technical problem of indicating DMRS resource and determining symbol/subcarriers for carrying the DMRS resource during DMRS transmission.
US11496278B2 Method and device for transmitting PPDU in wireless LAN system
A method and a device for transmitting a PPDU in a WLAN system are proposed. Specifically, an AP generates a PPDU and transmits the PPDU to a STA through a broadband. The PPDU includes an EHT-LTF and a data field. The data field includes a pilot tone. The coefficient of the pilot tone is set to a second pilot sequence in which a first pilot sequence is repeated. The first pilot sequence is {1 1 1 −1 −1 1 1 1}.
US11496277B2 Physical resource block indexing for coexistence of narrow band, carrier aggregation, and wide band user equipment in new radio
Methods, systems, and storage media are described for physical resource block indexing to provide coexistence for narrow band, carrier aggregation, and wide band user equipment in new radio. Other embodiments may be described and/or claimed.
US11496272B2 Methods for uplink feedback information transmission, terminal device, and network device
Methods for uplink feedback information transmission, a terminal device, and a network device. A method includes the following. A terminal device receives first downlink data and second downlink data, where a first ACK/NACK resource corresponding to first ACK/NACK information of the first downlink data and a second ACK/NACK resource corresponding to second ACK/NACK information of the second downlink data occupy the same time-domain resource. The terminal device transmits the first ACK/NACK information and/or the second ACK/NACK information on the time-domain resource.
US11496271B2 Device that convey data for a block acknowledge (ACK)
A communication device includes transceiver circuitry that transmits a first frame including a request parameter and at least one piece of data for a block acknowledge (ACK); and receives a second frame including a confirmation response to a response parameter and the block ACK. The transceiver circuitry receives a request for the at least one piece of data for the block ACK, transmits the first frame on a basis of occurrence of the request for transmitting the at least one piece of data of the block ACK, and executes transmission of a data frame based on the response parameter included in the received second frame.
US11496265B2 Comb shift design
Disclosed are techniques related to wireless communication. In an aspect, a sequence generating entity factorizes a comb size N into prime factors of N, and generates one or more offset sequences for a reference signal for positioning based on one or more sequence lists associated with the prime factors of N and a number of symbols M over which the reference signal is scheduled.
US11496259B2 Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
An arrangement is disclosed where in a multi-carrier communication system, the modulation scheme, coding attributes, training pilots, and signal power may be adjusted to adapt to channel conditions in order to maximize the overall system capacity and spectral efficiency without wasting radio resources or compromising error probability performance, etc.
US11496253B2 Methods for transmitting and receiving hybrid automatic retransmit request-acknowledgment (HARQ-ACK) index mapping and uplink resource allocation for channel selection transmission in inter-band time division duplex mode, user equipment to transmit HARQ-ACK, and eNODE-B to receive HARQ-ACK
Hybrid Automatic Retransmit ReQuest-Acknowledgment (HARQ-ACK) index mapping and uplink resource allocation is performed and controlled for channel selection transmission. A method for transmitting HARQ-ACK information to an eNode-B (eNB) by a User Equipment (UE) includes identifying KPCell as a number of downlink subframe(s) of a PCell associated with an uplink subframe and identifying KSCell as a number of downlink subframe(s) of an SCell associated with the uplink subframe; generating Discontinuous Transmission (DTX) response information for a cell having a smaller number of downlink subframes between the PCell and the SCell; generating HARQ-ACK information including the generated DTX response information and response information on data received by the UE from the eNB; and transmitting the generated HARQ-ACK information to the eNB through the uplink subframe.
US11496249B2 HARQ process for sidelink transmission
Apparatuses, methods, and systems are disclosed for sidelink HARQ operation. One apparatus 400 includes a transceiver 425 that receives 605 a SL grant for data transmission using SL resources, the SL grant having a first HARQ process identifier. The apparatus 400 includes a processor 405 that selects 610 a second HARQ process identifier for the data transmission using SL resources. Via the transceiver 425, the processor 405 transmits 615 SCI containing the second HARQ process identifier and transmits 620 the SL data using the SL resources.
US11496243B1 Techniques for masking and unmasking cyclic redundancy check bits for early termination of decoding
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a receiving node may determine a cyclic redundancy check (CRC) based at least in part on log-likelihood ratios (LLRs) associated with downlink control information (DCI) received from a transmitting node. The receiving node may perform a full unmasking of the CRC using a radio network temporary identifier (RNTI) based at least in part on a descrambling of the CRC with the RNTI, wherein a number of bits associated with the RNTI is associated with a number of bits associated with the CRC. The receiving node may initiate an early termination of a decoding of the LLRs based at least in part on the full unmasking of the CRC. Numerous other aspects are described.
US11496242B2 Fast cyclic redundancy check: utilizing linearity of cyclic redundancy check for accelerating correction of corrupted network packets
Systems and methods for correcting corrupted network packets are provided. An example method includes receiving a network packet via a communication channel. The network packet includes a payload and a Cyclic Redundancy Check (CRC) associated with the payload. The method continues with calculating a reference CRC based on the received payload and determining, based on the reference CRC and the received CRC, whether the network packet is corrupted. Based on the determination that the network packet is corrupted, the method continues with selecting a predetermined number of positions of bits in the payload of the network packet, precalculating a set of additional CRCs, and determining, based on the reference CRC and the set of additional CRCs, a combination of bit flips at the predetermined number of positions. The method also includes modifying the payload according to the combination of bit flips at the predetermined number of positions.
US11496238B2 Data transmission method and communications device
A data transmission method and a communications device, the method including: determining, by a first communications device, a target data transmission mode, where the target data transmission mode is used to indicate a quantity of times that the first communications device transmits an encoded-bit combination to a second communications device and an encoded-bit combination transmitted each time, the encoded-bit combination transmitted each time may include one encoded bit sequence or a plurality of encoded bit sequences, where the encoded bit sequence is obtained by encoding all or some of K information bits, and K is a positive integer, and sending, by the first communications device, the encoded-bit combination to the second communications device in the target data transmission mode, and receiving, by the second communications device, the encoded-bit combination sent by the first communications device, and decoding the encoded bit sequence included in the encoded-bit combination.
US11496236B2 Method and apparatus for link budget enhancements in communication systems
A method for operating a user equipment (UE) is provided. The method comprises obtaining configuration information for one or more repetitions for one or more channels of a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), or a physical uplink shared channel (PUSCH), wherein the configuration information comprises a parameter to extend a maximum number of repetitions for the one or more channels; and transmitting or receiving the one or more repetitions according to the configuration information.
US11496232B1 Waveform synchronization system for data received from a network
A system that synchronizes waveforms received over a network from one or more devices, such as medical devices. Because of network delays or losses, waveforms can arrive at varying rates and times. Precise post-synchronization of the received data, to within a few milliseconds, is needed for accurate analysis. Applications include automatic classification of waveforms, such as detection of myocardial infraction from heart monitor waveforms. Synchronization uses sequence numbers assigned by each device, but must also account for sequence number wraparounds. Waveforms may also be synchronized across devices, by calculating the bias between within-device synchronized times and a common time source or common disturbance. Waveform data may also be stored data in a database or data warehouse; embodiments may index the data using a key with a date-time prefix and a hash code suffix, to support distributed indexing while reducing the chance of hash collisions to a very small probability.
US11496230B2 Systems and methods for mapping resource blocks to network slices
A RAN node may determine an aggregate signal-to-noise ratio (SNR) of each resource block of a plurality of resource blocks, where the aggregate SNR of a given resource block of the plurality of resource blocks is based on SNRs of subcarrier frequencies of the given resource block. The RAN node may determine, based on a type of network traffic on each network slice of a plurality of network slices, an index value of each network slice of the plurality of network slices. The RAN node may map, based on the aggregate SNR of each resource block, based on the index value of each network slice, and for each resource block of the plurality of resource blocks, a resource block of the plurality of resource blocks to a network slice of the plurality of network slices.
US11496229B2 Antenna detection using antenna return loss
A system includes a radio frequency (RF) connector terminal that is configured to connect to an antenna, and a RF transmitter that transmits RF power to the RF connector terminal. The system further includes a power measurement unit that measures, as a first power measurement, first RF power of the RF transmitter power that is reflected via the RF connector terminal, and a controller that causes a transmission path discontinuity between the RF transmitter and the RF connector terminal. The power measurement unit further measures, as a second power measurement, second RF power of the RF transmitter power that is reflected from the discontinuity. The controller further determines if a first antenna is connected to the RF connector terminal based on the first and second power measurements.
US11496226B2 Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device
In an acoustic wave device, an antenna end resonator that is electrically closest to a first terminal is a first acoustic wave resonator. In each of the first acoustic wave resonator and a second acoustic wave resonator, a thickness of a piezoelectric layer is about 3.5λ or less when a wavelength of an acoustic wave is denoted as λ. The first acoustic wave resonator and the second acoustic wave resonator satisfy at least one of a first condition, a second condition, and a third condition. The first condition is a condition that the first acoustic wave resonator further includes a dielectric film provided between the piezoelectric layer and an interdigital transducer electrode, and the second acoustic wave resonator does not include the dielectric film.
US11496225B2 System and method for network distribution of quantum entanglement
Aspects of the subject disclosure may include, for example, identifying a request to facilitate communications between first and second processing nodes, determining that the communications are to be established via quantum teleportation between, and identifying a network path comprising a first path segment to obtain a quantum channel, wherein quantum entanglement is established between the first and second processing nodes based on transportation of a first quantum entangled object via the quantum channel. A classical communication channel is facilitated between the first and second processing nodes, adapted to exchange between the nodes, quantum state information of a measurement performed upon the first quantum entangled object. Information is exchanged between the first and second processing nodes via the quantum channel according to the transported first quantum entangled object and the exchanged quantum state information. Other embodiments are disclosed.
US11496221B2 Optical transmitter and transmission method
An optical transmitter, having an encoder and modulator, transmits a data signal. The encoder maps information bits of the data signal to a symbol in eight-dimensional (8D) constellation space spanned by vectors IXT1, QXT1, IYT1, QYT1, IXT2, QXT2, IYT2, QYT2, wherein I and Q are in-phase and quadrature components of an optical carrier, X and Y are orthogonal polarizations of the optical carrier, and T1 and T2 are two consecutive transmission time slots, by selecting the symbol from a set of constellation points in the 8D space. The modulator uses the symbol in the two consecutive transmission time slots to modulate two carrier waves, and to transmit the two carrier waves over the orthogonal polarizations of the optical carrier. The set of constellation points do not include any constellation point with parallel Stokes vectors in the two consecutive transmission time slots but comprise constellation points with orthogonal Stokes vectors.
US11496218B1 Optical communication modules with improved security
Optical communication modules and associated methods and computer program products for performing network communication security are provided. An example optical module includes a substrate, a first optoelectronic component supported by the substrate configured for operation with optical signals having a first wavelength, and a second optoelectronic component supported by the substrate configured for operation with optical signals having a second wavelength. The module further includes an optical communication medium defining a first end in optical communication with the first optoelectronic component and the second optoelectronic component and a second end. The module also includes security circuitry operably connected with the first optoelectronic component and the second optoelectronic component. The security circuitry determines the presence of a noncompliant component coupled with the optical communication medium at the second end based upon operation of the second optoelectronic component.
US11496212B2 Distributed simulcast architecture
A system and method for providing communication in a distributed LMR system architecture is provided herein, wherein the system includes a plurality of LMR subsystems interconnected by a data network. In some embodiments, a subsystem may include a distributed simulcast architecture comprising a plurality of LMR sites, each site having a subsystem controller and a plurality of repeaters. In one embodiment, one subsystem controller operates in an active mode and the remaining subsystem controllers operate in standby to provide redundancy. The repeaters include integrated voter comparator and simulcast controller functionality and circuitry. In some embodiments, the repeaters are operable in an active or standby mode, wherein repeaters in the active mode perform voter comparator and simulcast controller functionality. The distributed simulcast architecture provides simulcast controller and voter comparator redundancy, network failure redundancy, and site redundancy.
US11496210B2 Adjusting transmissions based on direct sensing of the ionosphere
A communication system uses skywave propagation to transmit data between communication nodes over a data transmission path. An atmospheric sensor is configured to collect atmospheric data at the reflection point of the data transmission path where the transmission path is redirected from the atmosphere toward the surface of the Earth. Data collected by the atmospheric sensor may be used to predict future ionospheric conditions and determine optimum working frequencies for transmission of data between the communication nodes.
US11496205B2 Reporting beam failure
Example embodiments of the present disclosure relate to reporting beam failure. A terminal device performs beam failure detection on a first number of serving cells configured for the terminal device. The terminal device determines information to at least indicate respective results of the beam failure detection on a second number of serving cells among the first number of serving cells, where the second number is smaller than the first number. The determined information is transmitted by the terminal device to a network device serving the terminal device using a resource allocated for the terminal device. Based on the information, the network device determines an overall result of the beam failure detection performed on the first number of serving cells.
US11496202B2 Fast and robust cell search for 5G and millimeter-wave wireless communication systems using joint frequency raster and receive beam search
A wireless multiple antenna system (200) uses a multi-antenna subsystem (211) to generate a composite sample waveform by continuously sweeping a plurality of receive beams (RX1-RXM) during each SSB transmission in a plurality of transmit beams (TX1-TX64), generating a composite received signal strength metric value from a batch of samples collected over the plurality of receive beams to determine the presence of the SSB, and then jointly searching the composite sample waveform for an optimal receive beam and an SSB frequency of any detected SSB that are used by the UE (210) to perform a cell search which matches a transmit beam from the base station (201) to the optimal receive beam.
US11496197B2 Wireless communication method and device
A wireless communication method and device are provided. The method comprises: a terminal device determining a first feedback mode for feeding back the signal quality of multiple transmitting beams of a network device, wherein the first feedback mode differs from the other feedback modes supported by the terminal device in at least one of the following aspects: receiving the capability of receiving beams or receiving beam groups for signal quality feedback, and the number of receiving beams or receiving beam groups for signal quality feedback; and the terminal device feeding back the signal quality to the network device according to the first feedback mode.
US11496196B2 Apparatus and method for determining transmission power in wireless communication system
Various embodiments of the disclosure relate to a 5th generation (5G) or pre-5G communication system for supporting a data transfer rate higher than that of a 4th generation (4G) communication system such as LTE (long term evolution). An operating method of an electronic device according to various embodiments may include: receiving a reference signal from a base station via a plurality of antennas; acquiring path loss values respectively corresponding to the antennas, based on the reference signal; determining at least two antennas among the antennas, based on frequency band information received from the base station; acquiring a ratio for the path loss values corresponding to the determined at least two antennas; and transmitting a signal via the at least two antennas, based on the acquired ratio.
US11496194B2 Methods and apparatus for group beam reporting for beam squint
The present disclosure relates to methods and devices for wireless communication of an apparatus, e.g., a UE and/or a base station. In one aspect, the apparatus may measure a plurality of beams from a base station or a UE, the plurality of beams corresponding to a plurality of subbands of a wideband channel. The apparatus may also determine whether the plurality of beams include one or more candidate beam groups for each subband of the plurality of subbands. Additionally, the apparatus may transmit, upon determining that the plurality of beams include one or more candidate beam groups for at least one subband of the plurality of subbands, an indication of the one or more candidate beam groups for the at least one subband of the plurality of subbands.
US11496193B2 Aperiodic channel state information computation for cross-carrier scheduling
Certain aspects of the present disclosure provide techniques for aperiodic channel state information (A-CSI) feedback scheduling for cross-carriers. Certain aspects provide a method for wireless communication. The method generally includes receiving on a first component carrier (CC) signaling indicating an aperiodic channel state information (CSI) report request for a plurality of CCs; determining schedules for at least CSI reference signal (CSI-RS) transmissions on the CCs based on the received signaling; monitoring CSI-RS transmissions on the CCs according to the determined schedules; and reporting CSI feedback based on CSI-RS measurements of the CSI-RS transmissions.
US11496191B2 Systems, devices, and methods for providing power-proportional communication
Systems, devices, and methods for proportionally balancing power during wireless communication are provided. The disclosures provide for an integrated radio in which the functionality of an active radio and a passive radio are integrated into a single radio, with the active and passive radios each being configured to operate in three different modes: active, passive, and backscatter. Based on power and communication link information, the integrated rode is able to balance the modes at which the two radios are operated, thereby optimizing power consumption of the device into which the integrated radio is incorporated. The resulting systems, devices, and methods lead to ultra-low power consumption that enables these communication techniques to enhance computing devices from smartwatches to laptops. Devices incorporating the integrated radios, and methods for power-proportionally exchanging data, among other systems, devices, and methods, are also provided.
US11496190B2 Full-duplex communication method and apparatus
This application provides a full-duplex communication method and an apparatus. The method includes: when sending a first signal to a first device by using a first transmit sector, receiving, by a third device by using a first receive sector, a second signal sent by a second device. A coverage area of the third device in a receiving direction may be divided into at least one receive sector, the at least one receive sector forms one receive sector group, and the third device may receive the second signal by using the first receive sector that is in the receive sector group and that is different from the first transmit sector. In this way, the third device can simultaneously receive a signal and send a signal by using different sectors, to implement full-duplex transmission, and reduce mutual interference between signal sending and signal receiving, thereby improving communication quality of the full-duplex transmission.
US11496187B2 Method and apparatus for transmitting and receiving data in a MIMO system
The present invention relates to a method and apparatus for transmitting and receiving data. A data transmission method from a sender terminal to a receiver terminal in a MIMO system using a variable frequency band according to one embodiment of the present invention comprises: repeatedly generating a signal field depending on a frequency band that is applied to the transmission of a data frame; generating a data field including the data; generating a data frame including the signal field and the data field; and transmitting the data frame to the receiver terminal. The present invention is advantageous in that a signal field which is transmitted together with the data being transmitted from the sender terminal to the receiver terminal in the MIMO system can be sent more efficiently.
US11496184B2 Coexistence primitives in power line communication networks
Systems and methods for setting a carrier-sensing mechanism in a PLC node are disclosed. In a PLC standard, coexistence is achieved by having the nodes detect a common preamble and backing off by a Coexistence InterFrame Space (cEIFS) time period to help the node to avoid interfering with the other technologies. In one embodiment, a PHY primitive is sent from the PHY to the MAC know that there has been a preamble detection. A two-level indication may be used—one indication after receiving the preamble and other indication after decoding the entire frame. The MAC sets the carrier-sensing mechanism based on the preamble detection.
US11496177B2 Agile navigation transmitter system that includes a single amplifier system
A method and transmission system for amplifying and providing navigation signals. The system comprises a splitter circuit configured to receive a plurality of radio frequency (RF) signals oscillating at at least two different frequencies f1 and f2. The splitter circuit is further configured to split and forward the RF signals having the f1 frequency to a first bandpass filter and the RF signals having the f2 frequency to a second bandpass filter. The system further comprises a first tunable amplifier configured to receive the RF signals from the first bandpass filter. The system further comprises a second tunable amplifier configured to receive the RF signals from the second bandpass filter at substantially the same time as the first tunable amplifier's receipt of the RF signals from the first bandpass filter. The first tunable amplifier is further configured to amplify its RF signals across a first band centered around the frequency f1. The second tunable amplifier is further configured to amplify its RF signals across a second band centered around the frequency f2. The amplified RF signals are fed substantially concurrently into a mixer circuit for transmission via an RF antenna to a navigation receiver.
US11496176B1 Large instantaneous bandwidth radio frequency front-end for wireless systems
The disclosed principles provide for an RF front-end design capable of up-converting, down-converting, and conditioning broadband signals for wireless transmission with an instantaneous bandwidth of up to 3.5 GHz within the frequency range of 2-12 GHz. In addition, embodiments of the disclosed principles provide flexibility that enables RF front-ends designed as disclosed herein to be applied to many different applications including covert communications, drone communications, high data rate communications, signals intelligence, direction finding, multi-function apertures, radars and emulators, and electronic warfare. Embodiments and their related advantages and improvements of RF front-ends designed in accordance with the disclosed principles are discussed herein.
US11496170B2 Drift compensation
The present disclosure relates to a method for controlling a device comprising an oscillation circuit, configured to provide a clock signal to a radio frequency circuit, and an antenna, in which the enabling of the passage of the signal from the circuit to the antenna is delayed with respect to an instant from which a power amplifier of the circuit is enabled.
US11496169B2 Radio frequency module and communication device
A radio frequency module includes: a module board including first and second principal surfaces; first and second power amplifiers on the first principal surface; external-connection terminals on the second principal surface; and first and second via conductors connecting the first and second principal surfaces. The first and second via conductors are spaced apart in the module board, one end of the first via conductor is connected to a first ground electrode of the first power amplifier, the other end of the first via conductor is connected to a first external-connection terminal, one end of the second via conductor is connected to a second ground electrode of the second power amplifier, the other end of the second via conductor is connected to a second external-connection terminal, and the first and second via conductors each penetrate through the module board in a direction normal to the first and second principal surfaces.
US11496164B2 Efficient multi-band transmitter
Transmitters, sensor systems, and methods of transmission include a frequency adjuster coupled to a ring oscillator to reduce latency and power consumption and to receive a signal from the ring oscillator. The frequency adjuster includes logic circuits to adjust the signal to a selected transmission frequency band. A band switch is coupled to the ring oscillator and the frequency adjuster to select logic circuits within the frequency adjuster to determine the selected transmission frequency band from a set of output frequency bands. A first radio front end is coupled to the frequency adjuster to transmit the signal on the selected transmission frequency band.
US11496159B2 Mesh-network multimode system with a software definable radio
A communication system that may be used in room and building automation. A mesh network may be associated with a room of a building, or the like. Connectivity may be provided for devices with servers and a cloud in one mode. Connectivity may be provided for devices to mobile devices and a room-level information module in another mode. These modes of connectivities of various modes may be effected with a software definable radio or radios. Other modes of connectivity may be implemented. Examples of modes may incorporate Bluetooth low energy (BLE) and non-BLE formats. The modes may be multiplexed to operate one at a time and be switched back and forth as needed.
US11496156B2 Data processing method and device
Provided are a data processing method and device. The data processing method includes: performing Polar code encoding on an input bit sequence having a length of K bits to obtain an encoded bit sequence having a length of N bits, and determining a bit sequence to be transmitted from the encoded bit sequence according to a data characteristic of an information bit sequence and a predetermined rate matching scheme. K is a positive integer and N is a positive integer greater than or equal to K.
US11496153B2 Coded stream processing
Described herein is a system and method for coded streaming data to facilitate recovery from failed or slow processor(s). A batch of processing stream data can be partitioned into a plurality of data chunks. Parity chunk(s) for the plurality of data chunks. The plurality of data chunks and the parity chunk(s) can be provided to processors for processing. Processed data of at least some (e.g., one or more) of the plurality of data chunks, and, processed data of parity chunk(s) are received. When it is determined that processed data for a pre-defined quantity of data chunks has not been received by a pre-defined period of time, the processed data for particular data chunk(s) of particular processor(s) from which processed data has not been received are determined based, at least in part, upon the received processed parity chunk(s) and the received processed data chunk(s).
US11496152B2 Decoding device, decoding method, and program
A decoding device comprising a decoding unit configured to decode a tactile signal encoded for each of frequency bands. A decoding method comprising decoding a tactile signal encoded for each of frequency bands. A non-transitory storage medium encoded with instructions that, when executed by a computer, execute processing comprising decoding a tactile signal encoded for each of frequency bands.
US11496151B1 Neural network model compression with block partitioning
An apparatus of neural network model decompression includes processing circuitry. The processing circuitry can be configured to receive, from a bitstream of a compressed neural network representation, one or more first syntax elements associated with a 3-dimensional coding unit (CU3D) partitioned from a 3-dimensional coding tree unit (CTU3D). The first CTU3D can be partitioned from a tensor in a neural network. The one or more first syntax elements can indicate that the CU3D is partitioned based on a 3D pyramid structure that includes multiple depths. Each depth corresponds to one or more nodes. Each node has a node value. Second syntax elements corresponding to the node values of the nodes in the 3D pyramid structure can be received from the bitstream in a breadth-first scan order for scanning the nodes in the 3D pyramid structure. Model parameters of the tensor can be reconstructed based on the received second syntax elements.
US11496150B2 Compressive sensing systems and methods using edge nodes of distributed computing networks
A system and method for compressive sensing using edge nodes of a distributed computing network. The method includes collecting a raw data signal continuously by a sensor of the edge node. A signal energy indicator is dynamically updated that quantifies an energy distortion in the raw data signal. One or more compression characteristics are determined as a function of the signal energy indicator as the signal energy indicator is updated. The raw data signal is subsampled in accordance with current values of the one or more compression characteristics to create a compressed data signal. An output is transmitted that includes the compressed data signal to a centralized node.
US11496148B2 Analog to digital converter with floating digital channel configuration
One or more systems and/or methods for implementing an analog-to-digital converter system with a floating digital channel configuration are provided. An analog input component is configured to receive measured analog signals, and output analog signals, corresponding to the measured analog signals, to an analog channel coupled to the analog input component. The analog channel is coupled to a switching component connected to a first digital channel and a second digital channel. The analog channel comprises a modulator configured to convert the analog signals into a data stream selectively input by the switching component to the first digital channel or the second digital channel.
US11496145B2 Pipeline analog to digital converter and timing adjustment method
A pipeline analog to digital converter (ADC) includes converter circuitries, a detector circuitry, and a clock generator circuit. The converter circuitries sequentially convert an input signal to be digital codes. One of the converter circuitries includes a sub-ADC circuit and a multiplying digital to analog converter (MDAC) circuit. The sub-ADC circuit performs a quantization according to a first signal to generate a corresponding one of the digital codes, in which the first signal is the input signal or a previous stage residue signal. The MDAC circuit processes the corresponding one of the digital codes in response to a first clock signal, in order to generate a current stage residue signal. The detector circuitry detects whether the quantization is complete, in order to generate a control signal. The clock generator circuit adjusts a timing of the first clock signal according to the control signal.
US11496142B2 Signal distribution system, and related phased array radar system
A signal distribution system includes: a first signal divider arranged to generate a first output oscillating signal according to a first input oscillating signal; a second signal divider arranged to generate a second output oscillating signal according to the first input oscillating signal; a first transmitting channel coupled to the first signal divider and the second divider for transmitting the first input oscillating signal to the first signal divider and the second signal divider; and a second transmitting channel coupled to the first signal divider and the second divider for transmitting a second input oscillating signal to the first signal divider and the second signal divider; wherein the first input oscillating signal has a first frequency, the second input oscillating signal has a second frequency, and the second frequency is smaller than the first frequency.
US11496136B1 Clock generating circuit and a semiconductor system using the clock generating circuit
A clock generating circuit includes a first delay line, a second delay line, a selected phase mixing circuit and, a delay control circuit. The first delay line delays, based on a delay control signal, an input clock signal to generate a first delay clock signal. The second delay line delays, based on the delay control signal, the input clock signal to generate a second delay clock signal. The selected phase mixing circuit generates, based on a first selection signal and a second selection signal, an output clock signal from at least one between the first delay clock signal and the second delay clock signal. The delay control circuit monitors duty cycles of the first delay clock signal and the second delay clock signal to generate the first selection signal and the second selection signal thereby selecting at least one between the first delay line and the second delay line.
US11496126B1 Circuits and methods for leakage reduction in MOS devices
Various methods and circuital arrangements for leakage reduction in MOS devices are presented. A pull-up circuit is selectively coupled to a gate of the MOS device to provide control of a voltage to the gate that is larger than a source voltage. Voltage switching circuits selectively couple different voltages to the body and/or back-gate terminals of the MOS device. During a standby mode of operation, the leakage current of the MOS device is decreased by driving the MOS device further into its subthreshold leakage region. During the standby mode, a threshold voltage of the MOS device is increased by coupling a voltage higher than the source voltage to the body and/or back-gate terminals. The MOS device can be a pass device used in low dropout regulator (LDO). During the standby mode, the LDO maintains output regulation by driving the MOS device further into its subthreshold leakage region and/or increasing the threshold voltage.
US11496124B1 Numerically-controlled oscillator with dithered coarse and fine splitter
A numerically-controlled oscillator (NCO) includes a phase accumulator (PA) which has a first input adapted to receive a phase increment, a second input adapted to receive a clock signal, and a third input adapted to receive a reset signal. The PA provides an instantaneous phase at an output. The NCO includes a dithered splitter which has an input coupled to receive the instantaneous phase. The dithered splitter dithers the instantaneous phase using a pseudo-random binary sequence (PRBS) and provides a dithered course phase and a dithered fine phase. The NCO includes a polynomial approximation unit which has a first input coupled to receive the dithered course phase and a second input coupled to receive the dithered fine phase. The polynomial approximation unit provides a sequence of numbers representing a discrete sinusoidal signal.
US11496119B1 Oscillator circuit
An oscillator circuit is provided. A first and a second cycle generating units, and a first and a second duty generating units are included. An SR latch, receiving outputs the first and second cycle generating units. In the SR latch, an output is provided to the first cycle generating unit and the third duty generating, and a contemporary output is provided to the second cycle generating unit and the second duty generating unit. A logic circuit receives the outputs of the first and the second duty generating units and the output and the contemporary output of the SR latch to generate a clock signal. The first and the second cycle generating units are respectively operated to provide the even and odd cycle times of the clock signal. The first and the second duty generating units are respectively operated to provide the even and odd duties of the clock signal.
US11496114B2 Elastic wave device
A longitudinally coupled resonator elastic wave filter is disposed on a piezoelectric substrate. IDT electrodes include first and second busbars. An inorganic insulating layer is provided on at least one side in a direction perpendicular or substantially perpendicular to an elastic wave propagation direction to cover the first or second busbars, and a first wiring line is disposed on the inorganic insulating layer to extend in the elastic wave propagation direction. A second wiring line three-dimensionally crosses the first wiring line with the inorganic insulating layer interposed therebetween. The first wiring line is connected to busbars, which are connected to the same potential, by extending through the inorganic insulating layer.
US11496103B2 Transconductance circuits with degeneration transistors
An example transconductance circuit includes a first portion that includes a first degeneration transistor, configured to receive a first input voltage, and a second portion that includes a second degeneration transistor, coupled to the first degeneration transistor and configured to receive a second input voltage. The first portion further includes a first input transistor, coupled to the first degeneration transistor and configured to provide a first output current, while the second portion further includes a second input transistor, coupled to the second degeneration transistor and configured to provide a second output current. Such a transconductance circuit may be used as an input stage capable of reliably operating within drain-source breakdown voltage of the transistors employed therein even in absence of any other protection devices, and may be significantly faster, consume lower power, and occupy smaller die area compared to conventional transconductance circuits.
US11496096B2 Amplifier switching control systems and methods
A first module is configured to, based on an input sample, determine a first duty cycle. A second module is configured to, based on a battery voltage and the first duty cycle, determine a second duty cycle. A third module is configured to: set a scalar value based on at least one of a battery current, an amplitude of the input sample, the second duty cycle, and an output voltage; and generate a start signal at a rate equal to a predetermined rate multiplied by the scalar value. A fourth module is configured to set a third duty cycle based on the second duty cycle and the scalar value. A fifth module is configured to generate a PWM output based on the start signal and the third duty cycle. A sixth module is configured to apply power to gates of FETs of a voltage converter based on the PWM output.
US11496092B2 Systems, circuits and methods for monitoring and dynamically configuring solar cells
A solar power system may comprise a back sheet that comprises an interconnect circuit coupling a plurality of cell tiles. A tiled solar cell, comprising a solar cell and encapsulating and glass layers, is inserted into the cell tiles of the back sheet. Each solar cell is individually addressable through the use of the interconnect circuit. Moreover, the interconnect circuit of the back sheet is programmable and allows for dynamic interconnect routing between solar cells.
US11496091B2 Electronic display assemblies with solar panels
A solar powered display assembly and systems and methods for the same are provided. An electronic display portion comprising an electronic display within a housing is secured to a structural framework at a position elevated above a ground surface. A solar energy harvesting device is connected to the structure framework at a position above, and spaced apart from, said electronic display portion, wherein said solar energy harvesting device is electrically connected to the electronic display portion. A bulk energy storage device is located below the electronic display portion. A footprint of the solar energy harvesting device is smaller than footprints for the electronic display portion and bulk energy storage device.
US11496090B2 Light-modulating device
A light-modulating device includes optical microstructures, each including a topmost layer, a bottommost layer, and in-between layers. The topmost layer extends in a first predetermined axis. The bottommost layer extends in a last predetermined axis which turns about a center axis such that an incident light beam passing through the topmost layer in an incident route is modulated to permit the light beam emitting from the bottommost layer to impinge upon a solar concentrator disposed below the light-modulating device along an impinging route different from the incident route. The in-between layers are sequentially turned about the center axis by an incremental degree toward the last predetermined axis.
US11496087B2 Solar roof panel system with edge and surface treatments
A roof-mounted solar power system for generating electrical power that includes a plurality of solar modules adapted for generating electrical power from sunlight, and with each of the plurality of solar modules having substantially the same size, aspect ratio and surface coloring. The plurality of solar modules are mounted on the deck of a roof to form a bank of solar modules having at least one irregular edge. The solar power system further includes one or more non-power generating edge treatments having substantially the same size, aspect ratio and surface coloring as the solar modules and that are adapted for installation along the irregular edge. Each edge treatment is adapted for a cutting away of at least one corner thereof to smooth the irregular edge of the bank of solar modules to a regular edge.
US11496082B2 Synchronous motor drive system and synchronous motor drive method
The present disclosure is constructed on the prior art inverter architecture, a pulse code width modulation (PCWM). This is an open loop motor control system without sensing its rotor position. The present disclosure employs a closed loop method to track the optimum efficiency motor operating point directly. A bench load test is conducted to gather information for an AI type control, which includes both load angle vs. voltage command charts and power factor vs. voltage command charts, with load levels as parameters for certain frequency command ranges. This way, the optimum efficiency motor operating points are generated a priori. The AI type control is mechanized to track the optimum efficiency motor operating points.
US11496081B2 Estimating rotor operational parameter
Provided is a method of estimating a rotor operational parameter of an electrical machine including multiple winding sets wound to have a phase-shift between winding sets, the rotor operational parameter including rotor position and/or rotor speed, the method including: deriving, for each winding set, a preliminary rotor operational parameter based on a current and a voltage of the respective winding set; calculating for at least two winding sets and for at least one predefined harmonic, a rotor operational parameter harmonic correction term based on the preliminary rotor operational parameter of at least two winding sets; calculating for at least one winding set, a corrected rotor operational parameter based on the preliminary operational parameter of this winding set and the rotor operational parameter harmonic correction term of this winding set, wherein in particular the corrected rotor operational parameter has at least one predefined harmonic removed or at least attenuated.
US11496080B2 Ripple count circuit including varying ripple threshold detection
A motor control system includes a variable voltage supply in signal communication with a direct current (DC) motor. The DC motor includes a rotor induced to rotate in response to a drive current generated by a variable supply voltage delivered by the voltage supply. The rotation of the rotor (103) generates a mechanical force that drives a component. A ripple count circuit (104) is configured to filter the drive current based on a rotational speed (ω) of the rotor (103) to generate a filtered drive current signal, and to generate a varying threshold based on the filtered drive current signal. Based on a comparison between the filtered drive current signal and the varying threshold, the ripple count circuit (104) generates a pulsed output signal indicative of the rotational speed (ω) of the rotor and a rotational position (θ) of the rotor.
US11496079B2 Compact motor starter
A motor starter has a housing, a contactor portion disposed within the housing, a motor protection system disposed within the housing adjacent to the contactor portion in a vertical direction, and an actuation system disposed within the housing. The contactor portion may switch between an open position and a closed position, in which, in the open position, current does not flow through the motor starter and, in the closed position, current is allowed to flow through the motor starter. The motor protection system includes a plurality of components that may move the contactor portion to the open position based on a current flow, in which the actuation system may move the contactor portion between the closed position and the open position in response to receiving an input.
US11496078B2 Method for determining the rotor position of a BLDC motor
A method for determining a rotor position of a BLDC motor with a magnetic rotor and stator having at least one exciter coil to which an exciter voltage is applied in accordance with a commutation process, comprises: interrupting the exciter voltage applied to the exciter coil, wherein the exciter voltage has a profile with at least one first section in which the profile of the exciter voltage has a non-vanishing finite gradient, wherein the exciter voltage in the first section is interrupted, and wherein at the time of interruption the exciter voltage has a value different from zero; capturing a voltage induced in the exciter coil by the magnetic rotor; restoring the exciter voltage to a value different from zero; and determining a rotor position of the rotor with respect to the exciter coil on the basis of the captured induced voltage.
US11496063B2 Flyback converter and switching controller circuit and control method thereof
A flyback converter includes a power transformer, a primary side switch, a secondary side switch and a controller. A secondary side switching signal has an SR pulse for achieving synchronous rectification, and a ZVS pulse for achieving zero voltage switching. The ZVS pulse is enabled according to a first characteristic of a resonance waveform, whereas, a primary side switching signal is enabled according to a second characteristic of resonance waveform. When an output current increases, the primary side switching signal is disabled during an inhibition interval, such that primary side switching signal does not overlap with the ZVS pulse, thereby preventing the primary and secondary side switches from being both conductive simultaneously. The inhibition interval is correlated with a rising edge of the primary side switching signal in a previous switching period and a resonance period of the resonance waveform.
US11496062B2 DC transformer load regulation circuit
A circuit includes a transformer having first and second transformer inputs and first and second transformer outputs. The first transformer output can be adapted to be coupled through a capacitor to a first input of an output stage. The second transformer output can be adapted to be coupled to a second input of the output stage. The circuit also includes a switching system having first and second inputs and first and second switching outputs. The first input can be configured to receive a switching signal. The second input can be configured to receive an input voltage. The first and second switching outputs respectively can be coupled to the first and second transformer inputs.
US11496060B2 Pulse sharing control for enhancing performance in a multiple output power converter system
Pulse sharing control to enhance performance in multiple output power converters is described herein. During a switching cycle, an energy pulse is provided to more than one port (i.e., output) using pulse sharing transfer. Pulse sharing transfer may enhance performance by reducing audible noise due to subharmonics and by reducing a root mean square current of one or more secondary currents. A primary switch is closed to energize an energy transfer element via a primary current. Energy may be shared among a first load port on a first circuit path via a first secondary current and among a second load port on a second circuit path via a second secondary current.
US11496059B2 Variable voltage generator circuit, capacitor and method
A variable voltage generator circuit is described for generating, from a substantially constant supply voltage VS, a variable high-voltage control voltage VC for a variable power capacitor (1) having a variable-permittivity dielectric. The control voltage generator circuit comprises a top-up circuit (10) for maintaining the voltage VCin on an input capacitor (12) at least at supply voltage VS, and a bidirectional DC-DC converter circuit (20) having a variable voltage conversion factor G controlled by control input signal (27). The bidirectional DC-DC converter (20) is arranged to convert voltage, at the voltage conversion factor G, between the input capacitor voltage VCin and the output voltage VC. When VCG×VCin, the DC-DC converter circuit (20) uses charge stored in the load capacitance (1) to charge the input capacitor (12).
US11496058B2 Power converter
A power converter is provided. A power communication module controls a secondary side voltage control circuit to output a voltage control signal according to a connection state signal. A primary side switch control circuit adjusts an operating frequency of switching a conduction state of an adjustment switch according to the voltage control signal, so as to adjust an output voltage of a transformer circuit.
US11496057B2 Converter for improving conversion efficiency
A converter includes an input capacitor, a primary-side switching circuit, a magnetic element circuit, a secondary-side switching circuit, and an output capacitor. The magnetic element circuit includes a transformer and an inductor. The input capacitor is configured to receive an input voltage. The primary-side switching circuit is coupled to the input capacitor. The magnetic element circuit is coupled to the primary-side switching circuit. The secondary-side switching circuit is coupled to the magnetic element circuit. The output capacitor is coupled to the secondary-side switching circuit. The input capacitor, the inductor, and the output capacitor oscillate to generate an oscillating current. The primary-side switching circuit is switched between a peak point of the oscillating current and a valley point of the oscillating current.
US11496053B2 Power conversion system with dc-bus pre-charge
A power conversion system comprises a plurality of power modules, each including a power input end; a charging input end; a power output end; at least one power conversion unit, each including an AC/DC conversion unit and at least one DC-Bus capacitor and being connected to the power input end and the power output end; and a pre-charging unit connected to the charging input end for receiving direct current and connected to the DC-Bus capacitor. The pre-charging unit starts to charge the DC-Bus capacitor of one of the power modules when said power module breaks down or the load of the power conversion system is light so that no current flows through the AC/DC conversion unit. The power input ends of the power modules are connected in series and then connected to an AC power source, and the power output ends of the power modules are connected in parallel.
US11496051B2 Power converter
A power converter includes two flying capacitors coupled to a network of switches, two inductors and a driver. The network of switches has a first switch to couple the first flying capacitor to a first port, a first ground switch to couple the first flying capacitor to ground, a second switch to couple the second flying capacitor to the first port, a second ground switch to couple the second flying capacitor to ground. The driver drives the network of switches with a sequence of states comprising a first state. In the first state the first port is coupled to a second port via a first path and a second path. The first path includes the first switch, the first flying capacitor and the first inductor. The second path includes the second switch, the second flying capacitor and the second inductor; the ground port is decoupled from the second port.
US11496050B2 Gate driver for DC-DC converters
A device includes a first FET coupled between first and drive terminals, and is configured to turn on/off responsive to a PWM signal having a first/second state, respectively. A second FET is coupled between the first and drive terminals and is configured to turn on responsive to the PWM signal having the first state, and turn off responsive to expiration of a particular delay after the second FET turns on. A third FET is coupled between drive and second terminals, and is configured to turn on/off responsive to the PWM signal having the second/first state, respectively. A fourth FET is coupled between the drive and second terminals, and is configured to turn on responsive to the PWM signal having the second state if a switching terminal has a first voltage, and turn off responsive to the PWM signal having the first state or the switching terminal having a second voltage.
US11496045B2 Multi-output hybrid converters
The present disclosure provides methods and circuits of multi-output hybrid voltage regulators that generate multiple lower level DC voltages lower than the magnitude of an input voltage provided to an input node of the regulator. The disclosed methods and circuits can be applied to today's Large conversion ratio DC-DC converters that allow them to support same power conversion functionality for multiple output voltages with one core switched capacitor network sharing passive components and switches with less voltage ratings, and therefore, reduce the implementation space to save cost as well as improve efficiency. Sample applications include, but are not limited to, PoL converters for data centers and telecommunication systems with better efficiency and compactness for higher conversion ratio.
US11496042B2 Method and device for matching the voltage of the smoothing capacitor of a DC/DC converter before a high-voltage battery is connected
The invention relates to a method and to a device for operating a bidirectional voltage transformer connectable to a primary battery and having a primary-side smoothing capacitor, an inductive transformer, and a secondary-side clamping capacitor, wherein, before the primary battery is connected, a voltage at the primary-side smoothing capacitor is matched to a voltage of the primary battery by a cyclical transfer of charge from the secondary-side clamping capacitor. The voltage of the primary-side smoothing capacitor is matchable in this way to the voltage of the primary battery before the primary battery is connected, and current spikes thus avoided during connection of the primary battery.
US11496040B2 Method for triggering the changing of a transistor to the on state
Disclosed is a method for triggering the switching of a switching transistor of a quasi-resonant DC-to-DC voltage converter to the on state. The method includes the steps of phase-shifting the drain voltage of the transistor by a predetermined temporal phase-shift value that corresponds to the difference between the duration of a quarter of the period of the damped sinusoidal oscillation generated when the transistor is switched off and the period of time that elapses between the command to switch the transistor to the on state and the transistor actually conducting, and, when the phase-shifted voltage is equal to the reference voltage, triggering the command to switch the transistor to the on state such that the transistor starts conducting at the time when the value of the drain voltage is at a minimum.
US11496039B2 Power controller and control method for LLC resonant converter
A power controller for an LLC resonant converter controls a high-side switch and a low-side switch. An ON-time generator in the power controller determines a high-side ON time of the high-side switch and a low-side ON time of the low-side switch in response to the bigger one between a feedback voltage and a burst voltage, where the feedback voltage is generated in response to an output voltage of the LLC resonant converter. A burst-mode controller in the power controller has a triangular-wave generator providing a triangular-wave signal with an amplitude in association with the burst voltage. A comparator comparing the triangular-wave signal and the feedback voltage to determine a break time when both the high-side and low-side switches are turned OFF. The LLC resonant converter operates in a burst mode when the break time is introduced.
US11496036B2 Valve device
A valve device includes a valve, a drive device, and a transmission unit. A valve changes a flow mode of refrigerant that flows in a circulation path of a refrigeration cycle device. The transmission unit includes a driving-side rotary body, a magnetic transmission member, and a driven-side rotary body. The driving-side rotary body includes multiple magnetic magnet poles in a rotational direction. The magnetic transmission member includes multiple magnetic transmission bodies which are configured to be magnetized by the magnetic magnet poles. The driven-side rotary body includes multiple magnetic magnet poles in a rotational direction. The driven-side rotary body rotates in response to a rotary motion of the multiple magnetic magnet poles of the driving-side rotary body via the magnetic transmission body. The number of the magnetic magnet poles and the number of the magnetic transmission bodies are different from each other. The rotation is transmitted from the driving-side rotary body to the driven-side rotary body via the magnetic transmission member in a non-contact manner.
US11496031B2 Motor and brushless wiper motor
The motor is provided with: a rotor core; permanent magnets disposed on the outer circumferential surface of the rotor core and magnetized in parallel orientation; and a salient pole saliently formed between the permanent magnets. The ratio of the number of magnetic poles of the permanent magnets to the number of teeth is 2:3. Sloped surfaces are formed on the side surfaces of the permanent magnets in the circumferential direction. The angle θ2 between lines L3 and lines L2 is an electrical angle of 13° or more, said lines L3 connecting outer circumferential corner portions where the sloped surfaces and the outer circumferential surface are connected to each other and the shaft center, said lines L2 connecting the radial direction outermost side of the circumferential side surface of the salient pole and the shaft center.
US11496024B2 Motor controller and brushless direct current motor comprising the same
A motor controller including a control box and a control panel disposed in the control box. The control box includes at least a first chamber and a second chamber. The control panel is disposed in the first chamber.
US11496023B2 Drive apparatus
A drive apparatus includes: a motor having a rotor and a stator core; a housing; and a first injection port to inject a refrigerant into the stator core. The stator core includes: a core body surrounding the rotor; and a fixing portion projecting radially outward from the core body and fixed to the housing. The fixing portion includes an upper fixing portion. The first injection port is lower than an end portion of the upper fixing portion. The upper fixing portion is on one circumferential side of the first injection port. The first injection port is open in a first direction facing a directly lower side or a second direction angled to the one circumferential side with respect to the first direction, and is facing a portion on the other circumferential side of a boundary with an end portion of the upper fixing portion on the other circumferential side.
US11496022B2 Brushless motor for a power tool
A power tool including a housing, a controller within the housing, and a brushless motor within the housing and controlled by the controller. The brushless motor including a stator assembly including a stator core having stator laminations with an annular portion and inwardly extending stator teeth. The stator assembly defines a stator envelope in an axial direction extending between axial ends of stator end caps of the stator assembly. The brushless motor further includes a rotor assembly including a rotor core having rotor laminations and defining a central aperture that extends in the axial direction and that receives a shaft, and a position sensor board assembly including position sensors and configured to provide position information of the rotor core to the controller. The rotor assembly and the position sensor board assembly are provided at least partially within the stator envelope.
US11496021B2 Electric motor having a rotor shaft and a first and a second bearing
An electric motor includes a rotor shaft, a first bearing, and a second bearing. The rotor shaft includes a first rotor shaft part and a second rotor shaft part, the first rotor shaft part being rotatably mounted via the first bearing, and the second rotor shaft part being rotatably mounted via the second bearing. A bellows is connected at its first axial end region to the first rotor shaft part, e.g., by welding, and the bellows is connected at its second axial end region to the second rotor shaft part, e.g., by welding.
US11496019B2 Waterproof with inverter housing having connector mounting portion for accommodating sealing members
The present invention may provide a motor comprising an inverter housing in which a substrate is disposed, a connector which is mounted on the inverter housing and electrically connects the substrate and a cable and wherein the connector includes a body and a first terminal coupled to the body, one side of the first terminal is in electrical contact with the substrate, the other side of the first terminal is in contact with the cable, wherein the inverter housing includes a connector mounting portion which accommodate the body of the connector, sealing members seal a gap between the connector mounting portion and the connector.
US11496015B2 Electric machine with stator tooth tip profile for reducing winding-based power losses
A rotary electric machine includes a rotor and a stator. The stator has windings and teeth extending radially from a stator core. Each tooth is separated from an adjacent tooth by a stator slot that opens to a radial stator-rotor airgap via a slot opening. The windings are positioned within each slot. Each stator tooth has a tooth tip with a surface profile configured to guide rotor flux away from areas of the windings proximate the respective slot opening. The tip surface profile may be a concave region, e.g., a dent/chamfer, and/or a convex region, e.g., a bump/bulge, and is formed in a distal end surface of the tip proximate the opening. The stator-rotor airgap is smaller at the convex region and larger at the concave region than elsewhere along the distal end surface. An electrical system includes the machine, a battery, and a power inverter module.
US11496013B2 Rotating electrical machine stator and method for manufacturing rotating electrical machine stator
A rotating electrical machine stator and a method for manufacturing a rotating electrical machine stator with high productivity. A rotating electrical machine stator includes a stator core having a slot; and a coil having a leg part including a held-in-slot part held in the slot and a portion extending from the held-in-slot part, and a resin foam is provided between an inner surface of the slot and an outer surface of the held-in-slot part facing the inner surface of the slot. The coil is formed by joining together a plurality of segment conductors each having a joint part, and a conductive joint material is disposed between a pair of joint parts facing each other in the slot.
US11496008B2 Electrical machines
An electrical machine comprises a stator and a housing. The housing has an internal bore. The stator comprises an annular core mounted within the bore of the housing. The core comprises at least one key projecting radially outwardly from a radially outer surface thereof. The housing comprises at least one keyway in the bore. The at least one key of the core being received within the at least one keyway of the housing.
US11496006B2 Stator, motor, compressor, air conditioning apparatus, and method for manufacturing stator
A slot includes a coil housing portion having first and second side portions and a bottom portion. A first straight line connects first and second points which are boundaries between the bottom portion and the side portions. A slot opening has third and fourth points closest to the first and second side portions. A second straight line connects the first and third points. A third straight line connects the second and fourth points. A first region is surrounded by the first straight line and the bottom portion. A second region is surrounded by the second straight line and the first side portion, and is surrounded by the third straight line and the second side portion. A third region is surrounded by the three straight lines. Areas A1, A2 and A3 of the three regions and total cross-sectional areas S1, S2, S3 of coils therein satisfy (S1/A1)>(S2/A2)>(S3/A3).
US11496005B2 Stator, electric motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing stator
A stator includes a yoke portion, and a tooth portion located inside the yoke portion in a radial direction. A fracture surface ratio of an inner surface of the tooth portion in the radial direction is lower than a fracture surface ratio of a side surface of the yoke portion.
US11495999B2 Wireless power supply for electrical devices
A wireless power supply system may comprise a wireless power transmitting circuit configured to transmit radio-frequency (RF) signals, and a wireless power receiving circuit configured to convert power from the RF signals into a direct-current (DC) output voltage stored in an energy storage element. The wireless power transmitting circuit may be electrically or magnetically coupled to an antenna and/or electrical wiring of a building for transmitting the RF signals. The wireless power transmitting circuit may be housed in an enclosure that is affixed in a relative location with respect to the wireless power receiving circuit. The antenna may comprise two antenna wires that extend from the enclosure. The wireless power receiving circuit may be electrically or magnetically coupled to an antenna for receiving the RF signals. The wireless power receiving circuit may comprise an RF-to-DC converter circuit for converting the power from the RF signals into a DC output voltage.
US11495996B2 Multi-coil PTX/PRX operation and control
According to some embodiments, a wireless power transmitter is disclosed. The wireless power transmitter can include a plurality of transmission coils arranged to cover a charging area and coupled with a ferrite; a plurality of local power controllers, each of the plurality of local power controllers coupled to drive a subset of the plurality of transmission coils, each subset of the plurality of transmission coils including a plurality of the plurality of transmission coils; and a microcontroller unit (MCU) coupled to the plurality of local power controllers, the microcontroller unit including a MCU processor executing instructions to designate states of each of the plurality of transmission coils, the states including active, de-active, and selected for receiver detection, and executing instructions to transmit instructions to each of the plurality of local power controllers in accordance with the state designations.
US11495991B1 Vehicle backup power supply
A vehicle control system is provided that includes a storage module including a capacitor module configured to store electrical energy and a storage controller operatively connected to the capacitor module. The storage controller is configured to provide the capacitor module electrical energy when the stored electrical energy of the capacitor module is less than a stored electrical energy threshold. The vehicle control system also includes a computer operatively connected to the storage controller, wherein the computer is configured to determine when a supplied voltage is less than a voltage threshold and initiate a shift-by-wire actuator when the supplied voltage is less than voltage threshold using the stored electrical energy in the capacitor module to actuate the shift-by-wire actuator.
US11495990B2 Portable power supply
A portable power source includes a housing and a battery receptacle supported by the housing. The battery receptacle is configured to receive a battery. The portable power source also includes a first power tool battery pack port that is configured to receive a first power tool battery pack. The portable power source further includes a charging circuit coupled to the battery receptacle and the power tool battery pack, and an inverter. The charging circuit is configured to receive power from the battery receptacle and to provide power to the power tool battery pack port. The inverter includes a DC input coupled to the battery receptacle, inverter circuitry, and an AC output. The inverter circuitry is configured to receive power from the battery receptacle via the DC input, invert DC power received from the battery receptacle to AC power, and provide the AC power to the AC output.
US11495988B2 Recharging power sources of implantable medical devices
In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
US11495985B1 Constant current constant voltage charger by means of a pulse skipping boost converter
A charging circuit and a method with an inductor, an input to receive an input voltage, an output, and a switching means is presented. The switching means performs cycles where each cycle includes, switching the circuit such that the inductor enters into an energy charging state in which the inductor stores energy provided by the input voltage. When energy stored in the inductor reaches an energy threshold, the switching circuit operates such that the inductor enters into an energy discharging state in which the inductor provides energy to the output. The energy threshold is based on a predefined maximum energy storage current value and the time between cycles is based on a duration of the energy discharging state.
US11495982B2 System and method for allocating propulsion load power drawn from high-energy and high-power batteries
System and method for allocating load power drawn from multiple batteries for powering propulsion of a vehicle. The system includes: high-energy and high-power batteries respectively designed for optimal production of DC power during high-specific-energy and high-specific-power propulsion; and battery health management systems configured to monitor state of charge and state of health of the batteries and generate battery status signals. The system further includes a propulsion load configured to produce propulsion force using power converted from power generated by at least one of the batteries and a system controller configured to allocate load power drawn from the high-energy and high-power batteries for use by the propulsion load in dependence on a propulsion phase of the vehicle and the battery status.
US11495981B2 Method for charging battery and charging system
A method for charging a battery that is a non-aqueous electrolyte secondary battery includes first and second steps. The first step is estimating an SOC of the battery based on at least one of a voltage and a current of the battery. The second step is, based on a relationship between the SOC of the battery and an entropy change ΔS, determining a maximum charging current to the battery in accordance with the SOC of the battery such that the maximum charging current becomes larger as the entropy change of the battery becomes greater.
US11495980B1 Clamp on power cord USB charger
The clamp on power cord USB charger is an electric energy distribution device. The clamp on power cord USB charger draws ac electric energy from the national electric grid by tapping into the cable of an electric device. The converts the drawn ac electric energy into dc electric energy. The clamp on power cord USB charger distributes the dc electric energy in a manner suitable for use by USB devices. The clamp on power cord USB charger comprises a pan, a lid, a fastening structure, and a rectifying circuit. The pan, the lid, and the fastening structure enclose the rectifying circuit. The rectifying circuit: a) taps into the cable to draw ac electric energy from national electric grid; and, b) converts the drawn ac electric energy into dc electric energy.
US11495979B2 Charging output protection circuit and related method
A charging output protection circuit and a charging output protection method. The charging output protection circuit includes a battery pack, a charger, a hardware control unit, and a software control unit, the hardware control unit including a detecting circuit for detecting whether a voltage of the battery pack is normal, a first triode connected to the detecting circuit, and a first a relay, the first triode is configured to control the first relay to be switched off or on based on the detection result of the detecting circuit; the software control unit includes a single chip microcomputer, a communication circuit for communicating between the single chip microcomputer and the battery pack, a second triode and a second relay connected to the single chip microcomputer, and the second triode is used for controlling the second relay to be switched off or on based on the instruction of the single chip microcomputer.
US11495978B2 Balanced charge and discharge control for asymmetric dual battery system
In some examples, a system includes a primary side with a charger and a first battery and a secondary side with a second battery. The charger on the primary side can charge both the first battery and the second battery. A hinge resistance is between the primary side and the secondary side. The primary side includes a feedback controlled active device in a current path of the first battery that compensates for the hinge resistance, for connector resistances, or for battery impedances in a current path of the second battery.
US11495976B2 Battery system and method for controlling battery system
A battery system includes a battery module that includes a plurality of battery cells, a monitoring unit configured to monitor a parameter of each of the battery cells, and a control unit configured to determine whether there is an abnormal battery cell in the battery module using the parameter, to calculate a reference voltage for balancing the battery cells when it is determined that there is an abnormal battery cell in the battery module, and to control cell balancing of the battery cells to an equalization target range.
US11495972B2 Selecting switching times of wind turbine converters
Provided is a method of controlling wind turbine converters of wind turbines parallel connected at a point of common coupling, the method including: generating for each converter within a same length of a pulse width modulation period a pulse, wherein the pulses start for different converters at different pulse start phases, wherein pulse start phase differences of the pulse start phases between at least two of adjacent converters are unequal.
US11495970B2 Photovoltaic power generation system and photovoltaic power generation method
A photovoltaic power generation system includes a plurality of photovoltaic cell arrays, a plurality of power conditioners connected respectively with the plurality of photovoltaic cell arrays, and a high order device connected to the plurality of power conditioners. The high order device is configured to execute: a first output control to adjust output power of a designated power conditioner to a predetermined output power amount being set in advance; and a second output control to adjust output power from a remaining power conditioner which is other than the designated power conditioner among the plurality of power conditioners. The high order device is configured to execute characteristic-data acquisition to acquire an input/output electrical characteristic of the designated power conditioner during execution of the first output control.
US11495965B2 Site management systems and methods
A site management system has a site management device located on a fielded site, which has a controller unit integral with a power provision unit, and the power provision unit receives an input voltage via a conductor cable and delivers power to one or more receptacles. Additionally, the system has a plurality of remote devices communicatively coupled to the site management device over a wireless network and at least one off-site computing device communicatively coupled to the site management device. Further, the system has a processor on the controller unit that communicatively couples with at least one remote device, receives data indicative of a unique identifier from the wireless remote device, and determines whether the unique identifier correlates with a remote device of an individual who is permissively on the fielded site. In addition, the processor transits data indicative of the individual and data indicative of whether the individual is permissively on the fielded site to the off-site computing device or a site manager's remote device.
US11495960B2 Semiconductor device
A semiconductor device includes, for example, an external terminal, an output element, a detecting element configured to detect occurrence of a negative voltage at the external terminal, and an off-circuit configured to forcibly turn off the output element when the detecting element detects occurrence of the negative voltage.
US11495958B2 Overpower protection in a power supply system
A method of overpower protection in a power supply system for driving a light source includes determining a voltage drop across a voltage-controlled resistor (VCR) coupled in series with the light source, calculating a power dissipation of the VCR based on the voltage drop and an output current of the power supply system, determining whether the power dissipation is greater than a power threshold, and in response to determining that the power dissipation is less than or equal to the power threshold, determining that an accumulated energy of the VCR is greater than zero, and decrementing the accumulated energy based on the power threshold and the power dissipation of the VCR.
US11495955B2 Rectifier triggering techniques
Various implementations described herein are related to a device having switching circuitry that provides a rectified voltage when triggered. The device may include diode circuitry coupled in series with charge storage circuitry. The diode circuitry and the charge storage circuitry may operate to trigger the switching circuitry. The diode circuitry may include one or more diodes, and the charge storage circuitry may include at least one charge storage component.
US11495952B2 Bracket system for mounting electrical boxes
A bracket system for mounting an electrical box and other components to a ceiling structure can include a support bar and a mounting bracket. The mounting bracket can be configured to receive an end of the support bar and selectively secure the support bar at any of a plurality of positions relative to the mounting bracket.
US11495948B2 Cable leadthrough device
A cable leadthrough device for leading a cable through an opening in a wall, having a housing that can be fastened in the area of the opening, wherein the cable can be led through the housing along a leadthrough channel parallel to a leadthrough axis, and also having a strain relief device—with at least one clamping element for clamping a cable led through the leadthrough channel, wherein the clamping element is mounted so as to be movable on the housing, by a guide device, along a guide axis inclined in relation to the leadthrough axis, between a clamping position, in which it radially narrows the leadthrough channel, and a release position, in which it releases the leadthrough channel, and a force application system being provided for generating a driving force with a force component that acts along the guide axis and pushes the clamping element towards its clamping position.
US11495947B2 Cable retainer insert and connector for shielding transfer
A cable retainer insert for a multi-strand cable includes a cable contact portion and a plurality of cable receptacles in the cable contact portion circumferentially spaced from each other. Each of the cable receptacles receives a strand of the multi-strand cable. Each of the cable receptacles has a cable strand insertion opening at a radially outward end and a bottom at an opposite radially inward end. A circle inscribed in each of the cable receptacles and touching the bottom of the cable receptacle extends radially outward beyond the cable strand insertion opening.
US11495946B2 Rodent resistant ground level ice bridge
An ice bridge system for a cellular transmissions site assembled with a ladder frame section to support cabling laid on top of the and a ladder support with a preformed base for resting on a ground surface, a preformed set of mounting points for securing one or more sections of the ladder frame, such that the ladder frames mate end to end with each other and a structural support section between the base and mounting points to support the weight of the ladder frame and supported cables.
US11495944B2 System for managing temperature in an electrical enclosure
A system for managing temperature, that can be adapted to an electrical enclosure, the electrical enclosure delimiting a first volume, the system comprising: a first chamber delimiting a closed second volume and a tank housed in the first chamber and delimiting a closed third volume inside the first chamber, first air transfer means arranged between a first air inlet/outlet connected to the second volume and a second air inlet/outlet intended to be connected to the first volume, second air transfer means arranged between a third air inlet/outlet connected to the third volume and a fourth air inlet/outlet intended to be connected to the first volume, and a control and processing unit intended to apply a mode of operation of the system.
US11495943B2 Bus bar protector
A bus bar protector is configured to cover a bus bar having a flat plate portion and a standing portion standing from an end of the flat plate portion, and includes a first cover that covers one face of the bus bar and a second cover that covers another face of the bus bar. The first cover includes a first flat plate cover that covers the flat plate portion of the bus bar, and a first standing cover that covers the standing portion of the bus bar. The second cover includes a second flat plate cover that covers the flat plate portion of the bus bar, and a second standing cover that covers the standing portion of the bus bar. The first standing cover includes a pair of engagement pieces arranged to project toward the second standing cover and bent toward each other to engage with the second standing cover.
US11495942B2 Method, system and apparatus for higher order mode suppression
A laser diode, comprising a transverse waveguide that is orthogonal to the lateral waveguide comprising an active layer between an n-type waveguide layer and a p-type waveguide layer, wherein the transverse waveguide is bounded by an n-type cladding layer on an n-side and p-type cladding layer on a p-side and a lateral waveguide bounded in a longitudinal direction at a first end by a high reflector (HR) coated facet and at a second end by a partial reflector (PR) coated facet, the lateral waveguide further comprising a buried higher order mode suppression layer (HOMSL) disposed beneath the p-cladding within the lateral waveguide or on one or both sides of the lateral waveguide or a combination thereof, wherein the HOMSL extends in a longitudinal direction from the HR facet a length less than the distance between the HR facet and the PR facet.
US11495939B2 Semiconductor laser
A semiconductor laser is provided that includes a semiconductor layer sequence and electrical contact surfaces. The semiconductor layer sequence includes a waveguide with an active zone. Furthermore, the semiconductor layer sequence includes a first and a second cladding layer, between which the waveguide is located. At least one oblique facet is formed on the semiconductor layer sequence, which has an angle of 45° to a resonator axis with a tolerance of at most 10°. This facet forms a reflection surface towards the first cladding layer for laser radiation generated during operation. A maximum thickness of the first cladding layer is between 0.5 M/n and 10 M/n at least in a radiation passage region, wherein n is the average refractive index of the first cladding layer and M is the vacuum wavelength of maximum intensity of the laser radiation.
US11495938B2 Hybrid semiconductor laser component and method for manufacturing such a component
A hybrid semiconductor laser component comprising at least one first emitting module comprising an active zone shaped to emit electromagnetic radiation at a given wavelength; and an optical layer comprising at least one first waveguide optically coupled with the active zone, the waveguide forming with the active zone an optical cavity resonating at the given wavelength. The hybrid semiconductor laser component also comprises a heat-dissipating semiconductor layer, the heat-dissipating semiconductor layer being in thermal contact with the first emitting module on a surface of the first emitting module that is opposite the optical layer. The invention also relates to a method for manufacturing such a hybrid semiconductor laser component.
US11495937B1 Two-photon vision display
Near-infrared pulses are emitted from a pulsed light source. A scanner directs the near-infrared pulses as scanned light. An optical element directs the scanned light into the eye. The scanned light is scanned in two dimensions to form an image on the eye. Photon-pairs of the near-infrared pulses deliver a photon energy that is perceived as visible light.
US11495932B2 Slip ring for use in rotatable substrate support
Embodiments of a slip ring for use in a rotatable substrate support are provided herein. In some embodiments a slip ring includes a main body having a top wall, a bottom wall, and a sidewall extending between the top and bottom walls, wherein the top wall, bottom wall, and sidewall define an inner volume within the main body, wherein a central opening is formed through the top wall; a plurality of annular containers disposed within the inner volume and coaxially with the main body, wherein the plurality of annular containers are vertically spaced apart from one another, and wherein each of the plurality of annular containers contains a first volume of an electrically conductive liquid; an upper cylindrical body rotatably disposed in the central opening; a lower cylindrical body fixedly coupled to the lower wall of the main body.
US11495931B2 Rotatable connectors for multimedia devices
The disclosed multimedia devices may include an elongated first body comprising a major longitudinal axis between a proximal end and a distal end, a second body comprising at least one electrical connector accessible from a surface of the second body, wherein the second body is configured to rotate about the major longitudinal axis of the elongated first body, and an electrical coupling configured to maintain an electrical connection between a circuit of the elongated first body and the at least one electrical connector when the second body is rotated. Various other devices, systems, and methods are also disclosed.
US11495930B2 Auto-lock assembly
A steering roll connector configured to operatively engage a steering column. The steering roll connector may comprise a roll stator and a roll rotor telescoped in and rotatable with the roll stator. The roll rotor may have a wall and a surface, and the wall may define an opening for receiving the steering column. A slide may be supported by and movable on the surface from an unengaged position to an engaged position where the slide is positioned to engage and prevent the relative rotation between the roll rotor and roll stator. A spring may operatively engage the slide to causes it to be in the engaged position. When the steering column is received in the opening, a lever arm may operatively engage and pull the slide to the unengaged position.
US11495929B1 Battery pack adapter for power tools
A battery pack adapter system includes a device that allows different sized and shaped battery packs to be converted for use with multiple power tools from different brands. In one embodiment, a drill battery and drill are joined together through means of the battery pack adapter device. This allows the drill battery to power the drill even though the battery and drill have different configurations. The battery pack adapter device includes metal electrical connectors that extend from a top end of the device towards a bottom end of the device. The metal electrical connectors transfer the electrical energy from the battery to the power tool through by means of the adapter.
US11495927B2 Portable radio system
One variation of a portable radio system includes: a portable radio configured to transmit and receive audio communication, including a connector receptacle arranged on a rear face of the portable radio and a channel extending from the connector receptacle; a cable, configured to couple the portable radio to a secondary device, including a straight section configured to seat within the channel and defining a length greater than a length of the channel; a connector, coupled to the straight section of the cable, configured to seat within the connector receptacle to couple the cable to the portable radio in an upward and downward orientation; and a clip including a base section configured to transiently couple to the body over the connector and a clamp section configured to pivot relative the base section and to attach the portable radio to a user.
US11495926B2 Electrical connector assembly and electrical connector
An electrical connector assembly including an electrical connector and a circuit board is provided. The electrical connector has a metallic plate and a plurality of terminals. The metallic plate separates the terminals into two different areas. The metallic plate has a first lateral surface. The circuit board is assembled to the electrical connector. The circuit board has a plurality of pads, a second lateral surface, and top and bottom surfaces opposite to each other. The pads are disposed on the top and bottom surfaces respectively. The second lateral surface is boarded between the top and bottom surfaces. The circuit board further includes at least one grounding circuit exposed from the second lateral surface and facing toward the first lateral surface. The metallic plate is electrically conducted to the grounding circuit by the first lateral surface when the circuit board is assembled to the electrical connector.
US11495925B2 Connector
A connector includes: a cylindrical terminal; an internal terminal; and a housing. The cylindrical terminal has an engagement portion of its one edge portion and its opposite other edge portion. The one edge portion has a first reduced thickness portion at its circumferential end portion. The first reduced thickness portion has a first protrusion protruding inwardly in a radial direction and extending in an axial direction. The other edge portion has a second reduced thickness portion. The second reduced thickness portion has a second protrusion protruding outwardly in the radial direction and extending in the axial direction. The engagement portion is configured by overlapping the first reduced thickness portion and the second reduced thickness portion and further by locating the first protrusion and the second protrusion to face each other in the circumferential direction to allow an engagement between them in the circumferential direction.
US11495920B2 Power connector with integrated status monitoring
An electrical power system including an electrical power connector, a contact configured to electrically connect a power supply to a load, a first sensor configured to sense a first characteristic of the electrical power connector, a second sensor configured to sense a second characteristic of the electrical power connector, and an electronic controller. The electronic controller configured to receive a first signal indicative of the first characteristic, receive a second signal indicative of the second characteristic, compare the first signal to a first threshold, compare the second signal to a second threshold, and dynamically adjust at least one selected from a group consisting of the first threshold and the second threshold. Wherein the dynamic adjustment is based on at least one selected from a group consisting of a measured or calculated parameter, an installation condition, an operational limit, a known operational behavior, and parameter threshold information.
US11495914B2 Connector assembly with sealed symmetrical split lever
The present disclosure provides a connector assembly. The connector assembly includes a connector housing adapted to engage with a corresponding counter-connector housing. A lever including a first lever arm and a second lever arm is pivotably and sealingly mounted to the connector housing. Each lever arm includes interlocking means for connecting the first lever arm to the second lever arm at a first location. The interlocking means of each of the first lever arm and the second lever arm are configured to define complementary symmetrical surfaces that interlock with one another when the lever arms are pivotably mounted to the connector housing. On mounting the lever arms to the connector housing, the lever is configured to move about the connector housing between an open state and a closed state to secure the counter-connector housing to the connector housing.
US11495909B2 Connector assembly
An electrical connector assembly can include a plug connector and a receptacle connector that can mate together. Conductive communication between the plug and receptacle connectors is established by mating signals terminals and mating ground terminals contained in terminal subassemblies accommodated in each connector. To align and support the signal and ground terminals, the terminals may be part of a terminal wafer and the terminal subassembly can be assembled from one or more wafers. The terminal wafer may include grounding features to improve the electrical characteristics and data transmission through the electrical connector assembly.
US11495903B2 Board-to-board connector
A first hold-down includes a hold-down elastic piece supported like a cantilever beam by a reinforcing plate part. The hold-down elastic piece includes an elastic piece body extending from the reinforcing plate part, and a curve contact part formed at an end of the elastic piece body and projecting toward a CPU board beyond a CPU board opposed surface. A housing is formed in such a way that the curve contact part does not come into contact with the housing when the curve contact part no longer projects toward the CPU board beyond the CPU board opposed surface as a result of the curve contact part being elastically displaced toward an input-output board.
US11495899B2 Data communication system
A data communication system can include a low-profile electrical connector that is sized to be mounted onto a PCB in a gap between the PCB and a heat sink that overhangs from an IC that is mounted to the PCB. The data communication system further includes an electrical cable that extends from the electrical connector to an optical transceiver. A cable management laminate can route the electrical cables along a predetermined path. The data communication system can be disposed in a system tray that is configured to force air over the heat sink. The airflow over the heat sink can be adjustable.
US11495897B2 Electric connection part
There is provided an electric connection part including: a nut made of a metal, the nut being used for fixing a conductor; and a housing made of a resin, the housing having a press-fit groove into which the nut is press-fitted. The housing includes: a rib that protrudes from an inner side surface of the press-fit groove and extends along a press-fitting direction in which the nut is press-fitted into the press-fit groove, such that the rib presses the nut to be in contact with the nut; and a recess that is disposed on an extension line in which the rib extends, the recess being recessed in the press-fitting direction.
US11495893B2 Connector
In a first contact of a connector, an insulation-displacement connection portion has two insulation-displacement blades and has a narrow slit and a wide slit. The insulation-displacement blades are different from each other in position in a first direction and correspond to the narrow slit. The insulation-displacement blades are obliquely intersected with the first direction. The narrow slit and the wide slit extend in the front-rear direction. In the first direction, the insulation-displacement blade is located between the narrow slit 362 and the wide slit 364. In a second direction, a middle of the wide slit 364 is different from a middle of the narrow slit 362 in position. When covered wire is pushed into the narrow slit, it is pressed on the insulation-displacement blades at different timings in order.
US11495887B2 Broadband wire antenna
The invention relates to a wire antenna suitable for operating in at least one frequency band, including a plurality of stacked layers, including at least one radiating element placed on a support layer, said support layer being placed on a spacing substrate placed on a reflective plane, characterised in that it includes at least one resistive grille having a resistive surface with predetermined resistance, including at least one set of repetitive, non-contiguous empty patterns, said grille being placed between the spacing substrate and the reflective plane.
US11495886B2 Cavity-backed spiral antenna with perturbation elements
Satellites require a suitable antenna for line of sight microwave communication with the ground. Disclosed here is an Archimedean spiral antenna backed by a copper cavity containing quadruple conical perturbations. The antenna meets the required size, mass, transmitting power, bandwidth, and circular polarization for a satellite (e.g., CubeSat) environment while providing immunity to the mounting position.
US11495884B2 Antenna device and communication device
An antenna device includes a dielectric substrate, an emitting electrode, a power feed circuit that feeds power to the emitting electrode, and a filter circuit formed on a path connecting the emitting electrode to the power feed circuit, the filter circuit is constituted by two or more circuits that are cascade connected, each of the two or more circuits is either a HPF or a LPF, and the antenna device does not have a resonant frequency of the emitting electrode and has two or more resonant frequencies different from the resonant frequency of the emitting electrode, each of which is formed by the emitting electrode and a corresponding one of the two or more circuits.
US11495873B2 Device comprising multi-directional antennas in substrates coupled through flexible interconnects
A device that includes a first substrate comprising a first antenna, an integrated device coupled to the first substrate, an encapsulation layer located over the first substrate and the integrated device, a second substrate comprising a second antenna, and a flexible connection coupled to the first substrate and the second substrate. The device includes a shield formed over a surface of the encapsulation layer and a surface of the first substrate. The shield includes an electromagnetic interference (EMI) shield.
US11495870B2 Cavity filter and connecting structure included therein
The present invention relates to a cavity filter and a connecting structure included therein. The cavity filter includes: an RF signal connecting portion spaced apart, by a predetermined distance, from an outer member having an electrode pad provided on a surface thereof; and a terminal portion configured to electrically connect the electrode pad of the outer member and the RF signal connecting portion so as to absorb assembly tolerance existing at the predetermined distance and to prevent disconnection of the electric flow between the electrode pad and the RF signal connecting portion, wherein the terminal portion includes: a first side terminal contacted with the electrode pad; and a second side terminal having a housing space in which a part of the first side terminal is housed, and connected to the RF signal connecting portion, wherein the first side terminal is provided as an elastic deformable body whose part is radially widened or narrowed against an assembly force provided by an assembler. Therefore, the cavity filter can efficiently absorb assembly tolerance which occurs through assembly design, and prevent disconnection of an electric flow, thereby preventing degradation in performance of an antenna device.
US11495866B2 Separator and electrochemical device comprising same
A separator is provided which includes: a separator base including a porous polymer substrate having a plurality of pores, and a porous coating layer positioned on at least one surface of the porous polymer substrate and containing a plurality of inorganic particles and a binder polymer positioned on the whole or a part of the surface of the inorganic particles to connect the inorganic particles with one another and fix them; and a porous adhesive layer positioned on at least one surface of the separator base and including polyvinylidene fluoride-co-hexafluoropropylene containing vinylidene fluoride-derived repeating units and hexafluoropropylene-derived repeating units, wherein the ratio of the number of the hexafluoropropylene (HFP)-derived repeating units (HFP substitution ratio) based on the total number of the vinylidene fluoride-derived repeating units and the hexafluoropropylene-derived repeating units is 4.5% to 9%. An electrochemical device including the separator is also provided.
US11495858B2 Photovoltaic cell with responsive surface film
A photovoltaic (PV) cell health monitoring apparatus includes a Radio Frequency Identification (RFID) tag mounted to the PV cell and having identifying information of the PV cell, and a sensor in communication with the RFID tag for measuring health information of the PV cell. The RFID tag stores the measured health information together with time and locality information of the PV cell and responds to an interrogation signal by transmitting the stored information together with the identifying information. A dust sensor in the form of a comb-like electrode array measures electrical capacitance as an indication of an amount of dust on an exposed surface of the PV cell. An RFID tag antenna arranged as a meander-line patch antenna covered with polyethylene has a dual function as a temperature sensor.
US11495851B2 Solar electroosmosis power generation device
Solar electroosmosis power generation devices and methods thereof are disclosed. In some embodiments, a first electrode in transparent inorganic electrolyte solution is provided in a first temperature chamber including a first light-transmitting wall. A second electrode in transparent inorganic electrolyte solution is provided in a second temperature chamber including a second light-tight wall. The first and second temperature chambers are connected by a cation nano-film with nanoparticles on its surface close to the first temperature chamber. An external circuit connects the first and second electrodes. When the nano-film is irradiated through the first wall by sunlight, the temperature of the first temperature chamber is higher than that of the second temperature chamber. In some embodiments, the solar electroosmosis power generation device improves solar energy utilization efficiency, and can be used in the field of solar light-heat-electric conversion.
US11495845B2 Energy storage apparatus
An energy storage device including an electrode terminal, and a case having a case first surface on which the electrode terminal is disposed, and a case second surface, a conductive member, and a first insulating member including a facing portion that faces the case second surface in the first direction, and is disposed between the case second surface and the conductive member, and an extending portion extending from the facing portion in a second direction intersecting the first direction are provided, and in a third direction intersecting the first direction and the second direction, the extending portion is disposed closer to the case first surface on which the electrode terminal is disposed than a case third surface facing the case first surface of the case.
US11495842B2 Heat dissipating structure and battery provided with the same
A heat dissipating structure for a battery is provided between a heat source and a cooling member and enables heat dissipation from the heat source by conducting heat from the heat source to the cooling member. The heat dissipating structure includes: a thermally conductive sheet containing at least one of metal, carbon, and ceramic and settable between the heat source and the cooling member; and a cushion member at least partially covered with the thermally conductive sheet.
US11495841B2 Method for detecting a water ingress into a housing, electronic circuit for carrying out the method, housing including the electronic circuit and vehicle including the housing
A method for detecting a water ingress into an interior of a housing, which is sealed against the surroundings, including the following steps: detecting a temperature of the air in the interior; detecting a relative air humidity in the interior; and detecting a water ingress as a function of the detected temperature and of the detected relative air humidity.
US11495835B2 Management of large stacks of battery cells
Methods and systems are provided for optimizing usage of a large number of battery cells, some, most or all of which are fast charging cells, and possibly arranged in battery modules—e.g., for operating an electric vehicle power train. Methods comprise deriving an operation profile for the battery cells/modules for a specified operation scenario and specified optimization parameters, operating the battery cells/modules according to the derived operation profile, and monitoring the operation of the battery cells/modules and adjusting the operation profile correspondingly. Systems may be configured to balance cell/module parameters among modules, to have parallel supplemental modules and/or serial supplementary cells in the modules, and/or have supplemental modules and circuits configured to store excessive charging energy for cells groups and/or modules—to increase the cycling lifetime and possibly the efficiency of the systems. Disclosed redundancy management improves battery performance and lifetime.
US11495832B2 Electrochemical cell
A battery includes a negative electrode body wound to be flat. The negative electrode body has a plurality of negative electrode main bodies arranged in a line in a negative electrode connection direction in a developed state, and at least one negative electrode connection portion connecting a pair of negative electrode main bodies adjacent in the developed state among the plurality of negative electrode main bodies. The at least one negative electrode connection portion is folded back such that the plurality of negative electrode main bodies overlap each other. A dimension of each of the plurality of negative electrode main bodies in the negative electrode connection direction decreases with separation from an outer end side negative electrode main body. A dimension of the at least one negative electrode connection portions in the negative electrode connection direction increases with separation from an inner end side negative electrode connection portion.
US11495829B1 Generation of wrinkle-free silicon monoxide electrodes using combined preformation and formation
A solid electrolyte interface is formed on a silicon monoxide electrode in a battery cell. While the solid electrolyte interface is being formed on the silicon monoxide electrode, the battery cell is charged for one or more initial cycles.
US11495828B2 Non-flammable electrolyte for energy storage devices
Provided herein are energy storage devices high energy and power densities, cycle life, and safety. In some embodiments, the energy storage device comprise a non-flammable electrolyte that eliminate and/or reduce fire hazards for improved battery safety, with improved electrode compatibility with electrode materials.
US11495826B2 Graphene compound and manufacturing method thereof, electrolyte, and power storage device
To provide a graphene compound having an insulating property and an affinity for lithium ions. To increase the molecular weight of a substituent included in a graphene compound. To provide a graphene compound including a chain group containing an ether bond or an ester bond. To provide a graphene compound including a substituent containing one or more branches. To provide a graphene compound including a substituent including at least one of an ester bond and an amide bond.
US11495821B2 Fuel cell stack and method of assembling fuel cell stack
A fuel cell stack includes an insulating collar member provided in an end plate and screwed with a positioning pin, and a rotation restriction mechanism that restricts rotation of the collar member relative to the end plate in a screw tightening direction of the positioning pin. A method of assembling the fuel cell stack includes a screwing step and a stacking step. In the screwing step, rotation of the collar member relative to the end plate in the screw tightening direction of the positioning pin is restricted by the rotation restriction mechanism.
US11495817B2 Cell, cell stack device, module, and module housing device
A cell according to the present disclosure includes: a solid electrolyte layer including a first surface and a second surface opposite to the first surface; a fuel electrode on the first surface; an air electrode on the second surface; and a middle layer between the second surface and the air electrode. The middle layer=is a CeO2-type sintered body containing Si, the content of Si equivalent to or less than 150 ppm in terms of SiO2. A cell stack device includes a cell stack in which the plurality of cells is aligned. A module includes: a storage container; and the cell stack device that is housed in the storage container. A module housing device includes: an external case; the module and an auxiliary equipment that drives the module, which are housed in the external case.
US11495814B2 Utilizing black powder for electrolytes for flow batteries
A method and systems are provided for utilizing black powder to form an electrolyte for a flow battery. In an exemplary method the black powder is heated under an inert atmosphere to form Fe3O4. The Fe3O4 is dissolved in an acid solution to form an electrolyte solution. A ratio of iron (II) to iron (III) is adjusted by a redox process.
US11495811B2 Fuel cell system and gas liquid separator
A fuel cell system includes an inlet pipe configured to guide a fuel gas injected from an injector to a fuel cell stack, and a gas liquid separator configured to perform gas liquid separation of a fuel exhaust gas discharged from the fuel cell stack. The gas liquid separator is directly coupled to a lower portion of the inlet pipe. A connection channel configured to connect the inside of the gas liquid separator and a channel in the inlet pipe together is formed in a part coupling the gas liquid separator and the inlet pipe together.
US11495808B2 Thermal management of fuel cell units and systems
Various designs and configurations of and methods of operating fuel cell units, fuel cell systems and combined heat and power systems are provided that permit efficient thermal management of such units and systems to improve their operation.
US11495805B2 Container for reformer and fuel cell system
A fuel cell system, with an air flow system includes a first thermal zone, a second thermal zone, an air blower provided between the first and second thermal zones. The first thermal zone is connected to an inlet port of the fuel cell system. The second thermal zone is connected to an outlet port of the fuel cell system. The air blower is configured to draw in air from the first thermal zone and provide the air to the second thermal zone.
US11495804B2 Air electrode catalyst for air secondary battery and air secondary battery
An air electrode catalyst for an air secondary battery includes a pyrochlore-type composite oxide having two or more crystal structures having a different amount of oxygen. A battery, according to some embodiments, includes an electrode group including an air electrode and a negative electrode stacked with a separator therebetween, and a container accommodating the electrode group along with an alkali electrolyte solution, wherein the air electrode includes the air electrode catalyst. The air electrode catalyst may have a pyrochlore-type composite oxide having a crystal structure represented by Bi2Ru2O6.92 and a crystal structure represented by Bi2Ru2O7.33.
US11495803B2 Cathode, lithium-air battery including the same, and method of preparing the same
A cathode configured to use oxygen as a cathode active material includes: a porous electrically conductive framework substrate; and a coating layer disposed on a surface of the porous electrically conductive framework substrate, wherein the coating layer includes at least one of a lithium-containing metal oxide or a composite including a lithium-containing metal oxide, and wherein a porosity of the porous electrically conductive framework substrate is about 70 percent to about 99 percent, based on a total volume of the cathode, and an areal resistance of the porous electrically conductive framework substrate is about 0.01 milliohms per square centimeter to about 100 milliohms per square centimeter.
US11495802B2 Three-dimensional structure electrode and electrochemical element including same
The present invention relates to a three-dimensional structure electrode, a method for manufacturing same, and an electrochemical element including the electrode. The present invention is characterized by comprising: (a) an upper conductive layer and a lower conductive layer which have a structure constituting an assembly within which a conductive material and a porous nonwoven fabric including a plurality of polymeric fibers are three-dimensionally connected in an irregular and continuous manner, thereby forming a mutually connected porous structure; and (b) an active material layer forming the same assembly structure as the conductive layers and forming a three-dimensionally filled structure in which electrode active material particles are uniformly filled inside the mutually connected porous structure formed in the assembly structure, wherein the active material layer is formed between the upper conductive layer and the lower conductive layer.
US11495800B2 Electrode for power storage device and method for producing same
An object of the present invention is to provide a lithium ion secondary battery having a high energy density and improved cycle characteristics. The present invention is related to an electrode for a power storage device comprising a negative electrode mixture layer comprising: (a) a negative electrode active material (42-2) comprising 1% or more of a material comprising Si as a constituent element; (b) a first polymer (42-1) coating the negative electrode active material and comprising vinylidene fluoride as a monomer unit; and (c) a negative electrode binder (42-3) comprising a second polymer that has a molecular weight of 80,000 or more and comprises at least one monomer unit selected from the group consisting of acrylic acid, acrylate salt, methacrylic acid, and methacrylate salt.
US11495797B2 Negative electrode active material, negative electrode including the same, secondary battery including the negative electrode, and preparation method of the negative electrode active material
A negative electrode active material including a silicon-carbon-based particle, the silicon-carbon-based particle having a SiCx matrix and boron doped in the SiCx matrix, wherein x of the SiCx matrix is 0.3 or more and less than 0.6.
US11495795B2 LTO negative electrode material, having graphene quantum dot doped with nitrogen attached thereto, with excellent rate characteristics and no gas generation during long term charge and discharge
One example of the present invention provides a negative electrode material. Such a negative electrode material may comprise lithium titanium oxide-based particles and a graphene quantum dot coating layer doped with nitrogen that is positioned on the lithium titanium oxide-based particles.
US11495794B2 Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery including the same and lithium secondary battery including the same
A negative electrode active material for a lithium secondary battery which includes a silicon oxide-based composite represented by M-SiOx (wherein 0
US11495790B2 Cathode mixture and method for producing the same
An object of the present disclosure is to produce a cathode mixture with which the charge and discharge capacities of a sulfur battery can be increased. The present disclosure achieves the object by providing a method for producing a cathode mixture used in a sulfur battery, wherein the cathode mixture is produced by a mechanical milling treatment of a raw material mixture comprising: Li2S, LiX, in which X is selected from F, Cl, Br, or I, and MxSy, in which M is selected from P, Si, Ge, B, Al, or Sn, x and y is an integer that gives electric neutrality to S according to the kind of M; a cathode active material including an elemental sulfur; and a conductive auxiliary material including a carbon material.
US11495786B2 Inserted cavity electrode lithium battery
A battery with many cavities that form tiny reaction zones having voids. During charging, lithium metal forms in each cavity on the anode current collector. The formation of lithium metal in each of the many thousands of small cavities that are isolated from each other prevents the buildup of significant quantities of lithium metal in one location. The combination of tiny reaction zones and voids allows lithium metal to form without stressing the structure of the battery cell.
US11495783B2 System and method for reproducible manufacturing of electrode for secondary battery
A system for manufacturing an electrode for a secondary battery is disclosed herein. In an embodiment, the system for manufacturing the electrode for the secondary battery comprises a supply roller for supplying a collector having a long sheet shape; an electrode active material coating device for applying an electrode active material to a surface of the collector supplied by the supply roller to manufacture an unfinished electrode; a rolling roller for rolling a surface of the unfinished electrode and adjusting a thickness of the electrode active material to manufacture a finished electrode; and an electrode quality inspection device for inspecting quality of the electrode through a surface roughness value of the rolling roller, a surface roughness value of the surface of the electrode, and a rolling load value of the rolling roller.
US11495781B2 System and method for manufacturing positive electrode for secondary battery
A system for manufacturing a positive electrode for a secondary battery includes an unwinder wound with a positive electrode base material, a first coating unit for coating an insulating material at predetermined positions about widthwise edges of the base material with respect to a transfer direction of the base material supplied from the unwinder, a first drying furnace for drying the insulating material by heating the base material coated with the insulating material, a second coating unit for coating a positive electrode slurry on the base material supplied from the first drying furnace in a region between the insulating material formed at both sides of the base material, and a second drying furnace for heating and drying the base material coated with the insulating material and the positive electrode slurry.
US11495780B2 Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
The present invention relates to a method of preparing an electrode for a lithium secondary battery and an electrode for a lithium secondary battery prepared thereby, wherein, since the method may suppress the migration of a binder and may uniformly control the distribution of the binder in the electrode by forming a plurality of negative electrode active material layers and allowing a drying condition of each of the negative electrode active material layers to be different, the method may improve life characteristics by improving adhesion between a negative electrode active material and a current collector and may improve charging characteristics by reducing interfacial resistance of the negative electrode.
US11495777B2 Self-luminous element, self-luminous panel, and self-luminous panel manufacturing method
A light-emitting element includes: a light-reflective first electrode; a light-emitting layer above the first electrode; a light-transmissive second electrode above the light-emitting layer; a first light-transmissive layer on the second electrode; and a second light-transmissive layer on the first layer. First optical cavity structure is formed between surface of the first electrode facing the light-emitting layer and surface of the second electrode facing the light-emitting layer. The first optical cavity structure corresponds to, as peak wavelength, first wavelength longer than peak wavelength of light emitted from the light-emitting layer. Second optical cavity structure is formed between the surface of the first electrode facing the light-emitting layer and an interface between the first layer and the second layer. The second optical cavity structure corresponds to, as peak wavelength, second wavelength shorter than the first wavelength. The first and second layers differ in refractive index from each other by 0.3 or greater.
US11495773B2 Display device and manufacturing method thereof
A display device includes a bending area at which the display device is bendable; an organic light emitting element disposed on the substrate; an encapsulation layer covering an upper surface and a side surface of the organic light emitting element; and a bending area protection layer covering the bending area of the substrate. The upper surface of the encapsulation layer includes a nano structure defined by nano sized protrusions and depressions of the upper surface, and along the substrate, and the bending area is disposed separated from the encapsulation layer.
US11495771B2 Display panel and method of manufacturing the same
Systems and methods are described for a display panel and a method of manufacturing the display panel. The systems and methods may provide for a substrate having a first surface and a second surface that face each other, a display unit including an organic light-emitting device arranged on the first surface of the substrate; and a thin-film encapsulation layer arranged on the display unit to shield the display unit, wherein an edge of the first surface or an edge of the second surface are inclined with respect to the first surface or the second surface. The inclined surfaces are designed to prevent damage to the display due to fine cracks during the manufacturing process as the display panel is trimmed or cut from a single base member. A display panel having improved strength characteristics may be manufactured, as well.
US11495769B2 Inorganic light emitting diode and inorganic light emitting device including the same
The present disclosure relates to an inorganic light emitting diode (LED) in which an emitting material layer (EML) includes inorganic luminescent particles and a cyclic boronic acid mixed with the inorganic luminescent particles and an inorganic light emitting device including the inorganic LED. The cyclic boronic acid in the EML allows surface defects on the inorganic luminescent particle to be minimized, and stabilizes the particles. As excitons by recombining holes and electrons in the stabilized luminescent particles become stabilized, the particles show improved exciton generation efficiency. The cyclic boronic acid enables the inorganic LED and the inorganic light emitting device to achieve lower driving voltages and improved luminous efficiency.
US11495767B2 Photoelectronic device, flat panel display using the same, and fabrication method of photoelectronic device
A photoelectronic device includes an active layer containing inorganic particles, and an oxide semiconductor layer containing zinc (Zn), silicon (Si), and oxygen (O), where the oxide semiconductor layer and the active layer are stacked layers. The photoelectronic device further includes a multilayer transparent electrode over or under the active layer, wherein the oxide semiconductor layer serves as a part of the multilayer transparent electrode.
US11495765B2 White organic light-emitting device and display device using the same
Disclosed herein are a white organic light-emitting device. The white organic light-emitting device enables an overall improvement in characteristics such as color temperature, efficiency, luminance, and service life, by changing the configuration of different types of emission layers in contact with each other, and a display device using the same.
US11495761B2 Photoelectric conversion devices and organic sensors and electronic devices
A photoelectric conversion device includes a first electrode and a second electrode facing each other, an organic photoelectric conversion layer between the first electrode and the second electrode, and a charge auxiliary layer between the first electrode and the organic photoelectric conversion layer. The organic photoelectric conversion layer is configured to absorb light in at least a portion of a wavelength spectrum of incident light and to convert the absorbed light into an electrical signal. The charge auxiliary layer includes a metal and an oxide. The oxide may be an oxide material that excludes silicon oxide such that the charge auxiliary layer does not include silicon oxide.
US11495757B2 Organic electroluminescent materials and devices
The present invention includes novel platinum complexes with tridentate ligands forming dimeric structures that are calculated to have blue emission. The ligand backbone and pendant donor rings can be altered to give different emission maxima. The present invention also includes various pendant donor rings and multiple different ligand backbones. Such complexes are suitable for use as an emitter in organic light emitting devices.
US11495756B2 Organic electroluminescent materials and devices
Provided are a compounds comprising a first ligand LA of
US11495751B2 Materials for organic electroluminescent devices
The invention relates to compounds which are suitable for use in electronic devices, and to electronic devices, in particular organic electroluminescent devices, containing said compounds.
US11495749B2 Organic electroluminescent materials and devices
Compounds containing indolocarbazole compounds of Formula I or Formula II comprising terphenyl groups and compounds of Formula III comprising triazine groups are disclosed in this application. These compounds are useful for application in organic electroluminescent devices.
US11495747B2 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
Provided are a compound of Formula 1; an organic electric element comprising a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, comprising a mixture of a compound of Formula 1 and a compound of Formula 2, or comprising a compound of Formula 3, a subgenus of Formula 1, in the organic material layer; and an electronic device comprising the element, which has lowered driving voltage and increased luminous efficiency and life time.
US11495745B2 Compound and organic light emitting device comprising same
Provided is a compound of Chemical Formula 1: where R1 and R2 are each independently hydrogen, a substituted or unsubstituted C1-60 alkyl, a substituted or unsubstituted C1-60 alkoxy, a substituted or unsubstituted C1-60 haloalkyl, a substituted or unsubstituted C1-60 haloalkoxy, halogen, cyano, tri(C1-60 alkyl)silyl, a substituted or unsubstituted C6-60 aryl, or a substituted or unsubstituted C2-60 heteroaryl containing at least one of O, N, Si and S,R3 and R4 are each independently hydrogen, deuterium, a substituted or unsubstituted C1-60 alkyl, a substituted or unsubstituted C1-60 alkoxy, a substituted or unsubstituted C1-60 haloalkyl, a substituted or unsubstituted C1-60 haloalkoxy, halogen, cyano, tri(C1-60 alkyl)silyl, or a substituted or unsubstituted C2-60 heteroaryl containing at least one of O, N, Si and S, andAr is C6-60 aryl, or C2-60 heteroaryl containing at least one of O, N, Si and S, wherein the C6-60 aryl, or C2-60 heteroaryl is substituted with 1 to 5 substituents each selected from the group consisting of a substituted or unsubstituted C1-60 alkyl, a substituted or unsubstituted C1-60 alkoxy, a substituted or unsubstituted C1-60 haloalkyl, a substituted or unsubstituted C1-60 haloalkoxy, halogen, cyano, and tri(C1-60 alkyl)silyl,and an organic light emitting device including the same.
US11495742B2 Dual layer dielectric liner for resistive memory devices
A resistive memory device is provided. The resistive memory device comprises a first electrode and a resistive layer over the first electrode, the resistive layer having a sidewall. A second electrode is over the resistive layer. An insulating liner is formed on the sidewall of the resistive layer. The insulating liner comprises two layers of different dielectric materials.
US11495740B2 Magnetoresistive memory device
According to one embodiment, a magnetoresistive memory device includes: a first ferromagnetic layer; a stoichiometric first layer; a first insulator between the first ferromagnetic layer and the first layer; a second ferromagnetic layer between the first insulator and the first layer; and a non-stoichiometric second layer between the second ferromagnetic layer and the first layer. The second layer is in contact with the second ferromagnetic layer and the first layer.
US11495739B2 Magnetoresistance effect element and magnetic recording array
A magnetoresistance effect element according to an embodiment includes: a spin orbit torque wiring extending in a first direction; a laminated body laminated on the spin orbit torque wiring and having a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer between the first ferromagnetic layer and the second ferromagnetic layer; a conductive layer in contact with a side of the laminated body opposite to the spin orbit torque wiring; and a heat dissipation layer separated from the laminated body in the first direction and connected to the spin orbit torque wiring and the conductive layer.
US11495738B2 Dual magnetic tunnel junction devices for magnetic random access memory (MRAM)
A dual magnetic tunnel junction (DMTJ) is disclosed with a PL1/TB1/free layer/TB2/PL2 configuration wherein a first tunnel barrier (TB1) has a substantially lower resistance×area (RA1) product than RA2 for an overlying second tunnel barrier (TB2) to provide an acceptable magnetoresistive ratio (DRR). Moreover, first and second pinned layers, PL1 and PL2, respectively, have magnetizations that are aligned antiparallel to enable a lower critical switching current that when in a parallel alignment. The condition RA1
US11495737B2 Magnetic tunnel junction (MTJ) device
A magnetic tunnel junction (MTJ) device includes a bottom electrode, a reference layer, a tunnel barrier layer, a free layer and a top electrode. The bottom electrode and the top electrode are facing each other. The reference layer, the tunnel barrier layer and the free layer are stacked from the bottom electrode to the top electrode, wherein the free layer includes a first ferromagnetic layer, a spacer and a second ferromagnetic layer, wherein the spacer is sandwiched by the first ferromagnetic layer and the second ferromagnetic layer, wherein the spacer includes oxidized spacer sidewall parts, the first ferromagnetic layer includes first oxidized sidewall parts, and the second ferromagnetic layer includes second oxidized sidewall parts. The present invention also provides a method of manufacturing a magnetic tunnel junction (MTJ) device.
US11495736B2 Semiconductor device including blocking layer
A semiconductor device includes a plurality of magnetic tunnel junction (MTJ) structures in an interlayer insulating layer on a substrate. A blocking layer is on the interlayer insulating layer and the plurality of MTJ structures. An upper insulating layer is on the blocking layer. An upper interconnection is on the upper insulating layer. An upper plug is connected to the upper interconnection and a corresponding one of the plurality of MTJ structures and extends into the upper insulating layer and the blocking layer. The blocking layer includes a material having a higher absorbance constant than the upper insulating layer.
US11495734B2 Method of manufacture for single crystal capacitor dielectric for a resonance circuit
A method of manufacturing an integrated circuit. This method includes forming an epitaxial material comprising single crystal piezo material overlying a surface region of a substrate to a desired thickness and forming a trench region to form an exposed portion of the surface region through a pattern provided in the epitaxial material. Also, the method includes forming a topside landing pad metal and a first electrode member overlying a portion of the epitaxial material and a second electrode member overlying the topside landing pad metal. Furthermore, the method can include processing the backside of the substrate to form a backside trench region exposing a backside of the epitaxial material and the landing pad metal and forming a backside resonator metal material overlying the backside of the epitaxial material to couple to the second electrode member overlying the topside landing pad metal.
US11495733B2 Magnetostrictive type sensor temperature detecting circuit, magnetostrictive type sensor, and temperature detecting method for magnetostrictive type sensor
A magnetostrictive-type sensor temperature-detecting circuit configured to be used in a magnetostrictive-type sensor including an applied stress-detecting coil, and a driving section to output an alternating voltage, excite the coil with a resulting alternating electric current, and switch flow directions of the electric current flowing in the coil in response to switching voltage polarities of the output alternating voltage, to detect a temperature of the coil in the sensor. This temperature-detecting circuit includes an alternating electric current direction switching time-detecting section to detect an amount of time from when the voltage polarities of the output alternating voltage are switched until when the flow directions of the electric current flowing in the coil are switched, and a temperature-computing section to compute the temperature of the coil on the basis of the amount of time detected by the alternating electric current direction switching time-detecting section.
US11495732B2 Piezoelectric transformer and electronic apparatus
A piezoelectric transformer comprises at least a laminate of a first member, a first piezoelectric element, a second piezoelectric element and a second member sequentially stacked one on the other in the above-listed order and a pressurizing mechanism for squeezing the first member and the second member together in the stacking direction. The ratio of the electromechanical coupling coefficient k33 relative to the electromechanical coupling coefficient k31 (k33/k31) of the first piezoelectric element and the second piezoelectric element is not less than 2.0.
US11495730B2 Methods and systems for wafer scale transducer array fabrication
Various methods and systems are provided for a multi-frequency transducer array. In one example, the transducer array may be fabricated via a wafer scale approach, where a first comb structure, with a first type of element, is formed by dicing a first acoustic stack and a second comb structure, with a second type of element, is formed by dicing a second acoustic stack. Combining the first and second comb structures may form a multi-frequency transducer array.
US11495729B2 Deformable heterostructures, electronic devices incorporating the same, and methods of making the same
Highly deformable heterostructures utilizing liquid metals and nanostructures that are suitable for various applications, including but not limited to stretchable electronic devices that can be worn, for example, by a human being. Such a deformable heterostructure includes a stretchable substrate, a conductive liquid metal on the substrate, and nanostructures forming a solid-liquid heterojunction with the conductive liquid metal.
US11495728B2 Piezoelectric device and method of manufacturing piezoelectric device
A piezoelectric device includes a piezoelectric body at least a portion of which can bend and vibrate, an upper electrode on an upper surface of the piezoelectric body and in which distortion of a crystal lattice is reduced as a distance from the upper surface of the piezoelectric body increases, a lower electrode on a lower surface of the piezoelectric body and in which distortion of a crystal lattice is reduced as a distance from the upper surface of the piezoelectric body increases, and a support substrate below the piezoelectric body, in which a recess extending from a lower surface of the support substrate toward the lower surface of the piezoelectric device is provided.
US11495727B2 Resonator element, resonator, electronic device, electronic apparatus, mobile body and method of manufacturing resonator element
A resonator element includes: a substrate; and an electrode that includes a first conductive layer provided on a surface of the substrate, and a second conductive layer, provided on the opposite side to the first conductive layer on the substrate side, which is disposed within an outer edge of the first conductive layer when seen in a plan view from a direction perpendicular to the surface.
US11495724B2 Superconducting structure and device surface termination with alloy
A method of fabricating a superconductor device includes providing a first metal layer on top of the substrate. An oxidation of a top surface of the first metal layer is rejected. A second metal layer is deposited on top of the second metal layer. A superconducting alloy of the first metal layer and the second metal layer is created between the first metal layer and the second metal layer. There is no oxide layer between the superconducting alloy and the first metal layer.
US11495720B2 Heat dissipation structure of door leaf of LED display box
A heat dissipation structure of the door leaf of an LED display box, comprising a box frame (100) and a box door leaf (200), a heat collection cavity (300) is simultaneously formed in the box frame (100) and on the backs of the LED display modules, when working, a number of the LED display modules are energized and emitting light, and the light is irradiated forward, and the heat generated by the operation of the LED display modules is concentrated in the heat collection cavity (300), the box door leaf (200) comprises an outer door leaf plate (210) and an inner lining board (220), wherein the inner lining board (220) is arranged on the inner side (211) of the outer door leaf plate (210), and at the same time, a ventilation and heat dissipation channel (400) is formed between the inner lining board (220) and the outer door leaf plate (210), the ventilation and heat dissipation channel (400) is in communication with the heat collection cavity (300), the ventilation and heat dissipation channel (400) comprises an air inlet (410) and an air outlet (420), wherein the air inlet (410) is in communication with the heat collection cavity (300), and the air outlet (420) is arranged on the outer door leaf plate (210), the box heat source part (500) is fixedly connected to the inner side (221) of the lining board, and at the same time, the box heat source part (500) is located in the heat collection cavity (300).
US11495719B2 Achromatic devices with thermal radiation sources
A light emitting assembly comprising at least one of each of a solid state device and a thermal radiation source, couplable with a power supply constructed and arranged to power the solid state device and the thermal radiation source, to emit from the solid state device a first, relatively shorter wavelength radiation, and to emit from the thermal radiation source non-visible infrared radiation, and a down-converting luminophoric medium arranged in receiving relationship to said first, relatively shorter wavelength radiation, and the infrared radiation, and which in exposure to said first, relatively shorter wavelength radiation, and infrared radiation, is excited to responsively emit second, relatively longer wavelength radiation. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is down-converted to white light by packaging the diode and the thermal radiation device with fluorescent or phosphorescent organic and/or inorganic fluorescers and phosphors in an enclosure.
US11495715B2 Electronic device
An electronic device includes: a support body including first and second planar portions facing each other, a first connecting portion connecting the first and second planar portions, and a first receptacle surrounded by the first and second planar portions and the first connecting portion; a projection being part of the second planar portion projecting outward from the first receptacle outside the first planar portion in plan view; a wiring substrate including a facing surface facing the support body and an opposite surface opposite to the facing surface, the wiring substrate being folded and attached along an inner surface of the first receptacle and a surface of the projection continuous with the inner surface of the first receptacle; a sensor element mounted on the facing surface attached to the inner surface of the first receptacle; and an antenna mounted on the opposite surface attached to the surface of the projection.
US11495714B2 Device and method for III-V light emitting micropixel array device having hydrogen diffusion barrier layer
Solid state light emitting micropixels array structures having hydrogen barrier layers to minimize or eliminate undesirable passivation of doped GaN structures due to hydrogen diffusion.
US11495713B2 Pixel and display device including the same
A pixel includes a first electrode and a second electrode spaced from each other in a first direction on a substrate; a plurality of light emitting elements between the first electrode and the second electrode; an intermediate pattern located between the first electrode and the second electrode in the first direction and located between the substrate and the plurality of light emitting elements in a thickness direction of the substrate; a first contact electrode electrically connecting one end portion of each of the light emitting elements and the first electrode; and a second contact electrode electrically connecting an other end portion of each of the light emitting elements and the second electrode.
US11495711B2 Device comprising organometallic complex luminescent material
The present invention relates to a device containing an organometal-complex luminescent material. The device comprises a luminescent layer. The luminescent layer contains an organometal complex which has a structural formula (I), wherein A, B and C refer to substituted or unsubstituted C, N, O and S atoms independently; a dashed ring for linkage between A and B atoms refers to a substituted or unsubstituted conjugated ring structure; L1, L2, L3 and L4 are single bonds or double bonds independently, wherein L3 and L4 are part of the conjugated ring structure for linkage between A and B atoms; X, X1, Y and Y1 are C, N, O and S atoms independently; Ar1 and Ar2 are substituted or unsubstituted conjugated ring structures independently; M refers to Pt, W and Au atoms. An organometal complex in the luminescent material is high in fluorescence quantum efficiency and heat stability and low in quenching constant and can be used for manufacturing high-efficiency and low-efficiency roll-off red-light OLEDs.
US11495708B2 Method of fabricating see-through thin film solar cell
Provided is a method of fabricating a see-through thin film solar cell, the method including preparing a substrate including a molybdenum (Mo) layer on one surface, forming see-through patterns by selectively removing at least parts of the Mo layer, sequentially depositing a chalcogenide absorber layer, a buffer layer, and a transparent electrode layer on the substrate and the Mo layer including the see-through patterns, and forming a see-through array according to a shape of the see-through patterns by removing the chalcogenide absorber layer, the buffer layer, and the transparent electrode layer deposited on the see-through patterns, by irradiating a laser beam from under the substrate toward the transparent electrode layer.
US11495707B2 AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
Provided is an AlGaN unipolar carrier solar-blind ultraviolet detector that is based on the AlGaN polarization effect and that uses the double heterojunction of the p-AlzGa1-zN/i-AlyGa1-yN/n-AlxGa1-xN (0.45=
US11495696B2 Photoelectric conversion element and solid-state imaging device
A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode 15a and a second electrode 18 facing each other; and a photoelectric conversion layer 17 provided between the first electrode 15a and the second electrode 18, and including a first quinacridone derivative represented by a formula (1).
US11495694B2 GaN vertical-channel junction field-effect transistors with regrown p-GaN by metal organic chemical vapor deposition (MOCVD)
Fabricating a vertical-channel junction field-effect transistor includes forming an unintentionally doped GaN layer on a bulk GaN layer by metalorganic chemical vapor deposition, forming a Cr/SiO2 hard mask on the unintentionally doped GaN layer, patterning a fin by electron beam lithography, defining the Cr and SiO2 hard masks by reactive ion etching, improving a regrowth surface with inductively coupled plasma etching, removing hard mask residuals, regrowing a p-GaN layer, selectively etching the p-GaN layer, forming gate electrodes by electron beam evaporation, and forming source and drain electrodes by electron beam evaporation. The resulting vertical-channel junction field-effect transistor includes a doped GaN layer, an unintentionally doped GaN layer on the doped GaN layer, and a p-GaN regrowth layer on the unintentionally doped GaN layer. Portions of the p-GaN regrowth layer are separated by a vertical channel of the unintentionally doped GaN layer.
US11495693B2 Semiconductor memory device and fabrication method thereof
A semiconductor memory device includes a substrate having a first active area and a second active area in proximity to the first active area. A trench isolation region is between the first active area and the second active area. A source line region is disposed in the first active area and adjacent to the trench isolation region. An erase gate is disposed on the source line region. A floating gate is disposed on a first side of the erase gate. A first control gate is disposed on the floating gate. A first word line is disposed adjacent to the floating gate and the first control gate and insulated therefrom. A second control gate is disposed on a second side of the erase gate and directly on the trench isolation region. A second word line is disposed adjacent to the second control gate and insulated therefrom.
US11495688B2 Source and drain epitaxy and isolation for gate structures
Semiconductor devices and methods for forming the semiconductor devices include forming a sacrificial layer on a substrate on each side of a stack of nanosheets, the stack of nanosheets including first nanosheets and second nanosheets stacked in alternating fashion with a dummy gate structure formed thereon. Source and drain regions are grown on from the sacrificial layer and from ends of the second nanosheets to form source and drain regions in contact with each side of the stack of nanosheets. The sacrificial layer is removed. An interlevel dielectric is deposited around the source and drain regions to fill between the source and drain regions and the substrate.
US11495684B2 Method of removing an etch mask
An embodiment method includes forming a patterned etch mask over a target layer and patterning the target layer using the patterned etch mask as a mask to form a patterned target layer. The method further includes performing a first cleaning process on the patterned etch mask and the patterned target layer, the first cleaning process including a first solution. The method additionally includes performing a second cleaning process to remove the patterned etch mask and form an exposed patterned target layer, the second cleaning process including a second solution. The method also includes performing a third cleaning process on the exposed patterned target layer, and performing a fourth cleaning process on the exposed patterned target layer, the fourth cleaning process comprising the first solution.
US11495682B2 Semiconductor device and method
Nanostructure field-effect transistors (NSFETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a gate stack over the semiconductor substrate, the gate stack including a gate electrode and a gate dielectric layer; a first epitaxial source/drain region adjacent the gate stack; and a high-k dielectric layer extending between the semiconductor substrate and the first epitaxial source/drain region, the high-k dielectric layer contacting the first epitaxial source/drain region, the gate dielectric layer and the high-k dielectric layer including the same material.
US11495679B2 Semiconductor device and method for manufacturing the same
According to one embodiment, a semiconductor device includes first and second electrodes, first, second and third semiconductor regions, a first conductive portion, a gate electrode, and a second insulating portion. The first and second semiconductor regions are provided on the first semiconductor region. The third semiconductor regions are selectively provided respectively on the second semiconductor regions. The first conductive portion is provided inside the first semiconductor region with a first insulating portion interposed. The gate electrode is provided on the first conductive portion and the first insulating portion and separated from the first conductive portion. The gate electrode includes first and second electrode parts. The second insulating portion is provided between the first and second electrode parts. The second insulating portion includes first and second insulating parts. The second electrode is provided on the second and third semiconductor regions.
US11495674B2 Forming epitaxial structures in fin field effect transistors
A method of forming source/drain features in a FinFET device includes providing a fin formed over a substrate and a gate structure formed over a fin, forming a recess in the fin adjacent to the gate structure, forming a first epitaxial layer in the recess, forming a second epitaxial layer over the first epitaxial layer, and forming a third epitaxial layer over the second epitaxial layer. The second epitaxial layer may be doped with a first element, while one or both of the first and the third epitaxial layer includes a second element different from the first element. One or both of the first and the third epitaxial layer may be formed by a plasma deposition process.
US11495672B2 Increased transistor source/drain contact area using sacrificial source/drain layer
Integrated circuit structures including increased transistor source/drain (S/D) contact area using a sacrificial S/D layer are provided herein. The sacrificial layer, which includes different material from the S/D material, is deposited into the S/D trenches prior to the epitaxial growth of that S/D material, such that the sacrificial layer acts as a space-holder below the S/D material. During S/D contact processing, the sacrificial layer can be selectively etched relative to the S/D material to at least partially remove it, leaving space below the S/D material for the contact metal to fill. In some cases, the contact metal is also between portions of the S/D material. In some cases, the contact metal wraps around the epi S/D, such as when dielectric wall structures on either side of the S/D region are employed. By increasing the S/D contact area, the contact resistance is reduced, thereby improving the performance of the transistor device.
US11495668B2 Full air-gap spacers for gate-all-around nanosheet field effect transistors
Semiconductor devices and method of forming the same include recessing sacrificial layers relative to the channel layers, in a stack of vertically aligned, alternating sacrificial layers and channel layers, to form first recesses. A dual-layer dielectric is deposited that includes a first dielectric material formed conformally on surfaces of the recesses and a second dielectric material filling a remainder of the first recesses. The first dielectric material is recessed relative to the second dielectric material to form second recesses. Additional second dielectric material is deposited to fill the second recesses. The second dielectric material and the additional second dielectric material is etched away to create air gaps.
US11495666B2 Semiconductor device
According to one embodiment, a semiconductor device includes first, second, third semiconductor members, a first conductive member, a connection member, and an insulating member. The first electrode includes first, second, and third electrode regions. A direction from the first toward second electrode is along a first direction. The second electrode includes fourth, fifth, and sixth electrode regions. The first semiconductor member includes first, second, third, fourth, and fifth partial regions. The second semiconductor member includes first and second semiconductor regions. The third semiconductor member includes third and fourth semiconductor regions. The third electrode is provided between the third partial region and the sixth electrode region in the first direction. The connection member is electrically connected to the first conductive member and the second electrode. The insulating member includes first, second, third, fourth, and fifth portions. The fifth portion contacts the first semiconductor region and the connection member.
US11495664B2 Doped diamond Semiconductor and method of manufacture using laser ablation
A doped diamond semiconductor and method of production using a laser is disclosed herein. As disclosed, a dopant and/or a diamond or sapphire seed material may be added to a graphite based ablative layer positioned below a confinement layer, the ablative layer also being graphite based and positioned above a backing layer, to promote formation of diamond particles having desirable semiconductor properties via the action of a laser beam upon the ablative layer. Dopants may be incorporated into the process to activate the reaction sought to produce a material useful in production of a doped semiconductor or a doped conductor suitable for the purpose of modulating the electrical, thermal or quantum properties of the material produced. As disclosed, the diamond particles formed by either the machine or method of confined pulsed laser deposition disclosed may be arranged as semiconductors, electrical components, thermal components, quantum components and/or integrated circuits.
US11495663B2 Semiconductor device including insulated gate bipolar transistor, diode, and current sense regions
A predetermined relational expression holds where a first distance along the in-plane direction from a channel of the first semiconductor layer to a third semiconductor layer that is the other of the collector layer and the cathode layer is designated as W, a second distance from the channel of the first semiconductor layer to the second semiconductor layer is designated as S, and a diffusion coefficient and a lifetime of a part of the semiconductor substrate between the channel of the first semiconductor layer and the third semiconductor layer are designated as D and τ, respectively.
US11495662B2 Gate all around transistors with different threshold voltages
Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first gate-all-around (GAA) transistor having a first plurality of channel members, and a second GAA transistor having a second plurality of channel members. A pitch of the first plurality of channel members is substantially identical to a pitch of the second plurality of channel members. The first plurality of channel members has a first channel member thickness (MT1) and the second plurality of channel members has a second channel member thickness (MT2) greater than the first channel member thickness (MT1).
US11495655B2 Display device
A display device includes a substrate having a display area and a non-display area. A plurality of pixels is disposed in the display area. A chip mount area is disposed on the non-display area. The chip mount area includes a data output pad unit, a lighting test transistor unit and a plurality of lines connecting the data output pad unit and the lighting test transistor unit. The lighting test transistor unit is configured to transfer at least one lighting test signal to the plurality of pixels through the data output pad unit. The resistances of each of the plurality of lines are the same.
US11495651B2 Multi-page display screen and mobile phone including the same
The disclosure provides a multi-page display screen and a mobile phone including the same. The multi-page display screen includes a first display sub-screen and a second display sub-screen formed by flexible screens. The first display sub-screen and the second display sub-screen each includes a first half screen and a second half screen. The first half screen and the second half screen are pivotable and foldable relative to each other, and the first half screen and the second half screen can be unfolded relative to each other to constitute the first display sub-screen and the second display sub-screen respectively. Backs of the first half screens of the first display sub-screen and in the second display sub-screen are bonded together, such that the first display sub-screen and the second display sub-screen are arranged as book pages. The multi-page display screen makes it easy to switch to a page of a different mode.
US11495650B2 Display apparatus
A display apparatus includes a thin film transistor facing a substrate with a buffer layer therebetween and including a semiconductor layer, a channel region, a source region, a drain region, and a gate electrode; a conductive pattern between the substrate and the semiconductor layer and connected to the semiconductor layer, the conductive pattern facing the semiconductor layer with the buffer layer therebetween; a contact hole in the buffer layer and exposing the conductive pattern to outside the buffer layer; and a display element which is electrically connected to the thin film transistor. The source region or the drain region extends through the contact hole in the buffer layer, to contact the conductive pattern and connect the semiconductor layer to the conductive pattern.
US11495646B2 Device substrate with asymmetrical fan-out lines and spliced electronic apparatus using the same
A device substrate includes a carrier, a device array, first fan-out lines, and second fan-out lines. The carrier has a first side, a second side, a third side, and a fourth side. The first side is opposite to the second side. The third side is opposite to the fourth side. The device array is disposed on a first surface of the carrier. The device array includes sub-pixels. Each of the sub-pixels includes a switching element and an optoelectronic element electrically connected with the switching element. The first fan-out lines are extending from the first side to the first surface and electrically connected with the device array. The second fan-out lines are extending from the second side to the first surface and electrically connected with the device array. The first fan-out lines and the second fan-out lines are asymmetrically disposed on the first side and the second side, respectively.
US11495645B2 Display apparatus and method of manufacturing the same
A display apparatus having improved reliability and preventing or reducing damage to an organic light-emitting diode (OLED), and a method of manufacturing the display apparatus by arranging a protective layer on an opposite electrode during a photo-patterning process, are provided. The display apparatus includes: a substrate; a pixel electrode on the substrate; a pixel defining layer on the pixel electrode, the pixel defining layer having a first opening that exposes a center of the pixel electrode; an auxiliary electrode on the pixel defining layer; an intermediate layer on the pixel electrode; an opposite electrode facing the pixel electrode with the intermediate layer therebetween; a first protective layer on the opposite electrode; and a contact electrode on the first protective layer, the contact electrode electrically contacting the auxiliary electrode and the opposite electrode.
US11495639B1 Memory unit, array and operation method thereof
A memory unit, array and operation method thereof are provided. The memory unit includes at least one P-type driver having a first end coupled to a power source, a second end and a control end coupled to a word line; a memory cell having a first end coupled to the second end of the P-type driver, and a second end coupled to a bit line.
US11495635B2 Polydimethylsiloxane antireflective layer for an image sensor
An image sensor may include a polydimethylsiloxane (PDMS) layer that is subwavelength, hydrophobic, and/or antireflective. The PDMS layer may be fabricated to include a surface having a plurality of nanostructures (e.g., an array of convex protuberances and/or an array of concave recesses). The nanostructures may be formed through the use of a porous anodic aluminum oxide (AAO) template that uses a plurality of nanopores to form the array of convex protuberances and/or the array of concave recesses. The nanostructures may each have a respective width that is less than the wavelength of incident light that is to be collected by the image sensor to increase light absorption by increasing the angle of incidence for which the image sensor is capable of collecting incident light. This may increase the quantum efficiency of the image sensor and may increase the sensitivity of the image sensor.
US11495633B2 Complementary metal-oxide-semiconductor image sensors
A CMOS image sensor includes a substrate and at least one device isolation region in the substrate and defining first and second pixel regions and first and second active portions in each of the first and second pixel regions. A reset and select transistor gates are disposed in the first pixel region, while a source follower transistor gate is disposed in the second pixel region, such that pixels in the first and second pixel regions share the reset, select and source follower transistors. A length of the source follower transistor gate may be greater than lengths of the reset and selection transistor gates.
US11495632B2 Back side illuminated image sensor with deep trench isolation structures and self-aligned color filters
A semiconductor image sensor includes a substrate having a first side and a second side that is opposite the first side. An interconnect structure is disposed over the first side of the substrate. A plurality of radiation-sensing regions is located in the substrate. The radiation-sensing regions are configured to sense radiation that enters the substrate from the second side. A plurality of isolation structures are each disposed between two respective radiation-sensing regions. The isolation structures protrude out of the second side of the substrate.
US11495631B2 Pin mesa diodes with over-current protection
A system includes a pixel including a diffusion layer in contact with an absorption layer. The diffusion layer and absorption layer are in contact with one another along an interface that is inside of a mesa. A trench is defined in the absorption layer surrounding the mesa. An overflow contact is seated in the trench.
US11495628B2 Solid-state imaging element and electronic equipment
The present technology relates to a solid-state imaging element and electronic equipment that allow an increase in the signal charge amount Qs that each pixel can accumulate. A solid-state imaging element according to the first aspect of the present technology includes: a photoelectric conversion section formed in each pixel; and an inter-pixel separation section separating the photoelectric conversion section of each pixel, in which the inter-pixel separation section includes a protruding section having a shape protruding toward the photoelectric conversion section. The present technology can be applied to a back-illuminated CMOS image sensor, for example.
US11495625B2 Method for preparing array substrate, display panel and evaporation apparatus
The present invention relates to the field of display technology, and discloses a method for preparing an array substrate, a display panel and an evaporation apparatus. A method for preparing an array substrate comprises: fixing a base substrate to an evaporation stage; attaching a shielding sheet to the base substrate to cover at least a preset area of the base substrate; arranging and aligning an open mask in association with the base substrate; and evaporating to form a evaporation material layer on the base substrate, to which the shielding sheet is attached, with the open mask.
US11495624B2 Display device
A display device includes: a substrate including a first display area and a second display area; an optical element which overlaps the second display area; a semiconductor layer disposed on the substrate; a first insulation layer disposed to cover the semiconductor layer; a gate conductor disposed on the first insulation layer; a second insulation layer disposed to cover the gate conductor; a data conductor disposed on the second insulation layer; a third insulation layer disposed to cover the data conductor; and a pixel electrode disposed on the data conductor. The data conductor disposed in the first display area includes an opaque conductor, and a part of the data conductor disposed in the second display area is a transparent conductor.
US11495623B2 Display substrate and manufacturing method thereof, display device
The present disclosure provides a display substrate and a manufacturing method thereof, and a display device. In the display substrate of the present disclosure, a first transistor comprises a first gate electrode, a first electrode, a second electrode, and a first active layer; and a second transistor comprises a second gate electrode, a third electrode, a fourth electrode, and a second active layers, wherein the first active layer comprises a silicon material, the second active layer comprises an oxide semiconductor material, and wherein the third electrode and the first gate electrode are disposed in the same layer, and the fourth electrode and the first electrode, the second electrodes are disposed in the same layer.
US11495620B2 Display panel, fabrication method thereof, and display device
A display panel, a fabrication method thereof, and a display device are provided. The display panel is divided into a display area, a line switching area, and a bending area in a horizontal direction and includes a substrate, a barrier layer, a buffer layer, an active layer, a first gate insulating layer, a first metal layer, and a second gate insulating layer sequentially formed from bottom to top. The display panel further includes a first through hole, a second metal layer, a first organic layer, a second metal layer, an interlayer insulating layer, and a third metal layer, wherein a portion of the third metal layer penetrates the interlayer insulating layer and is electrically connected to the second metal layer.
US11495618B2 Three-dimensional memory device and method
In an embodiment, a device includes: a source line extending in a first direction; a bit line extending in the first direction; a back gate between the source line and the bit line, the back gate extending in the first direction; a channel layer surrounding the back gate; a word line extending in a second direction, the second direction perpendicular to the first direction; and a data storage layer extending along the word line, the data storage layer between the word line and the channel layer, the data storage layer between the word line and the bit line, the data storage layer between the word line and the source line.
US11495613B2 Three-dimensional memory device with high mobility channels and nickel aluminum silicide or germanide drain contacts and method of making the same
A memory device can include a strained single-crystalline silicon layer and an alternating stack of insulating layers and electrically conductive layers located over the strained single-crystalline silicon layer. A memory opening fill structure extending through the alternating stack may include an epitaxial silicon-containing pedestal channel portion, and a vertical semiconductor channel, and a vertical stack of memory elements located adjacent to the vertical semiconductor channel Additionally or alternatively, a drain region can include a semiconductor drain portion and a nickel-aluminum-semiconductor alloy drain portion.
US11495609B2 Integrated circuit and method of manufacturing the same
An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
US11495608B2 Multi-finger gate nonvolatile memory cell
A nonvolatile memory device is provided. The device comprises a floating gate having a first finger and a second finger and an active region below the floating gate fingers. A first doped region is in the active region laterally displaced from the first floating gate finger on a first side. A second doped region is in the active region laterally displaced from the first floating gate finger on a second side. A third doped region is in the active region laterally displaced from the second floating gate finger and the second doped region.
US11495607B2 Low-temperature passivation of ferroelectric integrated circuits for enhanced polarization performance
Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
US11495606B2 FinFET having non-merging epitaxially grown source/drains
A semiconductor device includes a layer having a semiconductive material. The layer includes an outwardly-protruding fin structure. An isolation structure is disposed over the layer but not over the fin structure. A first spacer and a second spacer are each disposed over the isolation structure and on sidewalls of the fin structure. The first spacer is disposed on a first sidewall of the fin structure. The second spacer is disposed on a second sidewall of the fin structure opposite the first sidewall. The second spacer is substantially taller than the first spacer. An epi-layer is grown on the fin structure. The epi-layer protrudes laterally. A lateral protrusion of the epi-layer is asymmetrical with respect to the first side and the second side.
US11495605B2 Semiconductor structure and manufacturing method thereof
Provided are a semiconductor structure and a manufacturing method thereof. The manufacturing method includes the following steps. A substrate having a capacitor region and a periphery region is provided, wherein a transistor is formed in the substrate in the capacitor region, and a conductive device is formed in the substrate in the periphery region. A capacitor is formed on the substrate in the capacitance region, wherein the capacitor is electrically connected to the transistor, and an upper electrode layer of the capacitor extends onto the substrate in the periphery region. A protective layer is formed on the upper electrode layer. A doped layer is formed in at least the surface of the protective layer in the capacitor region. An etching process is performed using the doped layer as a mask to remove the protective layer and the upper electrode layer in the periphery region.
US11495604B2 Channel and body region formation for semiconductor devices
Systems, methods and apparatus are provided for forming layers of a first dielectric material, a semiconductor material, and a second dielectric material in repeating iterations vertically to form a vertical stack and forming a vertical opening using an etchant process to expose vertical sidewalls in the vertical stack. A seed material that is selective to the semiconductor material is deposited over the vertical stack and the vertical sidewalls in the vertical stack and the seed material is processed such that the seed material advances within the semiconductor material such that it transforms a crystalline structure of a portion of the semiconductor material.
US11495603B1 Semiconductor device and its preparation method
The present disclosure provides a semiconductor device and its preparation method, wherein the preparation method includes providing a substrate, forming bit line units, capacitor contacts and a conductive layer on the substrate, patterning the conductive layer on the substrate by step-by-step etching, etching first grooves to form first conductive parts positioned above the bit line units, protecting sidewalls of the first grooves, and then etching second grooves to form second conductive parts covering sidewalls of the bit line units and third conductive parts covering the capacitor contacts.
US11495601B2 Semiconductor device and manufacturing method of semiconductor device
A semiconductor device that can be miniaturized or highly integrated is provided. The semiconductor device includes a capacitor, an electrode, and an interlayer film. The transistor includes a semiconductor layer, a gate, a source, and a drain; the transistor and the capacitor are placed to be embedded in the interlayer film. Below the semiconductor layer, one of the source and the drain is in contact with the electrode. Above the semiconductor layer, the other of the source and the drain is in contact with one electrode of the capacitor.
US11495600B2 Vertical three-dimensional memory with vertical channel
Systems, methods and apparatus are provided for an array of vertically stacked memory cells having vertically oriented access devices having a first source/drain region and a second source drain region vertically separated by a channel region, and gates opposing the channel region, vertically oriented access lines coupled to the gates and separated from a channel region by a gate dielectric. The memory cells have horizontally oriented storage nodes coupled to the first source/drain region and horizontally oriented digit lines coupled to the second source/drain regions.
US11495591B2 Display device
The display device includes a flexible base layer including a first region and a second region located around the first; a display unit on one surface of the first region and including a light emitting element; a driving circuit on the second region and including a plurality of first bumps arranged in a first row and a plurality of second bumps arranged in a second row, the driving circuit includes a third bump in the first row and disposed outward relative to the plurality of first bumps, a first and second reference bump each disposed at a center of the plurality of first and second bumps that are disposed along a reference line defined in a column direction vertically intersecting a row direction, the remaining first and second bumps excluding the first reference bump and the second reference bump arranged to have a preset slope with respect to the reference line.
US11495587B2 Light emitting device and method of producing light emitting device
A light emitting device includes a substrate including first, second, third and fourth wiring portions on a top surface of a base member and arrayed in a first direction, and a connection wiring portion connecting the second and third wiring portions. The connection wiring portion includes first and second connection ends respectively connected with the second and third wiring portions, and a connection central portion connecting the first and second connection ends and having a maximum width in a second direction different from each of a maximum width of the first connection end and a maximum width of the second connection end. In the second direction, at least a part of the connection wiring portion has a width narrower than each of a maximum width of the second wiring portion and a maximum width of the third wiring portion.
US11495584B2 Modular distributed control led display system
A modular distributed control LED display system, comprising several LED display module units (100) which are spliced together to form an integrated LED display screen, each of the LED display module units (100) comprises a lamp board (110) and an independent controller (120), wherein the lamp board (110) is provided with a number of LED light sources, and the independent controller (120) is provided on the back of the lamp board (110), the independent controller (120) is used to control the working state and display mode of the LED light sources.
US11495578B2 Semiconductor package and PoP type package
A semiconductor package includes: a first package substrate; a first semiconductor device mounted on the first package substrate; a second package substrate arranged on an upper part of the first semiconductor device; and a heat-dissipating material layer arranged between the first semiconductor device and the second package substrate and having a thermal conductivity of approximately 0.5 W/m·K to approximately 20 W/m·K, wherein the heat-dissipating material layer is in direct contact with an upper surface of the first semiconductor device and a conductor of the second package substrate.
US11495577B2 Semiconductor devices having through-stack interconnects for facilitating connectivity testing
Semiconductor devices having through-stack interconnects for facilitating connectivity testing, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor device includes a stack of semiconductor dies and a plurality of through-stack interconnects extending through the stack to electrically couple the semiconductor dies. The interconnects include functional interconnects and at least one test interconnect. The test interconnect is positioned in a portion of the stack more prone to connectivity defects than the functional interconnects. Accordingly, testing the connectivity of the test interconnect can provide an indication of the connectivity of the functional interconnects.
US11495575B2 RF devices with enhanced performance and methods of forming the same
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11495571B2 Mounting method and mounting device
A mounting method is a method for mounting a diced semiconductor chip having a first face that is held on a carrier substrate and a second face that is an opposite face of the first face on a circuit board placed on a mounting table. The mounting method includes affixing the second face of the semiconductor chip to an adhesive sheet, removing the carrier substrate from the semiconductor chip, reducing an adhesive strength of the adhesive sheet, and mounting the semiconductor chip on the circuit board by holding a first face side of the semiconductor chip with a head to separate the semiconductor chip from the adhesive sheet, and joining a second face side of the semiconductor chip to the circuit board.
US11495566B2 Core material, electronic component and method for forming bump electrode
A core material has a core; a solder layer provided outside the core and being a solder alloy containing Sn and at least any one element of Ag, Cu, Sb, Ni, Co, Ge, Ga, Fe, Al, In, Cd, Zn, Pb, Au, P, S, Si, Ti, Mg, Pd, and Pt; and a Sn layer provided outside the solder layer. The solder layer has a thickness of 1 μm or more on one side. The Sn layer has a thickness of 0.1 μm or more on one side. A thickness of the Sn layer is 0.215% or more and 36% or less of the thickness of the solder layer.
US11495561B2 Multilayer electrical conductors for transfer printing
An electrical conductor structure comprises a substrate and an electrical conductor disposed on or in the substrate. The electrical conductor comprises a first layer and a second layer disposed on a side of the first layer opposite the substrate. The first layer comprises a first electrical conductor that forms a non-conductive layer on a surface of the first electrical conductor when exposed to air and the second layer comprising a second electrical conductor that does not form a non-conductive layer on a surface of the second electrical conductor when exposed to air. A component comprises a connection post that is electrically connected to the second layer and the electrical conductor. The first and second layers can be inorganic. The first layer can comprise a metal such as aluminum and the second layer can comprise an electrically conductive metal oxide such as indium tin oxide.
US11495559B2 Integrated circuits
One of integrated circuits includes a substrate, a through via, a conductive pad and at least one via. The through via is disposed in the substrate. The conductive pad is disposed over and electrically connected to the through via, and the conductive pad includes at least one dielectric pattern therein. The via is disposed between and electrically connected to the through via and the conductive pad.
US11495558B2 Integrated circuit features with obtuse angles and method of forming same
A method includes forming a seed layer on a semiconductor wafer, coating a photo resist on the seed layer, performing a photo lithography process to expose the photo resist, and developing the photo resist to form an opening in the photo resist. The seed layer is exposed, and the opening includes a first opening of a metal pad and a second opening of a metal line connected to the first opening. At a joining point of the first opening and the second opening, a third opening of a metal patch is formed, so that all angles of the opening and adjacent to the first opening are greater than 90 degrees. The method further includes plating the metal pad, the metal line, and the metal patch in the opening in the photo resist, removing the photo resist, and etching the seed layer to leave the metal pad, the metal line and the metal patch.
US11495557B2 Semiconductor device and method of manufacturing the same
A semiconductor device and method for manufacturing the same are provided. The method includes providing a first substrate. The method also includes forming a first metal layer on the first substrate. The first metal layer includes a first metal material. The method further includes treating a first surface of the first metal layer with a solution including an ion of a second metal material. In addition, the method includes forming a plurality of metal particles including the second metal material on a portion of the first surface of the first metal layer.
US11495556B2 Semiconductor structure having counductive bump with tapered portions and method of manufacturing the same
A method for fabricating a semiconductor structure is provided. The method includes: providing a semiconductor chip comprising an active surface; forming a conductive bump over the active surface of the semiconductor chip; and coupling the conductive bump to a substrate. The conductive bump includes a plurality of bump segments including a first group of bump segments and a second group of bump segments. Each bump segment has a same segment thickness in a direction orthogonal to the active surface of the semiconductor chip, and each bump segment has a volume defined by a multiplication of the same segment thickness with an average cross-sectional area of the bump segment in a plane parallel to the active surface of the semiconductor chip. A ratio of a total volume of the first group of bump segments to a total volume of the second group of bump segments is between 0.03 and 0.8.
US11495553B2 Wire bonding between isolation capacitors for multichip modules
A packaged multichip device includes a first IC die with an isolation capacitor utilizing a top metal layer as its top plate and a lower metal layer as its bottom plate. A second IC die has a second isolation capacitor utilizing its top metal layer as its top plate and a lower metal layer as its bottom plate. A first bondwire end is coupled to one top plate and a second bondwire end is coupled to the other top plate. The second bondwire end includes a stitch bond including a wire approach angle not normal to the top plate it is bonded to and is placed so that the stitch bond's center is positioned at least 5% further from an edge of this top plate on a bondwire crossover side compared to a distance of the stitch bond's center from the side opposite the bondwire crossover side.
US11495552B2 Substrate integrated thin film capacitors using amorphous high-k dielectrics
Embodiments include an electronic package that includes a dielectric layer and a capacitor on the dielectric layer. In an embodiment, the capacitor comprises a first electrode disposed over the dielectric layer and a capacitor dielectric layer over the first electrode. In an embodiment, the capacitor dielectric layer is an amorphous dielectric layer. In an embodiment, the electronic package may also comprise a second electrode over the capacitor dielectric layer.
US11495549B2 Electronic device with crack arrest structure
A packaged electronic device includes a multilayer lead frame with first and second trace levels, a via level, an insulator, a conductive landing pad and a conductive crack arrest structure, the conductive landing pad has a straight profile that extends along a first direction along a side of the multilayer lead frame, the conductive crack arrest structure has a straight profile along the first direction and the conductive crack arrest structure is spaced from the conductive landing pad along an orthogonal second direction.
US11495548B2 Semiconductor package having thin substrate and method of making the same
A semiconductor package comprises a semiconductor substrate, a first metal layer, an adhesive layer, a second metal layer, a rigid supporting layer, and a plurality of contact pads. A thickness of the semiconductor substrate is equal to or less than 50 microns. A thickness of the rigid supporting layer is larger than the thickness of the semiconductor substrate. A thickness of the second metal layer is larger than a thickness of the first metal layer. A method comprises the steps of providing a device wafer; providing a supporting wafer; attaching the supporting wafer to the device wafer via an adhesive layer; and applying a singulation process so as to form a plurality of semiconductor packages.
US11495547B2 Fiber reinforced stiffener
Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, the electronic package comprises a package substrate, where the package substrate comprises a plurality of buildup layers, and where each buildup layer has fiber reinforcement. In an embodiment, the electronic package further comprises a reinforcement layer, where the reinforcement layer comprises a buildup layer and fiber reinforcement, and where an orientation of the fibers in the reinforcement layer is different than an orientation of the fibers in the package substrate.
US11495546B2 Substrate having electronic component embedded therein
A substrate having an electronic component embedded therein includes a core substrate including first and second wiring layers disposed on different levels and one or more insulating layers disposed between the first and second wiring layers, having a cavity in which a stopper layer is disposed on a bottom surface of the cavity, and including a groove disposed around the stopper layer on the bottom surface; an electronic component disposed on the stopper layer in the cavity; an insulating material covering at least a portion of each of the core substrate and the electronic component and disposed in at least a portion of each of the cavity and the groove; and a third wiring layer disposed on the insulating material. The stopper layer protrudes on the bottom surface.
US11495545B2 Semiconductor package including a bridge die
A semiconductor package includes an outer redistributed line (RDL) structure, a first semiconductor chip disposed on the outer RDL structure, a stack module stacked on the first semiconductor chip, and a bridge die stacked on the outer RDL structure. A portion of the stack module laterally protrudes from a side surface of the first semiconductor chip. The bridge die supports the protruding portion of the stack module. The stack module includes an inner RDL structure, a second semiconductor chip disposed on the inner RDL structure, a capacitor die disposed on the inner RDL structure, and an inner encapsulant. The capacitor die acts as a decoupling capacitor of the second semiconductor chip.
US11495539B2 Interconnect structure with air-gaps
The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first interconnect wire arranged within an inter-level dielectric (ILD) layer and a second interconnect wire arranged within the ILD layer. A dielectric material continuously extends over the first interconnect wire and the ILD layer. The dielectric material is further disposed between sidewalls of the first interconnect wire and one or more air-gaps arranged along opposing sides of the first interconnect wire. A via is disposed over the second interconnect wire and extends through the dielectric material. A second ILD layer is disposed on the dielectric material and surrounds the via.
US11495531B2 Semiconductor device package and method of manufacturing the same
A semiconductor device package and a method for manufacturing the semiconductor device package are provided. The semiconductor device package includes a carrier, an electronic component, a first encapsulant and a conductive via. The carrier has a first surface and a second surface opposite to the first surface. The semiconductor device is mounted at the second surface of the carrier. The first encapsulant encapsulates the first surface of the carrier and has a surface facing away from the first surface of the carrier. The conductive via extends from the surface of the first encapsulant into the carrier.
US11495529B2 SOI substrate and related methods
Implementations of a silicon-on-insulator (SOI) die may include a silicon layer including a first side and a second side, and an insulative layer coupled directly to the second side of the silicon layer. The insulative layer may not be coupled to any other silicon layer.
US11495527B2 Semiconductor module
A semiconductor module includes a base member including a circuit board on which a positive electrode pad and a negative electrode pad are provided and on which a semiconductor device is mounted to be electrically coupled to the positive electrode pad and the negative electrode pad, a housing that is attached to the base member so as to surround the positive electrode pad and the negative electrode pad, the housing being formed in a frame shape, a first electrode plate that is electrically coupled to the positive electrode pad, the first electrode plate having a flat plate portion, and a second electrode plate that is electrically coupled to the negative electrode pad, the second electrode plate having a flat plate portion. The flat plate portion of the first electrode plate and the flat plate portion of the second electrode plate are arranged in a parallel-plate configuration within the housing.
US11495526B2 Integrated circuit package and method
In an embodiment, a package includes: an interposer having a first side; a first integrated circuit device attached to the first side of the interposer; a second integrated circuit device attached to the first side of the interposer; an underfill disposed beneath the first integrated circuit device and the second integrated circuit device; and an encapsulant disposed around the first integrated circuit device and the second integrated circuit device, a first portion of the encapsulant extending through the underfill, the first portion of the encapsulant physically disposed between the first integrated circuit device and the second integrated circuit device, the first portion of the encapsulant being planar with edges of the underfill and edges of the first and second integrated circuit devices.
US11495525B2 Electronic module having a groove anchoring terminal pins
A module has electronic components mounted to a Printed Circuit Board (PCB) with multiple patterned conductive layers connecting to conductive slot metal around a conductive slot. A groove is cut through a top molding encapsulant above and into the conductive slot but does not cut through a bottom molding encapsulant. A terminal pin is inserted into the groove and pushed down into the conductive slot. When heated, embedded solder previously applied to the conductive slot metal flows between the end of the terminal pin and the conductive slot metal to form a solder bond. An end of the PCB past the conductive slot has no metal traces, preventing shorts. Epoxy can be placed into the groove around the terminal pin or a hole formed in the terminal pin to increase strength of the anchored terminal pin. The molding around the groove protects terminal pins from shorting from the side.
US11495520B2 RF devices with enhanced performance and methods of forming the same
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate resides over the top surface of the device region. Herein, silicon crystal does not exist within the transfer substrate or between the transfer substrate and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11495519B2 Apparatus for thermal management of electronic components
An electronic device includes a heat-generating electronic component, a heat spreader and a heat sink. The heat spreader has an area at least about 4 times greater than the heat-generating component. A first surface of the heat spreader is in thermal contact with the first surface of the heat-generating component along a first, non-dielectric interface. The heat sink has greater mass than the heat spreader and comprises one or more layers of thermally conductive material. A first surface of the heat sink is in thermal contact with the second surface of the heat spreader along a second interface having greater area than the first interface. Dielectric thermal interface material is provided at the second interface in direct contact with the heat spreader and the heat sink, such that the second interface is dielectric.
US11495518B2 Multi-surface heat sink suitable for multi-chip packages
An apparatus incorporating a multi-surface heat sink may comprise an integrated circuit die, a heat spreader, a plate element, and a heat sink. The heat spreader may be positioned above the IC die. The plate element may be positioned above the heat spreader. A bottom surface of the heat sink may have a first region positioned above the plate element. One or more spring elements may be positioned between the plate element and the first region of the bottom surface of the heat sink. The one or more spring elements may be under a compressive load between the plate element and the heat sink. One or more thermal conduit elements may be secured to both the plate element and the heat sink. The one or more thermal conduit elements may apply at least a part of the compressive load between the plate element and the heat sink.
US11495513B2 Component carrier with embedded semiconductor component and embedded highly-conductive block which are mutually coupled
A component carrier with a stack that has at least one electrically conductive layer structure and/or at least one electrically insulating layer structure, a semiconductor component embedded in the stack, and a highly-conductive block embedded in the stack and being thermally and/or electrically coupled with the semiconductor component is illustrated and described.
US11495497B2 FinFET switch
An embodiment of a semiconductor switch structure includes source contacts, drain contacts, gates and fins. The contacts and gates are elongated in a first direction and are spaced apart from each other in a second direction perpendicular to the first direction. The gates are interspersed between the contacts. The fins underlie both the contacts and the gates. The fins are elongated in the second direction and are spaced apart from each other in the first direction. A contact via extends through one of the contacts without contacting a gate or a fin. A gate via extends through one of the gates without contacting a contact or a fin. A contact-gate via is in contact with both a contact and a gate but not a fin.
US11495495B2 Method of manufacturing semiconductor device having a structure pattern having a plurality of trenches
A method of manufacturing a semiconductor device includes forming a base layer on a substrate. A structure layer is Conned on the base layer. The structure layer includes at least one material layer. A structure pattern is formed on the base layer. The structure pattern includes a first trench extending in a first direction and a second trench having a cross portion extending in a second direction that is perpendicular to the first direction. The second trench is connected to the first trench. The structure pattern further includes a base pattern having a recess portion recessed downward from a surface of the base layer at the cross portion of the second trench.
US11495494B2 Methods for reducing contact depth variation in semiconductor fabrication
An integrated circuit includes a substrate, an isolation feature disposed over the substrate, a fin extending from the substrate alongside the isolation feature such that the fin extends above the isolation feature, and a dielectric layer disposed over the isolation feature. A top surface of the dielectric layer is at a same level as a top surface of the fin or below a top surface of the fin by less than or equal to 15 nanometers.
US11495493B2 Backside metal patterning die singulation systems and related methods
Implementations of die singulation systems and related methods may include forming a plurality of die on a first side of a substrate, forming a seed layer on a second side of a substrate opposite the first side of the substrate, using a shadow mask, applying a mask layer over the seed layer, forming a backside metal layer over the seed layer, removing the mask layer, and singulating the plurality of die included in the substrate through removing substrate material in the die street and through removing seed layer material in the die street.
US11495492B2 Method of fabricating semiconductor device
Provided is a method for manufacturing a semiconductor device, including: forming a conductive layer on the first dielectric layer; forming a recess in the conductive layer; performing a first etching process to round a top corner of the recess; performing a second etching process to remove the conductive layer exposed from a bottom surface of the recess and thereby forming an opening having a rounding top corner in the conductive layer; and forming a second dielectric layer in the opening.
US11495491B2 Structure and formation method of semiconductor device with stacked conductive structures
A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a first conductive structure over the semiconductor substrate. The semiconductor device structure also includes a first dielectric layer surrounding the first conductive structure and a second dielectric layer over the first dielectric layer. The semiconductor device structure further includes a second conductive structure partially surrounded by the second dielectric layer and partially surrounded by the first conductive structure. In addition, the semiconductor device structure includes an interfacial layer separating the first conductive structure from the second conductive structure.
US11495488B2 Method for manufacturing bonded SOI wafer and bonded SOI wafer
A method for manufacturing a bonded SOI wafer, the method using a silicon single crystal wafer having a resistivity of 100 Ω·cm or more as the base wafer, and including steps of: forming an underlying insulator film on a bonding surface side of the base wafer; depositing a polycrystalline silicon layer on a surface of the underlying insulator film; polishing a surface of the polycrystalline silicon layer; modifying the polycrystalline silicon layer by performing ion implantation on the polished polycrystalline silicon layer to form a modified silicon layer; forming the insulator film on a bonding surface of the bond wafer; bonding the bond wafer and a surface of the modified silicon layer of the base wafer with the insulator film interposed therebetween; and thinning the bonded bond wafer to form an SOI layer. This provides a bonded SOI wafer excellent in harmonic wave characteristics.
US11495485B2 Method of transferring micro device using micro device transfer head
A method of transferring a micro device using a micro device transfer head is provided. The micro device transfer head includes a base arm, a first side arm and a second side arm, and the micro device is fabricated on a substrate. The method includes moving the first side arm within a sensing range of the micro device, charging the first side arm for drawing the micro device away from the substrate to move towards a space between the first side arm and the second side arm, and shortening a distance between the first side arm and the second side arm for clamping the micro device.
US11495482B2 Automatic supervising method and control device
There is provided a method of automatically supervising a transfer operation of a transfer device including an optical sensor, the optical sensor having a light emitting part and a light receiving part provided in a head of a holding part for holding a substrate, the method including: acquiring a change in intensity of a first reflected light reflected off a first object by radiating a light from the light emitting part toward the first object below the holding part and receiving the first reflected light reflected off the first object by the light receiving part, while horizontally moving the holding part; and specifying an end position of the first object based on the change in intensity of the first reflected light.
US11495479B2 Light pipe window structure for thermal chamber applications and processes
A processing chamber is described. The processing chamber includes a chamber having an interior volume, a light pipe window structure coupled to the chamber, the light pipe window structure having a first transparent plate disposed within the interior volume of the chamber, and a radiant heat source coupled to a second transparent plate of the light pipe window structure in a position outside of the interior volume of the chamber, wherein the light pipe window structure includes a plurality of light pipe structures disposed between the first transparent plate and the second transparent plate.
US11495471B2 Slurry compositions for chemical mechanical planarization
A semiconductor substrate has an exposed surface having a compositionally uniform metal, and an embedded surface having the metal and an oxide. The exposed surface is polished using a first slurry including a first abrasive and a first amine-based alkaline until the embedded surface is exposed. The embedded surface is polished using a second slurry including a second abrasive and a second amine-based alkaline. The second abrasive is different from the first abrasive. The second amine-based alkaline is different from the first amine-based alkaline. The metal and the oxide each has a first and a second removal rate in the first slurry, respectively, and a third and fourth removal rate in the second slurry, respectively. A ratio of the first removal rate to the second removal rate is greater than 30:1, and a ratio of the third removal rate to the fourth removal rate is about 1:0.5 to about 1:2.
US11495470B1 Method of enhancing etching selectivity using a pulsed plasma
Embodiments of this disclosure include a method of processing a substrate that includes etching a first dielectric material formed on a substrate that is disposed on a substrate supporting surface of a substrate support assembly disposed within a processing region of a plasma processing chamber. The etching process may include delivering a process gas to the processing region, wherein the process gas comprises a first fluorocarbon containing gas and a first process gas, delivering, by use of a radio frequency generator, a radio frequency signal to a first electrode to form a plasma in the processing region, and establishing, by use of a first pulsed-voltage waveform generator, a first pulsed voltage waveform at a biasing electrode disposed within the substrate support assembly. The first pulsed voltage waveform comprises a series of repeating pulsed waveform cycles that each include a first portion that occurs during a first time interval, a second portion that occurs during a second time interval, and a peak-to-peak voltage. The pulsed voltage waveform is substantially constant during at least a portion of the second time interval.
US11495458B2 Manufacturing method and semiconductor element
In order to enable simple removal of a substrate used for manufacturing a semiconductor element, a manufacturing method includes forming a graphene layer on a substrate portion formed of a semiconductor, forming an element portion on the graphene layer, the element portion including a semiconductor layer directly formed on the graphene layer, which takes over crystal information relating to the substrate portion when the semiconductor layer is formed on the substrate portion without intermediation of the graphene layer, and performing cutting-off between the substrate portion and the element portion at the graphene layer.
US11495456B2 Ozone for selective hydrophilic surface treatment
Processes for surface treatment of a workpiece are provided. In one example implementation, a method can include placing the workpiece on a workpiece support in a processing chamber. The method can include admitting a process gas into the processing chamber. The process gas can include an ozone gas. The method can include exposing the silicon nitride layer and the low-k dielectric layer to the process gas to modify a surface wetting angle of the silicon nitride layer.
US11495452B2 Method for producing silicon nitride film
A method for preparing a silicon nitride film with a high deposition rate and a reduced damage to the substrate and/or the underlying layer formed under the silicon nitride film. The method for preparing a silicon nitride film contains the steps of irradiating a nitride with an ultraviolet light, and contacting the nitride irradiated with the ultraviolet light and a hydrogenated cyclic silane represented by a general formula SinH2n, wherein n is 5, 6, or 7.
US11495447B2 Ionizer and mass spectrometer
An ionizer 1 including an ionization chamber 10, a sample gas introduction port 14 provided in the ionization chamber 10 for introducing sample gas, an electron beam emitting section 11 which emits an electron beam toward the ionization chamber 10, electron beam passage openings 10a and 10b which are formed on a path of the electron beam emitted from the electron beam emitting section 11 on a wall of the ionization chamber 10 and has a length in a direction of the path longer than a width of a cross section orthogonal to the direction, and an ion outlet 10c provided in the ionization chamber 10 for emitting an ion of the sample gas generated by irradiation with the electron beam, and a mass spectrometer 60 including the ionizer 1.
US11495440B2 Plasma density control on substrate edge
Embodiments of the present disclosure generally relate to apparatuses for reducing particle contamination on substrates in a plasma processing chamber. In one or more embodiments, an edge ring is provided and includes a top surface, a bottom surface opposite the top surface and extending radially outward, an outer vertical wall extending between and connected to the top surface and the bottom surface, an inner vertical wall opposite the outer vertical wall, an inner lip extending radially inward from the inner vertical wall, and an inner step disposed between and connected to the inner wall and the bottom surface. During processing, the edge ring shifts the high plasma density zone away from the edge area of the substrate to avoid depositing particles on the substrate when the plasma is de-energized.
US11495434B2 In-situ plasma cleaning of process chamber components
Provided herein are approaches for in-situ plasma cleaning of ion beam optics. In one approach, a system includes a component (e.g., a beam-line component) of an ion implanter processing chamber. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current are applied to one or more conductive beam optics of the component, individually, to selectively generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the beam-line component, and a vacuum pump for adjusting pressure of an environment of the beam-line component.
US11495431B2 Transmission electron microscope and adjustment method of objective aperture
A transmission electron microscope includes a control unit for: acquiring an image of an objective aperture; obtaining a position of the objective aperture; obtaining an amount of deviation between an object position and the position of the objective aperture, based on the position of the objective aperture; and operating an aperture moving mechanism, based on the amount of deviation of the position of the objective aperture. The position of the objective aperture is obtained by: binarizing the image of the objective aperture by using a set threshold; obtaining an area of an aperture hole of the objective aperture from the binarized image; determining whether the area is within a predetermined range; changing the threshold when a determination is made that the area is outside the predetermined range; and obtaining a position of the objective aperture when a determination is made that the area is within the predetermined range.
US11495429B2 Ion beam generator with nanowires
An ion beam generator includes an emission electrode, an extraction electrode, and an electricity generator. The emission electrode includes a substrate and a plurality of nanowires extending away from the substrate, substantially towards the extraction electrode, the nanowires having a length of 50 nm to 50 μm. The emission electrode has a source of ions including a sheet of ionic liquid formed on the substrate and at least partially immersing the nanowires. The nanowires and the substrate are electrically insulating or semiconducting, and the electricity generator is connected to the sheet of ionic liquid. The emission electrode is thus capable of sending ion beams from the ionic liquid to the extraction electrode.
US11495427B2 Leakage protector
Disclosed herein is a leakage protector, which includes a housing. A base plate and a brush are arranged in the housing. A first conducting strip and a second conducting strip spaced apart are arranged on the base plate. The brush is provided with contact pins to contact the first conducting strip and the second conducting strip, respectively. The second conducting strip can generate different analog voltages, and the first conducting strip is configured to transmit different analog voltages to a microprocessor. A user can drive the brush to move through an actuating part, and set the power-on time of the leakage protector in one step.
US11495426B2 Electromagnetic switch for a starting device
An electromagnetic switch for a starting device of an internal combustion engine may include a coil carrier, a coil winding, and a piston. The coil carrier may have a carrier wall which encloses a cavity. The coil winding may have a coil wire wound on a side of the carrier wall facing away from the cavity which provides a magnetic field within the cavity. The piston may be axially adjustable in the cavity. The piston may be disposed in a passive position and may be adjusted axially in a direction of a core. In the passive position, the piston and the core may define an axial gap therebetween in the cavity. The coil wire may have a first winding section and a second winding section wound in opposing directions. At least one winding of the second winding section may axially overlap the axial gap.
US11495421B2 Keyswitch and keyboard thereof
A keyswitch includes a bottom board, a cap structure, a lifting mechanism, and an elastic member. The lifting mechanism is detachably connected to the cap structure and the bottom board to make the cap structure movable upward and downward relative to the bottom board. The elastic member is connected to the cap structure so as to be detached from the lifting mechanism together with the cap structure when the cap structure is separate from the lifting mechanism.
US11495418B2 Multipolar switch
A multipolar switch includesa first electrical contact zone connected to a first electrical circuit, anda second electrical contact zone connected to a second electrical circuit. In addition,a first part made from an electrically conducting material is arranged on and at a distance from the first electrical contact zone, anda second part made from an electrically conducting material is arranged on the first part.An electrically insulating layer is arranged between the first part and the second part so as to electrically insulate them from one another.So configured, the first part is configured to be elastically deformed when being mechanically solicited in an actuating direction of the multipolar switch, and the second part is configured to be elastically deformed or be displaced in the actuating direction of the multipolar switch, between a rest configuration and an activated configuration.
US11495414B2 Solar cell systems and methods of making the same
A solar cell system and a flexible solar panel are disclosed herein. The solar cell system includes a glass housing, a set of rows of solar cells each defining a front side and a rear side and arranged within the glass housing. The solar cell system can also include a reflective element disposed in the glass housing and facing the rear side of the set of rows of solar cells and a first terminal coupled to a first end of the set of rows of solar cells, traversing through and sealed against the first end of the glass housing. The solar cell system can be configured with other solar cell systems into the flexible solar panel that is deployable in a wide range of potential applications.
US11495413B2 Film capacitor
A film capacitor includes a first film, a second film, a first electrode part, and a second electrode part. The first electrode part is disposed on a first film surface of the first film. The second electrode part is disposed on a second film surface of the first film or the second film. The first film surface has a first non-electrode part extending along a longitudinal direction of the first film surface. The second film surface has a second non-electrode part extending along a longitudinal direction of the second film surface. A first region having a light transmittance ranging from 30% to 80%, inclusive, is disposed between the first electrode part and the first non-electrode part. A second region having a light transmittance ranging from 30% to 80%, inclusive, is disposed between the second electrode part and the second non-electrode part. A width of each of the first region and the second region is less than or equal to 0.5 mm.
US11495408B2 Multilayer ceramic electronic component including external electrode having surface roughness
A multilayer ceramic electronic component includes a ceramic body including a dielectric layer and first and second internal electrodes disposed to be stacked in a third direction with the dielectric layer interposed therebetween; and first and second external electrodes disposed on the third and fourth surfaces of the ceramic body, respectively. The first and second external electrodes comprise first and second base electrodes disposed to be in contact with the ceramic body and having a first conductive metal, and first and second conductive layers disposed on the first and second base electrodes and having a second conductive metal, and the first and second conductive layers have an average surface roughness (Ra) of 10.0 μm or more.
US11495396B2 Surface mount inductor
A surface mount inductor includes a coil including a winding portion and extension portions that extend from the outer circumference of the winding portion, a molded body which contains a metal magnetic powder and in which the coil is embedded, and outer terminals. The molded body is a rectangular parallelepiped. Each end portion in the longitudinal direction of the principal surface has an outer terminal connected to the extension portion. A resin coating is formed on the molded body except regions in which the outer terminals are provided, and W1 is less than W0, where the width between ridges opposite to each other in a lateral direction of the principal surface is denoted as W0 and the width of each outer terminal in the lateral direction is denoted as W1, and neither end in the width direction of each outer terminal is in contact with the ridges.
US11495392B2 Coil electronic component
A coil electronic component includes a body including a laminate structure including a plurality of coil layers, and external electrodes disposed externally on the body. Each of the plurality of coil layers includes an insulating layer, a base pattern, and a coil pattern disposed on the base pattern, and a conductive via connecting the coil pattern to an adjacent coil layer, and the base pattern includes an intermetallic compound of Cu and Sn, and the coil pattern includes a Cu component.
US11495386B2 Reactor
A reactor including: a coil including a pair of winding portions that are arranged side by side; a magnetic core including inner core portions that are provided inside the winding portions, and an outer core portion that is exposed to the outside from the winding portions; and a casing that houses a combined member that includes the coil and the magnetic core combined with each other. The casing includes: a bottom plate on which the combined member is placed; and a side wall that stands on the bottom plate, and the side wall is provided with a cutout for the core, through which at least a portion of the outer core portion is exposed to the outside of the casing.
US11495382B2 High Q-factor inductor
Described is a high Q-factor inductor. The inductor is formed as a unit cell coil, which is copied twice for a dual-coil inductor and copied four times for a quad-coil inductor. For each copy of the unit cell coil, the coil is rotated a subsequent substantially 90 degrees or substantially −90 degrees. The rotation enables the terminals of the inductor to be routed equal-distant to a circuit that is placed in the line of symmetry between the two coils.
US11495381B2 Two-dimensional Dirac half-metal ferromagnets and ferromagnetic materials for spintronic devices
Ferromagnetic materials are disclosed that comprise at least one Dirac half metal material. In addition, Dirac half metal materials are disclosed, wherein the material comprises a plurality of massless Dirac electrons. In addition, ferromagnetic materials are disclosed that includes at least one Dirac half metal material, wherein the material comprises a plurality of massless Dirac electrons, wherein the material exhibits 100% spin polarization, and wherein the plurality of electrons exhibit ultrahigh mobility. Spintronic devices and heterostructures are also disclosed that include a Dirac half metal material.
US11495380B2 Bistable hoisting solenoid
A bistable hoisting solenoid comprising first and second stroke end position and a stroke center position, comprising: a stator, one or more armatures, at least one coil, at least one permanent magnet and a spring system having a first spring which, in the first stroke end position, exerts a force in the direction of the stroke center position on the one or more armatures, and a second spring which, in the second stroke end position, exerts a force in the direction of the stroke center position on the one or more armatures. The one or more armatures, in the event of a loss of current, are held by permanent magnets in both stroke end positions. The first and the second springs have different paths with different lengths and/or exert in the respective stroke end position different sized forces on the one or more armatures and/or have different sized spring rates.
US11495378B2 Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
A grain-oriented electrical steel sheet for a stacked transformer core. The steel sheet having a sheet thickness t, where t and an iron loss deterioration ratio obtained by subjecting the steel sheet under elliptic magnetization satisfy the following relations: (i) when t≤0.20 mm, the iron loss deterioration ratio is 85% or less; (ii) when 0.20 mm
US11495377B2 Soft magnetic alloy and magnetic component
Provided is a soft magnetic alloy which has high saturation flux density and low coercivity and is represented by the compositional formula (Fe(1−(α+β))X1αX2β)(1−(a+b+c+d+e+f))MaPbSicCudX3eBf, wherein X1 is at least one element selected from the group consisting of Co and Ni, X2 is at least one element selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi, and rare earth elements, X3 is at least one element selected from the group consisting of C and Ge, and M is at least one element selected from the group consisting of Zr, Nb, Hf, Ta, Mo, and W, and wherein 0.030≤a≤0.120, 0.010≤b≤0.150, 0≤c≤0.050, 0≤d≤0.020, 0≤e≤0.100, 0≤f≤0.030, α≥0, β≥0, and 0≤α+β≤0.55.
US11495371B2 Electrical ribbon cable
Ribbon cables including a plurality of spaced apart substantially parallel conductors extending along a length of the cable and arranged along a width of the cable, and first and second insulative layers disposed on opposite sides of and substantially coextensive with the plurality of conductors along the length and width of the cable are described. Each insulative layer may be adhered to the conductors and may include alternating substantially parallel thicker and thinner portions extending along the length of the cable. The thicker portions of the first and second insulative layers are substantially aligned in one to one correspondence. Each corresponding thicker portion of the first and second insulative layers have at least one conductor in the plurality of conductors disposed therebetween. The thicker portions may have an effective dielectric constant less than 2.
US11495370B2 Thermal expansion and swell compensated jacket for ESP cable
A cable includes insulated conductors arranged in a spaced apart generally coplanar configuration. A jacket encapsulates the insulated conductors. The jacket has a generally rounded rectangular cross-section, at least one spline along a minor edge of the jacket, and at least one channel along a major edge. An armor layer is applied about the jacket.
US11495369B2 Laser structured, coated electrical conductor and method for producing same
An electrical conductor has a first layer, wherein the first layer is electrically conducting, and has micro protrusions, macro protrusions, wherein the micro protrusions are arranged on the macro protrusions, a first set of depressions, wherein the first set of depressions comprises at least two longitudinal depressions; the macro protrusions and the at least two longitudinal depressions are arranged in an alternating pattern, at least one coating layer, wherein the at least one coating layer comprises an electrically conducting polymer, touches the first layer, at least partially covers the first layer; wherein at least 50% of the macro protrusions have a width, measured along a first direction in the range of 2.0 mm to 40.0 mm and at least 50% of the micro protrusions have a width, measured along the first direction, in the range of 0.001 mm to 1.000 mm.
US11495368B2 Hydrophobic, conductive organic materials for metallic surfaces
A process of forming a hydrophobic, conductive barrier on a metallic surface includes coating the metallic surface with an organic, conductive material. The organic, conductive material includes a conductive group having two or more alkyne groups and a dithiocarbamate group to bind the organic, conductive material to the metallic surface.
US11495367B2 Multi-leaf collimator
A multi-leaf collimator is provided. The multi-leaf collimator may include a plurality of leaves configured to shield radiation beams. At least two leaves of the plurality of leaves may be movable in a direction parallel to each another. Each leaf of at least some of the plurality of leaves may be configured to be movable between at least two positions. At least one of the at least two positions may be adjustable.
US11495364B2 Method for decommissioning nuclear facilities
A method of decommissioning a nuclear facility, including: exposing the plurality of upper penetration holes by removing the plurality of sandboxes; enlarging an upper space of the cavity by cutting an upper portion of the biological shield concrete that is disposed between the plurality of upper penetration holes and between the plurality of upper penetration holes and the cavity; and separating the nuclear reactor pressure vessel from the biological shield concrete.
US11495360B2 Computer implemented identification of treatments for predicted predispositions with clinician assistance
A method, software, database and system for attribute partner identification and social network based attribute analysis are presented in which attribute profiles associated with individuals can be compared and potential partners identified. Connections can be formed within social networks based on analysis of genetic and non-genetic data. Degrees of attribute separation (genetic and non-genetic) can be utilized to analyze relationships and to identify individuals who might benefit from being connected.
US11495356B2 Programmed computer with anti-depression tools
A system of monitoring depression in a user, uses a computer system. The system initially calibrates, to determine baseline information about the user for each of a plurality of different categories of action of the user and continues learning about the user to make minor adjustments to prescribed behaviors and therapies. The categories can include sleep, diet, screen time, exercise, social interaction, medication compliance, and academic performance. The computer system uses the baseline information to determine user behavior, for each of the different categories that is correlated with likely behavior associated with depression. After initially calibrating, the computer system operates to monitor each of said different categories of action of the user and compares the monitored categories with the baseline information to determine whether the user is complying by acting within specified parameters within each category. The system can provide positive reinforcement and alerts.
US11495348B2 Artificial intelligence storage and tracking system for emergency departments and trauma centers
An inventory tracking and management system includes storage devices comprising carts, cabinets, or shelves, sensors and/or monitoring devices associated with the storage devices, a central database connecting the storage devices, sensors, and monitoring devices within a hospital, and a processing server associated with the central database. The processing server including a software system controlling operation of the inventory tracking and management system.
US11495342B2 Planning an external ventricle drainage placement
Disclosed medical data processing method for planning an external ventricle drainage placement, wherein the method comprises executing, on at least one processor (3) of at least one computer (2), the following steps: a) patient image data describing at least one image of an anatomical structure of a patient is acquired (S1); b) atlas data describing a model of the anatomical structure is acquired (S2); c) mapping data describing a mapping of the patient image data to the atlas data is determined (S3); d) spatial relationship data is acquired (S4) which describes a predetermined spatial relationship between at least one potential trajectory for placing the external ventricle drainage in the anatomical structure on the one hand and a surface of the anatomical structure on the other hand; e) entry point data is determined (S5) which describes the position of an entry point (13) of the external ventricle drainage on the surface of the anatomical structure based on the mapping data and the spatial relationship data.
US11495338B1 Methods and systems for redistributing medication
A system for redistributing medication including a computing device configured to receive a communication regarding a medication donation from a donor, wherein the communication includes donor medication information regarding the medication donation. The computing device further configured to verify the medication donation including verifying the identity of the donated medication. Verifying the identity of the donated medication includes collecting actual medication information. The computing device also configured to enter final medication information corresponding to the medication donation into the medication database. The computing device configured to match the donated medication to a recipient selected from a recipient database as a function of a set of associated recipient data.
US11495333B2 Data analytic approach to personalized questionnaire developments
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving a plurality of answers to a first set of questions. The actions include generating an adjacency matrix based on the question-answer pairs. The actions include determining a network graph that includes question nodes and edges. The actions include identifying one or more clusters of question nodes by applying a community detection algorithm on the network graph. The actions include determining, for each cluster, i) a cluster centrality and ii) a cluster magnitude. The actions include ranking the clusters based on the cluster centralities and the cluster magnitudes of the one or more clusters. The actions include selecting a second set of questions for the user. And, the actions include causing the questions from the second set of questions to be presented to the user.
US11495332B2 Automated prediction and answering of medical professional questions directed to patient based on EMR
A mechanism is provided in a data processing system comprising a processor and a memory, the memory comprising instructions that are executed by the processor to specifically configure the processor to implement a question prediction and answering engine for predicting questions a medical professional is attempting to answer. An interaction monitoring component monitors interaction of a medical professional with a patient electronic medical record (EMR). A question selection component selects a set of questions the medical professional is attempting to obtain an answer to from the patient EMR. The question prediction and answering engine analyzes the patient EMR to generate a set of answers to the set of questions from at least a portion of the patient EMR and outputs a report correlating the set of questions and the set of answers to the medical professional.
US11495331B2 Document creation assistance server and document creation assistance method
An objective of the present invention is to provide a document creation assistance server and document creation assistance method which are capable of efficiently acquiring information necessary to write a specification or other such documents, and of generating a document from the acquired information. According to an embodiment, this document creation assistance server for assisting with the creation of a document comprises: a final product identification part for accepting identification information for identifying a final product generated by synthesizing a plurality of chemical compounds; a chemical equation acquisition part for referring to electronic experiment note data which provides an electronic record of the details of an experiment relating to the synthesis of the chemical compounds, and acquiring a chemical equation for generating the final product associated with the accepted identification information; and a document generation part for generating a document including the acquired chemical equation.
US11495326B2 Metagenomic library and natural product discovery platform
The present disclosure provides methods and systems for identifying natural product-encoding multi-gene clusters (MGCs). In some embodiments, the present disclosure also teaches methods for producing sequenced and assembled metagenomic libraries that are amenable to MGC search bioinformatic tools and techniques.
US11495323B2 Microbial classification of a biological sample by analysis of a mass spectrum
Techniques for determining a microbial classification based on a mass spectrum are disclosed. A mass spectrometer generates a mass spectrum for a biological sample. A binning function is applied to the mass spectrum to generate a binned mass spectrum. As an example, a binned mass spectrum is associated with a set of bins having mass errors of the same value. A classification algorithm is applied to the binned mass spectrum to determine a microbial classification.
US11495322B2 First-pass continuous read level calibration
Described herein are embodiments related to first-pass continuous read level calibration (cRLC) operations on memory cells of memory systems. A processing device determines that a first programming pass of a programming operation has been performed on a memory cell of a memory component. The processing device performs a cRLC operation on the memory cell to calibrate a read level threshold between a first first-pass programming distribution and a second first-pass programming distribution before a second programming pass of the programming operation is performed on the memory cell.
US11495321B2 Method for setting a reference voltage for read operations
Methods, systems, and devices for method for setting a reference voltage for read operations are described. A memory device may perform a first read operation on a set of memory cells using a first reference voltage and detect a first codeword based on performing the first read operation using the first reference voltage. The memory device may compare a first quantity of bits of the first codeword having a first logic value (e.g., a logic value ‘1’) with an expected quantity of bits having the first logic value (e.g., the expected quantity of logic value ‘1’s stored by the set of memory cells). The memory device may determine whether to perform a second read operation on the set of memory cells using a second reference voltage different than the first reference voltage (e.g., greater or less than the first reference voltage) based on the comparing.
US11495318B2 Memory device and method for using shared latch elements thereof
The present disclosure provides memory devices and methods for using shared latch elements thereof. A memory device includes a substrate, an interposer disposed over the substrate, and a logic die and stacked memory dies disposed over the interposer. In the logic die, the test generation module performs a memory test operation for the memory device. The functional elements stores functional data in latch elements during a functional mode of the memory device. The repair analysis module determines memory test/repair data based on the memory test operation. The memory test/repair data comprises memory addresses of faulty memory storage locations of the memory device that are identified during the memory test operation. The repair analysis module configures the latch elements into a scan chain, accesses the memory test/repair data during the test mode of the memory device, and repairs the memory device using the memory test/repair data.
US11495314B2 Memory repair using optimized redundancy utilization
A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.
US11495308B2 Semiconductor device
According to an embodiment, a semiconductor device includes a first circuit, a second circuit, and a third circuit. The first circuit is configured to receive a first signal, and output a first voltage to a first node in accordance with a voltage of the first signal being at a first level and output a second voltage to the first node in accordance with the voltage of the first signal being at a second level. The first voltage is higher than the second voltage. The second circuit is coupled to the first node and configured to latch data based on a voltage of the first node. The third circuit includes a first inverter. The first inverter includes a first input terminal coupled to the first node and a first output terminal coupled to the first node.
US11495305B2 Semiconductor memory device and operating method thereof
A semiconductor memory device includes a memory cell array and a peripheral circuit. The memory cell array includes at least two planes. The peripheral circuit performs a memory operation on a selected plane of the at least two planes during a single plane operation and performs a dummy operation on an unselected plane of the at least two planes.
US11495304B2 Memory device and control method thereof for fast read
A control method of a memory device is provided. When a target memory cell whose source is connected to a first source line needs to be read, a word line controller provides a first voltage to a word line corresponding to the target memory cell and also provides the first voltage to a word line corresponding to the next row of the target memory cell, so that the period when the word line corresponding to the target memory cell remains at the first voltage overlaps the period when the word line corresponding to the next row of the target memory cell remains at the first voltage. When the target memory cell needs to be read, a source line controller provides a second voltage to the first source line, and provides a third voltage to the second source line; the third voltage is not equal to the second voltage.
US11495298B1 Three dimension memory device and ternary content addressable memory cell thereof
A three dimension memory device and a ternary content addressable memory cell are provided. The ternary content addressable memory cell includes a first memory cell, a second memory cell, a first search switch, and a second search switch. The first memory cell is disposed in a first AND type flash memory line. The second memory cell is disposed in a second AND type flash memory line. The first search switch is coupled between a first bit line corresponding to the first AND type flash memory line and a match line, and is controlled by a first search signal to be turned on or cut off. The second search switch is coupled between a second bit line corresponding to the second AND type flash memory line and the match line, and is controlled by a second search signal to be turned on or cut off.
US11495295B2 Variable resistance memory device
A variable resistance memory device includes: a memory cell including a first and second sub memory cell; and a first, second and third conductor. The first sub memory cell is above the first conductor, and includes a first variable resistance element and a first bidirectional switching element. The second sub memory cell is above the second conductor, and includes a second variable resistance element and a second bidirectional switching element. The second conductor is above the first sub memory cell. The third conductor is above the second sub memory cell. The variable resistance memory device is configured to receive first data and to write the first data to the memory cell when the first data does not match second data read from the memory cell.
US11495293B2 Configurable resistivity for lines in a memory device
Methods, systems, and devices supporting configurable resistivities for lines in a memory device, such as access lines in a memory array are described. For example, metal lines at different levels of a memory device may be oxidized to different extents in order for the lines at different levels of the memory device to have different resistivities. This may allow the resistivity of lines to be tuned on a level-by-level basis without altering the fabrication techniques and related parameters used to initially form the lines at the different levels, which may have benefits related to at least reduced cost and complexity. Lines may be oxidized to a controlled extent using either a dry or wet process.
US11495292B2 Resistive random access memory device with three-dimensional cross-point structure and method of operating the same
A memory device according to an embodiment includes a first interconnect, a second interconnect, a first variable resistance member, a third interconnect, a second variable resistance member, a fourth interconnect, a fifth interconnect and a third variable resistance member. The first interconnect, the third interconnect and the fourth interconnect extend in a first direction. The second interconnect and the fifth interconnect extend in a second direction crossing the first direction. The first variable resistance member is connected between the first interconnect and the second interconnect. The second variable resistance member is connected between the second interconnect and the third interconnect. The third variable resistance member is connected between the fourth interconnect and the fifth interconnect. The fourth interconnect is insulated from the third interconnect.
US11495291B2 Non-volatile memory device and operating method
An operating method for a non-volatile memory device includes; performing a read operation on adjacent memory cells connected to an adjacent word line proximate to a target word line to determine adjacent data, classifying target memory cells connected to the target word line into groups according to the adjacent data, setting a read voltage level for each of the groups by searching for a read voltage level for target memory cells in at least one of the groups, and performing a read operation on target memory cells using the read voltage level set for each of the groups.
US11495290B2 Memory system and power supply circuit with power loss protection capability
A power supply circuit supplies a first voltage to a third terminal using a voltage of a first terminal, generates a second voltage using the first voltage, supplies the second voltage to a non-volatile memory, generates a third voltage using the first voltage, charges energy in a capacitor, upon the voltage of the first terminal being lower than a first threshold voltage and a voltage of the second terminal being higher than a second threshold voltage, supplies a fourth voltage using charged energy to the third terminal, and upon the voltage of the second terminal being lower than the second threshold voltage, stops charging and supplies a fifth voltage using the charged energy to the third terminal.
US11495286B2 Semiconductor devices
A semiconductor device includes a read write control circuit configured to generate first and second write command pulses from an external control signal for performing a write operation; a flag generation circuit configured to generate a write flag, a write shifting flag, an internal write flag and an internal write shifting flag based on the second write command pulse, a bank mode signal and a bank group mode signal; and a bank group selection signal generation circuit configured to store a bank address based on an write input control pulse generated from the second write command pulse in a bank mode, and output the stored bank address as a bank group selection signal based on a write output control pulse generated from the write flag.
US11495285B2 Apparatuses and methods for signal line buffer timing control
Apparatuses and methods for signal line buffer timing control are disclosed. An example apparatus includes a plurality of signal lines including first and second control lines and further including data lines, and further includes first and second signal line buffers. The first signal line buffer includes first driver circuits configured to drive respective data signals on the data lines and to drive first and second control signals on the first and second control lines, respectively. The second signal line buffer includes second driver circuits configured to be activated to receive the data signals. The first and second control signals arrive at the second signal line buffer at different times. The second driver circuits are activated responsive a later one of active first and second control signals and are deactivated responsive to an earlier one of inactive first and second control signals.
US11495283B2 Integrated assembly with memory array over base, sense amplifiers in base, and vertically-extending digit lines associated with the memory array
Some embodiments include an integrated assembly having a memory array over a base. First sense-amplifier-circuitry is associated with the base and includes sense amplifiers directly under the memory array. Vertically-extending digit lines are associated with the memory array and are coupled with the first sense-amplifier-circuitry. Second sense-amplifier-circuitry is associated with the base and is offset from the first sense-amplifier-circuitry. Control circuitry is configured to selectively couple the digit lines to either a voltage supply terminal or to the second sense-amplifier-circuitry.
US11495281B2 Write interamble counter
Systems and methods are provided that provide protection from undesired latching that may be caused by indeterminate interamble periods in an input/output data strobe (DQS) signal. Interamble compensation circuitry selectively filters out interamble states of the DQS signal to reduce provision of interamble signals to downstream components that use the DQS signal to identify data latching times.
US11495280B2 Semiconductor memory devices and memory systems including the same
A semiconductor memory device includes an external resistor provided on a board and a plurality of memory dies mounted on the board, designated as a master die and slave dies. The memory dies are commonly connected to the external resistor. The master die performs a first impedance calibration operation during an initialization sequence of the semiconductor memory device and stores, in a first register set therein, first calibration data, a first voltage and a first temperature. Each of the slave dies, after the first impedance calibration operation is completed, performs a second impedance calibration operation during the initialization sequence and stores, in a second register set therein, second calibration data associated with the second impedance calibration operation and offset data corresponding to a difference between the first calibration data and the second calibration data.
US11495279B1 Managing write disturb for units of memory in a memory sub-system using a randomized refresh period
A write operation performed on a first memory unit of a memory device is detected, wherein the first memory unit comprises one or more memory cells. Responsive to detecting the write operation, a value of a counter associated with the first memory unit is incremented. It is determined whether the value of the counter satisfies a threshold criterion, wherein the threshold criterion is based on a random or pseudo-random number within a defined range. Responsive to determining that the value of the counter satisfies the threshold criterion, a refresh operation is performed on a second memory unit.
US11495274B2 Apparatuses and methods for performing logical operations using sensing circuitry
The present disclosure includes apparatuses and methods related to performing logical operations using sensing circuitry. An example apparatus comprises an array of memory cells and sensing circuitry comprising a primary latch coupled to a sense line of the array. The sensing circuitry can be configured to perform a first operation phase of a logical operation by sensing a memory cell coupled to the sense line, perform a number of intermediate operation phases of the logical operation by sensing a respective number of different memory cells coupled to the sense line, and accumulate a result of the first operation phase and the number of intermediate operation phases in a secondary latch coupled to the primary latch without performing a sense line address access.
US11495268B1 Assembly module and expansion equipment
An assembly module is applicable to a casing of an expansion equipment. The assembly module includes a transmission component and an operating member. The transmission component is disposed in the casing. The transmission component includes a rotary member, a connecting member, and a buckle member. The rotary member is pivotally connected to the casing. The connecting member is connected between the rotary member and the buckle member. A part of the buckle member is exposed from a buckle hole of the casing. The operating member is disposed on the casing, and is connected to the transmission component. The operating member is configured to drive the transmission component, so that a part of the buckle member is movably disposed in the buckle hole of the casing.
US11495261B2 Magnetic disk device capable of correcting servo demodulation position
According to one embodiment, a magnetic disk device includes a disk including two first servo sectors and at least a second servo sector, a head, and a controller, wherein the first servo sector includes burst data and a first data pattern written before the circumferential direction of the burst data, the second servo sector includes the burst data, the first data pattern, and a second data pattern written after the circumferential direction of the burst data, a first frequency of the first data pattern is different from a second frequency of the second data pattern, and a first length of the first data pattern is different from a second length of the second data pattern.
US11495258B2 Magnetic recording medium
The present technology provides a tape-shaped magnetic recording medium including: a magnetic layer; an underlayer; a base layer; and a back layer, in which the number of recesses having a depth of 20% or more of the thickness of the magnetic layer is 10 or more and 200 or less per surface area of 1600 μm2, the base layer includes a polyester as a main component, a surface on a side of the back layer has a kurtosis of 2.0 or more and 4.4 or less, the magnetic recording medium has an average thickness tT of 5.6 μm or less, the magnetic recording medium includes a lubricant, the magnetic recording medium has pores, and the pores have an average diameter of 6 nm or more and 11 nm or less when the diameters of the pores are measured in a state where the lubricant has been removed from the magnetic recording medium and the magnetic recording medium has been dried.
US11495254B2 Media non-contacting magnetic recording head
The present disclosure generally relates to a head assembly of a data storage device. The data storage device may include magnetic media embedded in the device or magnetic media from an insertable cassette or cartridge (e.g., in an LTO drive), where the magnetic head assembly reads from and writes to the magnetic media. During drive operation, the magnetic media moves across the magnetic head assembly. The magnetic head assembly is spaced a distance from the magnetic media such that non-contact recording occurs between the magnetic head assembly and the magnetic media. The magnetic media is supported by either a back plate or an air film generated by one or more fillet edges of the back plate and the velocity of the magnetic media as the magnetic media moves across the magnetic head assembly.
US11495253B1 Gimbal test system
A data storage system may utilize a gimbal test system to find open circuits and short circuits in a head gimbal assembly. The gimbal test system can have a gimbal flexure suspended between a load beam and a data storage medium with a flex circuit physically attached to the gimbal flexure to electrically connect a transducing head to a controller. The flex circuit can be tested with a test via that continuously extends through the flex circuit to a probe portion and a test pad located on an air bearing side of the gimbal flexure. The probe portion can be backed by the gimbal flexure along a plane perpendicular to a recording surface of the data storage medium.
US11495252B2 Magnetic sensor array with single TMR film plus laser annealing and characterization
The present disclosure generally relates to a Wheatstone bridge array that has four resistors. Each resistor includes a plurality of TMR films. Each resistor has identical TMR films. The TMR films of two resistors have reference layers that have an antiparallel magnetic orientation relative to the TMR films of the other two resistors. To ensure the antiparallel magnetic orientation, the TMR films are all formed simultaneously and annealed in a magnetic field simultaneously. Thereafter, the TMR films of two resistors are annealed a second time in a magnetic field while the TMR films of the other two resistors are not annealed a second time.
US11495249B1 Method and apparatus for magnetically recording data with three or more states per unit of data
Two or more different recording currents are applied to a write coil of a recording head. A first of the two or more currents is a positive current and a second of the two or more currents is a negative current. In response to the application of the two or more different recording currents, a data stream is recorded to regions of a moving continuous magnetic recording medium such that each region has three or more magnetic states. The three or more magnetic states can be read from the continuous magnetic recording medium via a magnetic read transducer to recover the data stream.
US11495248B2 Signal processing device, magnetic tape cartridge, magnetic tape reading apparatus, processing method of signal processing device, operation method of magnetic tape reading apparatus, and non-transitory computer-readable storage medium
A signal processing device includes a receiver that receives a plurality of playback signal sequence obtained by digitizing a plurality of reading results by a plurality of A/D converter, the plurality of reading results being obtained by reading data by a plurality of reading elements from a magnetic tape and a plurality of equalizers that perform waveform equalization of the plurality of playback signal sequence. The plurality of equalizers perform the waveform equalization by using a plurality of non-linear filters that have been learned to reduce distortion that occurs non-linearly in the plurality of playback signal sequence according to a condition under an environment in which the data is read from the magnetic tape. The plurality of non-linear filters being optimized to a suitable characteristic for the plurality of reading elements by optimization based on the plurality of reading results.
US11495243B2 Localization based on time-reversed event sounds
A system determines an event location of an event within an indoor environment based on an event sound generated by the event. The system employs time-reversal techniques based on a received event sound to identify the event location as being in the vicinity of one of a plurality of locator devices at locator locations in the environment. The system includes a base array located within the environment that receives an indication that an event has been detected. Upon receiving the event sound, the system generates a time-reversed event sound for each transceiver and transmits via each transceiver the time-reversed event sound for that transceiver. When a locator device receives a time-reversed event sound, the locator device determines whether the event is in the vicinity of that locator location of the locator device and, if so, outputs an indication that the event occurred at that locator location.
US11495238B2 Audio fingerprinting
A machine may be configured to generate one or more audio fingerprints of one or more segments of audio data. The machine may access audio data to be fingerprinted and divide the audio data into segments. For any given segment, the machine may generate a spectral representation from the segment; generate a vector from the spectral representation; generate an ordered set of permutations of the vector; generate an ordered set of numbers from the permutations of the vector; and generate a fingerprint of the segment of the audio data, which may be considered a sub-fingerprint of the audio data. In addition, the machine or a separate device may be configured to determine a likelihood that candidate audio data matches reference audio data.
US11495234B2 Data mining apparatus, method and system for speech recognition using the same
A data mining device, and a speech recognition method and system using the same are disclosed. The speech recognition method includes selecting speech data including a dialect from speech data, analyzing and refining the speech data including a dialect, and learning an acoustic model and a language model through an artificial intelligence (AI) algorithm using the refined speech data including a dialect. The user is able to use a dialect speech recognition service which is improved using services such as eMBB, URLLC, or mMTC of 5G mobile communications.
US11495229B1 Ambient device state content display
Devices and techniques are generally described for sending a first instruction for a device to output first content while the speech-processing device is in an ambient state during a first time period. First feedback data is received indicating that a first action associated with the first content was requested at a first time. A determination is made that the first time is during the first time period. Timing data related to a current time of the device is determined. Second content is determined based at least in part on the first action being requested during the first time period and the timing data. A second instruction is sent effective to cause the device to output second content while in the ambient state during a second time period.
US11495228B2 Display apparatus and method for registration of user command
An apparatus including a user input receiver; a user voice input receiver; a display; and a processor. The processor is configured to: (a) based on a user input being received through the user input receiver, perform a function corresponding to voice input state for receiving a user voice input; (b) receive a user voice input through the user voice input receiver; (c) identify whether or not a text corresponding to the received user voice input is related to a pre-registered voice command or a prohibited expression; and (d) based on the text being related to the pre-registered voice command or the prohibited expression, control the display to display an indicator that the text is related to the pre-registered voice command or the prohibited expression. A method and non-transitory computer-readable medium are also provided.
US11495226B2 System and method for configurable control of voice command systems
A method of providing configurable control of voice command systems is disclosed herein. The method comprising a parent device receiving a voice command and comparing the voice command to a set of preferences for a user. The set of preferences may relate to one or more interactions between the user and a playback device. The method further comprises the parent device translating the voice command to a user interface (UI) command sequence for the playback device based on the comparison. The playback device may then send the UI command sequence to the playback device as the configurable voice command. The playback device executes the UI command sequence to transition from the current output state to the desired output state intended by the user. A system for providing configurable voice control and computer program product are also disclosed.
US11495223B2 Electronic device for executing application by using phoneme information included in audio data and operation method therefor
An electronic device according to various embodiments may comprise a memory in which one or more applications are installed, a communication circuit, and a processor, wherein the processor is configured to acquire audio data during execution of a designated application among the one or more applications, wherein the acquiring of audio data comprises an operation of storing, in the memory, at least a portion including multiple pieces of phoneme information among the audio data, when a designated condition is satisfied, transmit the at least portion to an external electronic device so that the external electronic device generates designated information for execution of at least one application among the one or more applications by using at least a part of the multiple pieces of phoneme information stored before the designated condition is satisfied, and on the basis of the designated information, execute the at least one application in relation to the designated application.
US11495220B2 Electronic device and method of controlling thereof
Disclosed is an electronic device. The electronic device may execute an application for transmitting and receiving at least one of text data or voice data with another electronic device using the communication module, in response to occurrence of at least one event, based on receiving at least one of text data or voice data from the another electronic device, identify that a confirmation is necessary using the digital assistant based on at least one of text data or voice data being generated based on a characteristic of ab utterance using a digital assistant, generate a notification to request confirmation using the digital assistant based on confirmation being necessary, and output the notification using the application.A method for identifying that a confirmation is necessary may include identifying using voice data or text data that is received from another electronic device using a rule-based or AI algorithm.When a confirmation is necessary is identified using the AI algorithm, the method may use machine learning, neural network, or a deep learning algorithm.
US11495219B1 Interacting with a virtual assistant to receive updates
Technologies are disclosed for interacting with a virtual assistant to request updates associated with one or more events and/or perform actions. According to some examples, a user may use their voice to interact with a virtual assistant to receive updates relating to events occurring during a certain period of time. For example, a user may request an update associated with one or more events occurring that day. The system may access data sources (e.g., calendar services, email services, etc.) to obtain data associated with the events, tag the events according to one or more conditions indicated by the data, and/or rank the events according to the tags. In addition, to resolve conditions associated with the events, the virtual assistant may also include options in the update to perform certain actions and/or to provide response data. The virtual assistant may generate the update and audibly provide the update to the user.
US11495217B2 Automated assistants that accommodate multiple age groups and/or vocabulary levels
Techniques are described herein for enabling an automated assistant to adjust its behavior depending on a detected age range and/or “vocabulary level” of a user who is engaging with the automated assistant. In various implementations, data indicative of a user's utterance may be used to estimate one or more of the user's age range and/or vocabulary level. The estimated age range/vocabulary level may be used to influence various aspects of a data processing pipeline employed by an automated assistant. In various implementations, aspects of the data processing pipeline that may be influenced by the user's age range/vocabulary level may include one or more of automated assistant invocation, speech-to-text (“STT”) processing, intent matching, intent resolution (or fulfillment), natural language generation, and/or text-to-speech (“TTS”) processing. In some implementations, one or more tolerance thresholds associated with one or more of these aspects, such as grammatical tolerances, vocabularic tolerances, etc., may be adjusted.
US11495212B2 Dynamic vocabulary customization in automated voice systems
Techniques to dynamically customize a menu system presented to a user by a voice interaction system are provided. Audio data from a user that includes the speech of a user can be received. Features can be extracted from the received audio data, including a vocabulary of the speech of the user. The extracted features can be compared to features associated with a plurality of user group models. A user group model to assign to the user from the plurality of user group models can be determined based on the comparison. The user group models can cluster users together based on estimated characteristics of the users and can specify customized menu systems for each different user group. Audio data can then be generated and provided to the user in response to the received audio data based on the determined user group model assigned to the user.
US11495209B2 Information presentation device, and information presentation method
There is provided an information presentation device that is configured to present information, to a plurality of users that differ in level, in such a manner that each of the users can easily understand the information, and an information presentation method. The information presentation device includes: an identification unit that identifies respective levels of one or more users; an obtaining unit that obtains presentation information to be presented to the users; a conversion unit that appropriately converts the obtained presentation information according to the level of each user; and a presentation unit that presents the appropriately converted presentation information to each user. The present technology can be applied to, for example, a robot, a signage device, a car navigation device, and the like.