Document | Document Title |
---|---|
US10136109B2 |
Image sensor including color separation element and image pickup apparatus including the image sensor
An image sensor includes a pixel array having a Bayer pattern structure including a first pixel row in which first pixels and second pixels are alternately provided and a second pixel row in which additional ones of the second pixels and third pixels are alternately provided, a first element to control light of a first wavelength band to travel in directions toward left and right sides of the first element and to control light of a second wavelength band of the incident light to travel in a direction directly under the first element, and a second element to control light of a third wavelength band to travel in the directions toward the left and right sides of the second element and to control the light of the second wavelength band to travel in a direction directly under the second element. |
US10136108B2 |
Imaging device
An imaging device includes a plurality of first pixels that includes pixels of a plurality of color components and generates a first signal from incident light, a plurality of second pixels that generates a second signal from light that has transmitted at least a part of the first pixels, and a signal generation unit that generates a signal obtained by combining the first signal and the second signal. |
US10136106B2 |
Train asset tracking based on captured images
A system for tracking train assets is disclosed. The tracking system may include an image capture device configured to collect an image data set of a train asset and an area surrounding the train asset. Furthermore, the image data set may be associated with a time stamp and in one non-limiting example, the time stamp provides a collection time of the image data set. In some embodiments, a controller may be configured to receive the image data set and to perform an analysis of the image data set and the analysis provides a track location of the train asset and an identification of the train asset. |
US10136104B1 |
User interface
Methods and apparatus for controlling one or more devices using a computing device, such as a wearable computing device, are disclosed. Using a sensor associated with a wearable computing device, one or more inputs are generated at the wearable computing device. As one example, the sensor can be an image capture device, and the inputs can be one or more images from a point of view of a person associated with the computing device. As another example, the sensor can be a motion sensor, and the input can be locations and/or orientations, and a gaze direction can be determined. The computing device can determine an object of interest based on the inputs. A control signal can be generated for the object of interest. The control signal can be transmitted from the computing device. |
US10136098B2 |
Integrity verification of an audio-visual data stream
Methods and systems are provided for integrity verification of an audio-visual data stream. The method includes inserting a watermark into a frame of the visual data stream or into an audio window of a corresponding audio data stream, where the watermark includes: a hash code of the previous frame of the visual data stream and a hash code of the audio window of the audio data stream, and where the audio window corresponds in time to the previous frame of the visual data stream. |
US10136097B2 |
Digital camera raw image support
RAW camera images may be processed by a computer system using either a particular application or a system level service. In either case, at least some parameters needed for the processing are preferably separated from the executable binary of the application or service, and are provided in separate, non-executable, data-only files. Each of these files can correspond to a particular camera or other imaging device. When a user of the system attempts to open a RAW image file from an unsupported device, the local system may contact a server for on-demand download and on-the-fly installation of the required support resource. |
US10136095B2 |
Image processing device, display device, and image processing method
A projector is configured so as to be able to perform a plurality of types of image processing on processing target data in the case in which one of still image data and data of a frame constituting video data is input as the processing target data. A video processing section includes a selector for controlling an execution sequence of the types of image processing to be executed, and a panel correction section for outputting the processing target data having been processed in the execution sequence controlled by the control section. |
US10136094B2 |
Display apparatus and method for controlling display apparatus
A display apparatus that displays an image includes a connection unit that is connected to an external apparatus and receives an image signal and a control signal from the external apparatus, a display unit that displays an image based on the image signal received by the connection unit, and a control unit that performs reconnection action of causing the connection unit to enter a first state in which the control unit recognizes that the external apparatus has not been connected to the connection unit and then causing the connection unit to enter a second state in which the control unit recognizes that the external apparatus has been connected to the connection unit. |
US10136091B2 |
Solid-state image pickup element and image pickup system
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units. |
US10136090B2 |
Threshold-monitoring, conditional-reset image sensor
An image sensor architecture with multi-bit sampling is implemented within an image sensor system. A pixel signal produced in response to light incident upon a photosensitive element is converted to a multiple-bit digital value representative of the pixel signal. If the pixel signal exceeds a sampling threshold, the photosensitive element is reset. During an image capture period, digital values associated with pixel signals that exceed a sampling threshold are accumulated into image data. |
US10136081B2 |
Solid-state imaging element with latch circuits and electronic device equipped with the same
A pixel includes detection portions which detect transferred charges, a reset portion which resets the plurality of detection portions, a connection/separation control portion which controls connection and separation of the detection portions, and an output portion which outputs a signal corresponding to the potential of a detection portion. In a state where the connection/separation control portion connects the detection portions, the output portion outputs a connection-state reset level signal and a connection-state output signal and, in a state where the connection/separation control portion separates the detection portions, the output portion outputs a separation-state reset level signal and a separation-state output signal. A first pixel signal is generated by a difference between the connection-state reset level signal and the connection-state output signal, and a second pixel signal is generated by a difference between the separation-state reset level signal and the separation-state output signal. |
US10136076B2 |
Imaging device, imaging system, and imaging method
An imaging device is provided with a condition designating unit which designates, by time division, imaging conditions for capturing an image, and light emission conditions for emitting auxiliary light, an imaging section which captures an image including a subject according to the imaging conditions, a light emitting unit which emits auxiliary light with respect to the subject according to the light emission conditions, and an image composer which composes a first image that is captured under a first imaging condition during a light emission period in which the auxiliary light is emitted and a second image which is captured under a second imaging condition during a non-light-emission period which is continuous to the light emission period and in which the auxiliary light is not emitted, in which quality of an image which is captured in a low illumination environment is improved. |
US10136075B2 |
Compensation circuit for an x-ray detector
A pixel circuit includes a voltage compensation circuit connected to a body terminal of the pixel's switching TFT to compensate for a decreasing threshold voltage drift of the TFT. |
US10136074B2 |
Distribution-point-based adaptive tone mapping
A method for tone mapping includes configuring, by at least one processor, at least one tone mapping function based on a measure of a distribution of luminance values within video data. The measure of a distribution of luminance values represents a luminance level at which a predetermined percentage of pixels of the video data have luminance values satisfying a threshold condition. The method includes generating a tone mapped video by applying the at least one configured tone mapping function to the video data. |
US10136071B2 |
Method and apparatus for compositing image by using multiple focal lengths for zooming image
Provided are an image zooming method and an image zooming apparatus for optical zooming by using a plurality of lenses with different focal lengths. The image zooming method includes capturing an identical scene via a plurality of lenses; obtaining a first image and a second image of the identical scene that have different resolving powers; determining a first area of the first image and a second area of the second image which corresponds to the first area; and generating a composite image the second area and a remaining area of the first image from which the first area is excluded. |
US10136065B2 |
Method for the transformation of a moving image sequence and moving image sequence transformation device
A method is provided for the transformation of a moving image sequence and a moving image sequence transformation device designed for executing the transformation method. For a current individual image of the moving image sequence, the method forms a transformation basis (1) in which a first individual image, the current individual image, and a second individual image are arranged adjacent to each other. Intersection points (S1, S2) are determined for connecting lines (7, 8) which extend from image points corresponding to each other from the first individual image and the current individual image and from the current individual image to the second individual image, comprising image starting limits and image end limits (15, 16) of the current individual image. A new image point position of an image point in the current individual image results from averaging the intersection points. |
US10136064B2 |
Image processing apparatus and method of controlling image processing apparatus
An image processing apparatus comprising: a first obtaining unit configured to obtain a focal length of an imaging optical system; a second obtaining unit configured to obtain a distance to a subject; a setting unit configured to set a movable range for a correction unit configured to correct camera shake, based on the focal length and the distance to a subject; and a calculation unit configured to calculate a correction amount for correcting the camera shake within the movable range that was set by the setting unit, based on a camera shake signal from a camera shake detection unit configured to detect camera shake and output the camera shake signal. |
US10136063B2 |
Image stabilizing method and apparatus
Provided are an image stabilizing apparatus and method thereof. The image stabilizing apparatus performs image stabilization by using both an image sensor and a motion sensor. Image distortion and movement are stably corrected by using both the position of a feature point, which is extracted by the image sensor and image processing, and the movement position of the feature point, which is predicted by the motion sensor. |
US10136062B1 |
Information processing apparatus, mode selection method, and mode selection program
There is provided an information processing apparatus capable of setting a privacy mode intuitively and easily. The information processing apparatus capable of selecting the privacy mode includes: an imaging unit configured to acquire an image; a determination unit configured to acquire an output value related to the brightness of the image acquired by the imaging unit to determine whether the output value related to the brightness of the image meets a predetermined condition; and a mode selection unit configured to select the privacy mode when the determination unit determines that the output value related to the brightness of the image meets the predetermined condition. |
US10136056B2 |
Panoramic imaging apparatus and system, method of generating panoramic image using panoramic imaging system, computer-readable recording medium, and computer program stored in computer-readable recording medium
Provided are a panoramic imaging apparatus, a panoramic imaging system, a method of generating a panoramic image using the panoramic imaging system, a computer-readable recording medium, and a computer program stored in a computer-readable recording medium The panoramic imaging apparatus includes a first camera module capturing an omnidirectional image, a second camera module positioned a certain distance away from the first camera module and capturing an omnidirectional image, and a controller generating and storing an image frame based on the omnidirectional image captured by at least one of the first camera module and the second camera module Each of the first camera module and the second camera module includes two lenses having a viewing angle greater than or equal to 180°, sharing an optical axis, and formed to be convex in opposite directions of each other to capture the omnidirectional image. |
US10136055B2 |
Method for stitching together images taken through fisheye lens in order to produce 360-degree spherical panorama
The present invention is to provide a method for enabling an electronic device to read at least two images taken from different positions by a digital camera mounted with a fisheye lens; acquire internal and external parameters of the fisheye lens corresponding to the different positions as well as the vignetting coefficient for eliminating the vignetting on the images; perform exposure compensation and color calibration on the images for letting them have consistent brightness and hues; project the images onto a spherical surface and spread out the spherical surface to form a two-dimensional spread-out picture based on the parameters; register the overlapped images projected on the two-dimensional spread-out picture and adjust the offset of corresponding pixels thereof, register and adjust the brightness and hues of the overlapped images into consistency; and fuse overlapped images together to produce a 360-degree spherical panorama without having any noticeable stitching seam between the images. |
US10136053B2 |
System and method for controlling a specimen scanner remotely
This disclosure teaches a system and method for controlling a specimen scanner remotely. In one embodiment, a method for controlling a specimen scanner remotely can comprise the step of communicating with a specimen scanner to a network. The specimen scanner can comprise a camera, a stage, one or more lenses, and one or more light sources. The method can comprise the additional step of providing a graphical user interface to a remote computer connected to the network. The graphical user interface can be operable to control the camera, choose one of the one or more lenses, and adjust the one or more light sources. The method can further comprise the step of receiving instructions from the remote computer, and controlling the specimen scanner based on those instructions. |
US10136052B2 |
Methods and apparatus to capture photographs using mobile devices
Methods and apparatus to capture photographs using mobile devices are disclosed. An example apparatus includes a photograph capturing controller to capture a photograph with a mobile device. the example apparatus further includes a perspective analyzer, implemented by the mobile device, to analyze the photograph to determine a probability of perspective being present in the photograph. The example apparatus also includes a photograph capturing interface to prompt a user to capture a new photograph when the probability of perspective exceeds a threshold. |
US10136051B2 |
Imaging apparatus for imaging during panning imaging when a self-timer is set to on
A system control unit deactivates a self-timer imaging setting in a case where an imaging mode of panning imaging is set, an attitude detection unit has detected a movement of a main body corresponding to the panning imaging, or a panning imaging setting is ON. |
US10136050B2 |
Image acquisition and management using a reference image
A reference image of one or more objects is displayed on the display of a mobile device in a manner that allows a user of the mobile device to simultaneously view the reference image and a preview image of the one or more objects currently in a field of view of a camera of the mobile device. An indication is provided to the user of the mobile device whether the camera of the mobile device is currently located within a specified amount of a distance at which the reference image was acquired. In response to a user request, the camera acquires a second image of the one or more objects and optionally a distance between the camera and the one or more objects at the time the second image was acquired is recorded. An image management application provides various functionalities for accessing and managing image sequences. |
US10136049B2 |
System, method and computer program product for contextual focus/zoom of event celebrities
A contextual zoom control method, system, and computer program product, includes detecting faces in an area of interest when a user is performing an image capturing action, extracting a facial image for each of a set of key individuals attending an event where the user is performing the image capturing action, creating a ranked list of the set of key individuals according to a predetermined parameter of each key individual, pairing each detected face with a matching extracted facial image to label an identity of each key individual in the area of interest, and in a single individual capturing mode, performing a camera function to assist the user in performing the image capturing action on the identity that is paired with a highest ranked individual on the ranked list within the area of interest. |
US10136043B2 |
Speech and computer vision-based control
The present disclosure relates to a method for controlling a digital photography system. The method includes obtaining, by a device, image data and audio data. The method also includes identifying one or more objects in the image data and obtaining a transcription of the audio data. The method also includes controlling a future operation of the device based at least on the one or more objects identified in the image data, and the transcription of the audio data. |
US10136040B2 |
Capacitive auto focus position detection
Some embodiments include an electrically conductive capacitor plate mounted to a chassis supporting an actuator using one or more suspension wires. In some embodiments, the first electrically conductive capacitor plate is electrically connected with an electrically conductive coil of the actuator. Some embodiments include the electrically conductive coil. In some embodiments, a capacitance between the first electrically conductive capacitor plate and the electrically conductive coil varies as function of the position of the electrically conductive coil relative to the first electrically conductive capacitor plate. |
US10136036B2 |
Control flap
An apparatus can include a processor; memory; a touchscreen display; a network interface; a camera that includes a lens; an operating system executable by the processor to establish an operating system environment; applications that execute within the operating system environment to establish corresponding application states where the applications include a camera application to establish a camera state; a housing that houses at least the processor and the camera and that includes a surface where the surface includes an opening for the lens of the camera; a cover that includes a flap where the flap includes a closed orientation with respect to the opening and an open orientation with respect to the opening; and circuitry that switches from an existing application state to the camera state responsive to a transition of the flap from the closed orientation to the open orientation. |
US10136035B2 |
Interchangeable mounting platform
A platform for interchangeably mounting a payload to a base support is provided. In one aspect, the platform comprises: a support assembly configured to be releasably coupled to a payload via a first coupling and configured to control a spatial disposition of the payload; and a mounting assembly configured to be releasably coupled via a second coupling to a plurality of types of base supports selected from at least two of the following: an aerial vehicle, a handheld support, or a base adapter mounted onto a movable object. |
US10136034B2 |
VLC-based video frame synchronization
A VLC signal representing an alignment identifier is detected by cameras (4) of multiple user devices (1, 2, 3) filming a scene. Encoded video frames (91, 92, 93) from the user devices (1, 2, 3) are decoded and light patterns representing the captured VLC signal are identified in at least some of the video frames following decoding. The light patterns are decoded into alignment identifiers that are used in order to time align video frames (91, 92, 93) from different user devices (1, 2, 3) to thereby achieve video frame synchronization of video data from multiple user devices (1, 2, 3) recording a scene. The embodiments thereby enable video frame synchronization without the need for accurate clock synchronization between the user devices (1, 2, 3) and a video synchronization system (10). |
US10136033B2 |
Techniques for advanced chroma processing
Image and video processing techniques are disclosed for processing components of a color space individually by determining limits for each component based on the relationship between each component in a color space. These limits may then be used to clip each component such that the component values are within the determined range for that component. In this manner, more efficient processing of images and/or video may be achieved. |
US10136030B2 |
Method and system for managing image forming apparatus through network
A method of managing an image forming apparatus through a network, the method including: logging in to a server through a diagnostic control unit application from a user terminal; receiving, by the user terminal, device information of an image forming apparatus from the image forming apparatus; requesting for and receiving, by the user terminal, diagnostic control unit information corresponding to the received device information from the server; performing a diagnostic control on the image forming apparatus through the diagnostic control unit application by using the received diagnostic control unit information; and uploading results of performing the diagnostic control on the server. |
US10136028B2 |
Control device performing error diffusion process using modified evaluated density value
In an error diffusion process, a control device determines a dot value of a target pixel by using a gradation value of the target pixel, and an error value. The control device determines distribution error value by comparing a gradation dependent value with a first evaluated density value indicating a density of a first dot. The control device determines the distribution error value by using the first evaluated density value when the dot value of the target pixel indicates formation of the first dot and when the gradation dependent value is smaller than or equal to the first evaluated density value. The control device determines the distribution error value by using a modified evaluated density value greater than the first evaluated density value when the dot value indicates formation of the first dot and when the gradation dependent value is greater than the first evaluated density value. |
US10136026B2 |
Image forming apparatus, method, and storage medium storing a program
A first conversion into pixels of an obtained object, for which the processing for widening the width of the object is performed, is performed, and a second conversion into pixels of the object, for which the processing for widening the width of the object is not performed, is performed. When the first conversion is performed, a pixel is filled or is not filled with color depending on a position of a boundary of the object in the pixel. When the second conversion is performed, a pixel is filled with color if the position of the boundary of the object exists in the pixel. |
US10136025B2 |
Image processing apparatus capable of generating image, method of controlling the same, and storage medium
An image processing apparatus capable of generating printed matter desired by a user. An MFP as the image processing apparatus generates or changes print data for printing print contents on a recording sheet to generate printed matter. Print data including information on pages is acquired from an external apparatus. Information designating ones of the pages, which are to be rotated through 180 degrees, is acquired. Based on the print data, image data for a surface of a sheet is generated by arranging two or more pages on the surface of the sheet. If a page is not to be rotated through 180 degrees, image data is generated by arranging the pages in a predetermined layout, whereas if all pages are to be rotated through 180 degrees, image data is generated by arranging the pages in a different layout from the predetermined layout. |
US10136019B2 |
Illumination apparatus, sensor unit, and reading apparatus
An illumination apparatus includes a light source and an elongated light guide, wherein the light guide includes an emission surface that emits light from the light source and a reflection surface that reflects the light to the emission surface, the reflection surface includes a plurality of diffusion portions that diffuse the light, the diffusion portions have a shape of part of a sphere recessed from the reflection surface, a depth of the diffusion portions from the reflection surface is equal to or greater than 16.5% and equal to or smaller than 50% of a diameter of the sphere, and a width of the diffusion portions is equal to or greater than 0.1 mm and equal to or smaller than 50% of a width of the reflection surface. |
US10136014B2 |
Image processing apparatus and control method therefor, and storage medium
An image processing apparatus that is capable of calculating an appropriate replacement guide value of a part even in a case where the image processing apparatus operates under different operating modes. The image processing apparatus is capable of operating in a plurality of operating modes of different image forming speeds and has a replacement guide default value showing a guide for replacement of a part for each of the operating modes. A degree of wear of the part for each of the operating modes is calculated based on the replacement guide default value. The calculated degree of wear is, in a case where the operating mode is changed, converted to a degree of wear for the operating mode after the change, and a replacement guide value of the part in the operating mode is calculated after the change based on the converted degree of wear. |
US10136012B2 |
Image reading apparatus equipped with automatic document feeder and image forming apparatus having a blank-page determination feature
An image reading apparatus that is capable of determining whether an original is a blank-paper original without stopping a reading operation. A feeding unit feeds an original to a read position. A read unit is equipped with a plurality of line sensors that read the original at the read position. An obtaining unit obtains dust-position information about dust adhering to the read position based on image information that is obtained by reading a guide member arranged corresponding to the read position with the read unit before reading the original. A determination unit determines whether the original is a blank-paper original using image information corresponding to pixels without being affected by the dust that is obtained by excluding image information corresponding to the dust-position information from image information read by the line sensors of the read unit. |
US10136009B2 |
Image reading apparatus
An image reading apparatus includes a sensor unit configured to move, a first driven pulley and a second driven pulley disposed apart from each other in a movement direction of the sensor unit, a drive pulley and a third driven pulley disposed between the first driven pulley and the second driven pulley in the movement direction, and a belt wound around the first driven pulley, the second driven pulley, the drive pulley, and the third driven pulley. The belt is bent at positions where each of the first driven pulley, the second driven pulley, and the drive pulley contacts an inner surface of the belt and is bent at a position where the third driven pulley contacts an outer surface of the belt. |
US10136006B2 |
Image processing device that processes an image by acquiring processing information based on a processing identifier
An image processing device including a reception unit, an acquisition unit, an image reading unit, and a transmission unit. The reception unit receives a processing identifier associated with image reading processing. The acquisition unit acquires processing information associated with the processing identifier, the processing information including at least information regarding a storing location. The image reading unit reads an image on the basis of the processing information. The transmission unit transmits data of the read image to the storing location according to the processing information. |
US10136003B2 |
Image forming system, image forming apparatus, and non-transitory computer readable recording medium storing guide program
Upon detecting an internal error, an image forming apparatus displays a 2-dimensional code obtained by encoding guide data corresponding to an error type of the detected internal error, the guide data indicating (a) a distance and a direction to a guide object and (b) a guide text. A mobile terminal apparatus (a) photographs the 2-dimensional code, (b) decodes the photographed 2-dimensional code to guide data, (c) detects a direction of the mobile terminal apparatus using a direction detecting device, and (d) displays a scene image being photographed by an imaging device and notifies a user of a location of the guide object by displaying a guide marker with the guide text onto the scene image, the guide marker corresponding to (dl) a difference between the detected direction of the mobile terminal apparatus and the direction to the guide object and (d2) the distance to the guide object. |
US10136001B2 |
Image forming apparatus, method for controlling image forming apparatus, and storage medium
An image forming apparatus includes a reception unit configured to receive image data obtained by reading the document by a first reading unit or a second reading unit, a storage unit configured to store the image data received by the reception unit, a determination unit configured to, while the reception unit is receiving the image data of the document obtained by the first reading unit, determine whether the second side is a blank page from the image data of the document read by the second reading unit, and a control unit configured to, in a case where the determination unit determines that the second side is a blank page, control the reception unit not to reserve a storage area for storing the image data of the document read by the second reading unit in the storage unit. |
US10135999B2 |
Method and system for digitization of document
A method and a system for digitization of a document are disclosed. The document is scanned to generate an electronic document. One or more characters in a first set of portions of the electronic document are identified, based on a character recognition technique. Each portion in the first set of portions is classified in one or more groups based on at least a status of identification of the corresponding one or more characters. Further, one or more tasks are created for each of the one or more groups. The one or more tasks are transmitted to one or more crowdworkers, based at least on the respective type of the one or more tasks. Further, a response for each of the one or more tasks is received. Based on the received response, a digitized document is generated. |
US10135997B2 |
Technologies for converting mobile communications network billing records
Technologies for converting mobile communications network billing records include a billing record converter system. The billing record converter system receives a data usage billing record associated with a mobile computing device communicatively coupled to a long term evolution wireless communications network. The received data usage billing record is formatted according to a real-time data usage billing record format. The received data usage billing record is converted into a new data usage billing record formatted according to a roaming data usage billing record format that corresponds to a legacy wireless communications network. The new data usage billing record is transmitted to a billing system of the legacy wireless communications network for processing. In some embodiments, the billing record converter system cumulates and converts multiple data usage billing records associated with the mobile computing device into the new data usage billing record. Other embodiments are described and claimed. |
US10135995B1 |
Display dependent analytics
Apparatus and methods are disclosed for display dependent analysis of call data in an IBPX. In an example embodiment, an apparatus communicatively coupled to an IPBX server is configured to route VoIP calls in the IPBX. An interface circuit is configured to selected parameters of interest based on capabilities of a set of devices and generate subscription requests to subscribe the devices to the parameters of interest. A first processing circuit is configured to generate call summary metrics from call event messages for calls routed by the IPBX server. A second processing circuit subscribes a device identified in the subscription request to the selected set of parameters of interest identified in the subscription request. The second processing circuit evaluates call summary metrics for each parameter of interest subscribed to by the devices and provides results of the evaluation to devices that are subscribed to the parameter of interest. |
US10135994B2 |
Method, device, and system for managing a conference
A method can include the steps of logging in of mobile devices of participants when they are located in the same physical conference environment and managing the resources of these devices such that the resources of the logged-in devices are combined into an audio system to output audio conference information using a sound output process in the conference environment. The conference environment may be a conference room. The audio conference information may be audio to be output to the participants at the conference environment. The formed audio system can include speakers of the user devices for outputting such audio. The microphones of the user devices may also be used to form an audio input system for the conference for allowing audio of the participants to be received and transmitted during the conference. A communication system can be configured to implement embodiments of the method. |
US10135993B2 |
Systems and methods for mitigating and/or avoiding feedback loops during communication sessions
Methods and systems for facilitating a communication session receive a sound signal and determine at least one contributing source to the received sound signal from among a plurality of communication endpoints, wherein each respective communication endpoint of the plurality of communication endpoints is associated with a corresponding participant in the communication session and includes a microphone and loudspeaker. Based on a determination of multiple communication endpoints being co-located, one or more embodiments perform at least one of processing the received sound signal by selectively altering the received sound signal, or initiating an instruction to inhibit further contribution, to the sound signal, from at least one of the co-located multiple communication endpoints. |
US10135991B2 |
Apparatus, system and method of call notifications to active communication devices
An apparatus, system and method for call notifications to active communication devices are provided. At an apparatus comprising a processor and a communication interface, a call for a first device is received via the communication interface. When it is determined that a second device is active, a notification of the call is transmitted to the second device. |
US10135987B1 |
Systems and methods for routing callers to an agent in a contact center
Techniques for handling contacts and agents in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for handling contacts and agents in a contact center system including determining a first caller grade for a first call, determining a first agent grade for a first agent, and matching the first caller and the first agent based on a comparison of the first caller grade with the first agent grade. |
US10135978B1 |
Originating calls in a contact center either in a voice dialing mode or a text dialing mode
A dialing list comprising call records can be processed by a call handling component(s) in a contact center in various dialing modes. A call record may be processed to originate a voice call, where the agent manually dials the call as a voice telephone call. In another embodiment, the call record can be processed to originate a SMS text call, where the agent also determines when the call originates. In each embodiment, the agent is presented with a graphical user interface tailored to the dialing mode. The dialing mode used may be defined by the dialing list the call record is retrieved from, information from within the call record itself, application of a rule, or input from the agent. Once the dialing mode is selected, it may be altered under certain conditions. When the call is originated, various compliance oriented tests, including calling windows and call attempts, are performed. |
US10135977B1 |
Systems and methods for optimization of interactive voice recognition systems
Methods and systems for optimization of interactive voice recognition (IVR) system processes are provided. One or more desired optimization parameters can be determined based on an IVR transaction log that includes a plurality of IVR journeys. The IVR journeys can be filtered, transformed into vectors and/or clustered. |
US10135974B1 |
Client-specific control of shared telecommunications services
Aspects of the present disclosure are directed toward apparatuses, systems, and methods for providing remote services for endpoint devices of a plurality disparate client entities. In an example embodiment, an apparatus includes a computing server configured to provide VoIP communications for a plurality of endpoint devices respectively associated with a plurality of disparate client entities according to and responsive to client-specific sets of control data. The apparatus also includes a processing circuit configured to adjust routing of the VoIP communications by the computing server, in response to call event data generated by the computing server, by generating the client-specific sets of control data for each client entity according to a respective set of directives. |
US10135968B2 |
System and method for acoustic echo cancellation
A system and method for acoustic echo cancellation is provided. Embodiments may include receiving, at one or more microphones, an audio reference signal from an audio speaker. Embodiments may also include filtering the audio reference signal using one or more adaptive audio filters. Embodiments may further include analyzing a level of signal energy of the audio reference signal with regard to time, frequency and audio channel to identify at least one maximum error contribution point. Embodiments may also include updating the one or more adaptive audio filters based upon, at least in part, the analyzed audio reference signal. |
US10135967B2 |
Invalid area specifying method for touch panel of mobile terminal
A touch-panel cellular phone specifies an invalid area not accepting a user's input operation on a touch panel in advance. The cellular phone detects a user's touch area on the touch panel so as to execute a function pre-assigned to the touch area not encompassed by the invalid area. Additionally, it is possible to reduce and display menu icons in the display area precluding the invalid area on the touch panel. Thus, it is possible to prevent an error operation when a user holding a cellular phone inadvertently touches the touch panel. |
US10135966B2 |
Mobile service information display method and apparatus, mobile service information server and system, and terminal
Disclosed are a mobile service information display method and apparatus, a mobile service information server and system, and a terminal, which can avoid a waste of resources of the mobile service information system. The method includes: determining mobile service information according to obtained location information of a mobile terminal at a current moment and obtained location information of the mobile terminal within preset duration prior to the current moment; and sending the determined mobile service information to the mobile terminal for display. |
US10135963B2 |
Mobile terminal and control method for the mobile terminal
A mobile terminal that may take images and a control method for the mobile terminal are disclosed. The mobile terminal comprises a display module; a camera provided with a plurality of lenses; and a controller configured to receive images through the plurality of lenses and outputting the received images on the display module, wherein the controller generates one moving image data by using an image received from the first lens of the plurality of lenses and an image received from the second lens different from the first lens. |
US10135959B2 |
Electronic device housing and manufacturing method thereof by die-casting an aluminum alloy
An electronic device housing (100) comprises outer frame (10) and a die casting inner frame (20). The die casting inner frame is shaped by means of die casting and is jogged in the outer frame. The present invention also comprises a method for manufacturing the electronic device housing. |
US10135945B2 |
Methods and systems for boundary placement in a data stream
A method can include detecting a cadence-changing event for a stream of data, the stream of data being provided in chunks having associated chunk boundaries according to an established cadence. An adjusted chunk boundary can be established at a location corresponding to the cadence-changing event to replace a closest scheduled chunk boundary in the stream of data. |
US10135942B2 |
Differentiated priority level communication
Provided are methods, apparatuses and systems for providing prioritized data distribution at a customer premise. A network access component may determine a particular hardware identifier associated with data received from a communication entity. The hardware identifier may uniquely identifying a piece of hardware originating data. The network access component may also determine a particular priority level associated with the data based on the particular hardware identifier. The network access component may also prioritize at least a portion of the data on a basis of the particular priority level. |
US10135940B2 |
Subscribing to event notifications using object instances
A method of handling event subscriptions and notifications may include receiving a request from a client system to subscribe to an event type, and receiving a template from the client system. The template may define data that should be returned to the client system when an event of the event type occurs. In response to the event of the event type occurring, the method may also include packaging data associated with the event according to the template received from the client system to generate an event notification. The method may further include sending the event notification to the client system. |
US10135939B2 |
Method and apparatus for sending delivery notification of network application-related product
A method and apparatus for sending a delivery notification of a network application-related product are provided. The method includes: selecting a delivery executing server in advance from multiple delivery servers of an application; acquiring quality of service information of the delivery executing server of the application; judging, according to a predefined judging rule, whether the quality of service information meets a requirement; and if the requirement is met, retaining the delivery executing server unchanged; otherwise, setting another delivery server of the application as a delivery executing server; and sending a delivery notification to a current delivery executing server of the application upon detecting the delivery notification of the application to be sent. |
US10135937B2 |
Personalized notifications
Personalized notifications are provided to a user. The notifications correspond to events, which can include information items, unaddressed or unnoticed by a user. The unaddressed events may be determined based on sensor data provided by a user device associated with the user including user activity pattern information. Further, an urgency level of the unaddressed event and user availability for responding to the event may be determined. The availably may comprise a model with score(s) corresponding to the user's capability for carrying out tasks associated with addressing the event. Additionally, notification content may be generated based on information about availability and the unaddressed event, and used to provide notification(s). The notification content may include a recommendation to present a notification to the user at a time determined likely to be convenient for the user to be notified of the event or where the user likely has capacity to address the event appropriately. |
US10135936B1 |
Systems and methods for web analytics testing and web development
A computer system for analyzing page tags of a website. The system may include a processor in communication with a database; and a storage medium. The storage medium may store instructions that, when executed, configure the processor to: access the website, the website comprising plurality of page tags; generate a collected tag record by aggregating the page tags, the collected tag record comprising collected elements; request, from the database, a benchmark tag record, the benchmark record comprising benchmark elements, the benchmark tag record being based on historic page tags stored in the database; generate a result tag record, the result tag record indicating at least one of matches or mismatches between the benchmark tag record and the collected tag record; and display at least one of the result tag record or an analysis result, the analysis result representing an aggregation of the result. |
US10135933B2 |
Apparatus and method for generating dynamic similarity audiences
A first plurality of data points related to visitors to at least one website is received. The data points comprise at least an identification of the visitor and an interaction of the visitor with the website. A target audience comprising at least some of the visitors having a known, desired interaction and a plurality of selection rules defining tolerances for a similarity audience are received. The selection rules include a correlation score and an audience composition index. A similarity audience from a plurality of clusters defined by a number of unique visitors is selected wherein at least some of the unique visitors share at least one interaction in common, and the similarity audience comprises at least one cluster of the plurality of clusters satisfying the plurality of selection rules. Digital content is generated for electronic transmission to a plurality of computing devices associated with members of the similarity audience. |
US10135931B2 |
Recommendations based on geolocation
In one embodiment, a method includes accessing geolocation data indicating a current geolocation of a client device of a user; identifying one or more categories of interest to the user based at least in part on social information of the user; identifying one or more objects based at least in part on the current geolocation; and determining one or more recommendations for the user based at least in part on a calculated interest value of each identified object. The calculated interest value is based at least in part on the identified categories of interest to the user. The method also includes providing the recommendations for transmission to the client device. The recommendations include one or more of the identified objects. |
US10135923B2 |
Data transfer method and system
A data transfer method is provided for a terminal coupled to a server by one or more networks. The method includes detecting a connection type of a current network between the terminal and the server and performing data transfer between the terminal and the server when it is detected that the connection type of the current network is a wireless fidelity (WiFi) connection. Further, the method includes suspending data transfer between the terminal and the server when it is detected that the connection type of the current network is a non-WiFi connection. |
US10135922B2 |
Granular sync/semi-sync architecture
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object. |
US10135921B2 |
System and method for announcing cryptographic keys on a blockchain
A method and apparatus is presented for announcing the existence of cryptographic key pairs within a distributed ledger system in which no central trusted authority is available, consisting of sending a key announcement message by a network connected device to other network connected devices over a peer-to-peer network for inclusion in the distributed ledger. Once a valid key announcement message for a public key is included in the ledger, any future transactions that reference an address associated with the public key or other messages concerning said public key are accepted by other network connected devices on the peer-to-peer network and are included in the distributed ledger. If transactions or other messages reference an address not associated with an announced public key, they may be rejected by the peer-to-peer network and may not be included in the distributed ledger. |
US10135919B2 |
Peer to peer browser content caching
Facilitating browser access to cached content available from a peer to peer network by receiving a request for content from a content server, receiving from the content server content metadata indicating that the requested content is available from at least one alternative user computing device via a peer to peer network, instantiating on the user computing device a browser helper application which facilitates access to the peer to peer network, and receiving from the content server a lookup table comprising a list of alternative user computing devices from which the requested content is available. The lookup table can be parsed to select an alternative user computing device from which the content, or portions thereof, is requested. The received content can the be stored for later use or presented to the user via the browser. |
US10135916B1 |
Integration of service scaling and external health checking systems
Systems and methods are described to enable integrating operation of a service record system with operation of a hosting system. The service hosting system can maintain a set of servers to provide a network-accessible service, and the service record system can maintain records identifying the set of servers as endpoints for the service. The service record system can periodically transmit health check data to servers within the set, to verify their health status. When the service record system determines that a server is unhealthy, it can notify the hosting system. If the hosting system removes the server from the pool, it can notify the service record system, so that the service record system can halt further health checking of the server. |
US10135914B2 |
Connection publishing in a distributed load balancer
A connection publishing method for a distributed load balancer in which a router receives packets from at least one client and routes packet flows to multiple load balancer (LB) nodes, which in turn distribute the packet flows among multiple server nodes. A load balancer (LB) module on each server node determines and publishes a list of active connections between client(s) and the server (a connection publishing packet) back to the LB nodes. The LB module may randomly select a LB node to receive the packet. Upon receiving the packet, the LB node processes the connection information in the packet, distributing the connection information among appropriate LB nodes. Receiving the connection publishing information from the server nodes refreshes leases for the connections on the LB nodes. |
US10135912B2 |
Integrated experience for applications within a mobile application
A system and method that supports an integrated user interface experience with third party hosted applications selected and installed by a user within a user-installed native application of a user communication device. |
US10135910B2 |
Cross-platform document presentation
An application executing on a target platform renders one or more widgets of one or more widget types that are specified by a document including, for each respective widget type from the one or more widget types: render, by a first widget renderer for the respective widget type, the one or more widgets of the respective widget type upon determining that the application includes the first widget renderer for the respective widget type, and render, by a second widget renderer for the respective widget type, the one or more widgets of the respective widget type upon determining that the application does not include the first widget renderer for the respective widget type. The second widget renderer may be different from the first widget renderer. |
US10135907B2 |
Maintaining control over restricted data during deployment to cloud computing environments
Releases to the production environment of a cloud computing environment are deployed in a manner that maintains control over restricted data and the data plane of the cloud computing environment. A DevOps personnel is tasked with developing the release. However, the DevOps personnel is not authorized to deploy the release to the cloud computing environment because the DevOps personnel does not have access to restricted data in the cloud computing environment or the ability to modify the cloud computing environment to gain access to restricted data. Operating personnel who has access to restricted data and the right to modify the cloud computing environment is notified of the release and given release specifications providing details of the release. If the operator approves the release, the release is transferred to the cloud computing environment. A deployment engine then automatically deploys the release to the production environment of the cloud computing environment. |
US10135903B2 |
Game for guessing whether a name is registered or available for registration
A game is provided that may be run on a client device of a customer. The game identifies one or more registered domain names and generates one or more available domain names for use in the game. In preferred embodiments, all of the registered and available domain names are linked in some manner to the customer and/or are in one or more categories selected by the customer. The domain names may be displayed one at a time and in a mixed order to the customer. The customer may guess whether each displayed domain name is registered or available for registration. The customer may be provided the correct answer after each guess and a “Results” page may display the results of all of the customer's guesses. The customer may be given the option at various points in the game to register any of the displayed and guessed upon available domain names. After registering one or more of the available domain names, the customer may be taken back into the game at the same point the customer left the game. |
US10135898B2 |
Method, terminal, and system for reproducing content
A method of reproducing content is provided. The method includes, when a sync terminal reproduces content by receiving the content from a source terminal via a certain network, reproducing the content in a mirroring mode during a certain time, buffering image data corresponding to the content to be reproduced after the certain time, during the certain time, and reproducing the content in a streaming mode after the certain time by using the buffered image data. |
US10135896B1 |
Systems and methods providing metadata for media streaming
Media devices streaming video from a server may use techniques to maintain presentation of content to one or more users. Described herein are systems and methods for determining which metadata to provide to the media devices for maintaining presentation of the content. The determination of which metadata to provide may be based on various factors such as the capabilities of the media device, the expected quality of service, and the amount of bandwidth between the server and the media device. |
US10135895B2 |
Method and apparatus for repeatedly transmitting segment based broadcasting contents
The present invention relates to a method and an apparatus for transmitting broadcasting contents which repeatedly transmits segment based broadcasting contents to easily develop next generation broadcasting service and system so that it looks as if the contents are continuously reproduced even when contents having a limited capacity are repeatedly reproduced and a test environment which is the same as an actual broadcasting environment is provided. |
US10135889B2 |
Multiple subscriber videoconferencing system
A system, method, and device for use in videoconferencing. The method typically includes installing a videoconferencing services switch at an access point to an IP network, and registering a plurality of subscribers for videoconferencing services. Each subscriber typically has a plurality of endpoints. The method further includes receiving subscriber-specific settings to be applied to multiple videoconferencing calls from the plurality of endpoints associated with each subscriber. The method further includes storing the subscriber-specific settings at a location accessible to the switch, and configuring the switch to connect calls from the plurality of endpoints at each subscriber based on the corresponding subscriber-specific settings. |
US10135887B1 |
Shared multimedia annotations for group-distributed video content
Synchronized multi-media annotations for shared video content is provided. According to embodiments, viewers of video content may be enabled to create multimedia annotations such as simple text comments, short videos, audio snippets, links to websites or other online content, etc., and associate the annotations with certain points or sections in the source video. When a user “shares” these annotations with a community of friends, the friends can then watch the source video and simultaneously view and/or listen to the comments their friend(s) have made. Friends may respond back with their own annotations, and again share those out to the group of friends. Later, users who have previously left comments may be able to go back and see other users' comments/annotations. |
US10135886B2 |
Method and device for retaining robust header compression (ROHC) compressor state
A method for retaining a Robust Header Compression (ROHC) state in a User Equipment (UE) during switching from a Voice over Long Term Evolution (VoLTE) call to a video call or vice versa is provided. When the VoLTE call is in progress and if a user switches the VoLTE call to the video call, then the RTP header information is sent to an Application Processor (AP) from a Communication Processor (CP). The ROHC compressor continues the compression of the RTP packets using the existing built context for the video call. Further, when the video call is in progress and if the user switches the video call to the VoLTE call, then the RTP header information is sent to the CP from the AP. The ROHC context is reused by exchanging the RTP header information between the AP and the CP. |
US10135882B1 |
Multiple-master DNS system
In some particular embodiments, DNS servers are operated to maintain consistency of DNS records between the multiple master servers in response to certain types of communication situations. Each master DNS server monitors network connectivity by periodically testing or checking network connections of the master server (e.g., to another server). In one such exemplary context and particular embodiment, a first DNS master server operates by maintaining consistency of DNS records with at least one other DNS server. In this manner DNS records are updated using communications over a network and between the servers. Network isolation is detected and, after other related steps, restoration of connections to the at least one second DNS server is detected, and then queued DNS update requests are sent to the second DNS server. This approach is used to establish consistency of the DNS records between the DNS servers. |
US10135881B2 |
Virtual private meeting room
A conference session is established. Different unique identifications and persistent dedicated virtual private network conference rooms are assigned to different recipients. A conference session using one of the persistent dedicated virtual private network conference rooms assigned to a recipient is established using a communication device with a processor and memory and in response to an instruction from the recipient assigned the persistent dedicated virtual private network conference room. A network resource is allocated to the conference session established, based on a participant in the conference session logging in to the conference session using one of the unique identifications. |
US10135873B2 |
Data sharing method and apparatus, and terminal
The present invention provides a data sharing method and apparatus, and a terminal. The method includes: acquiring shared data, where the shared data is data used to be shared with another person; determining a privacy degree of the shared data; determining a sharing group of the shared data according to the privacy degree, where the sharing group is a group that receives the shared data and includes a terminal allowed to obtain the shared data; and sending the shared data to the sharing group. In this way, in a case in which privacy degrees are different, that is, shared data is different, the shared data is sent to different sharing groups. |
US10135871B2 |
Service oriented software-defined security framework
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for service oriented software-defined security framework are disclosed. In one aspect, a system includes a security control device, one or more assets, and a security controller that communicates with the security control device and the one or more assets. The security controller includes a processing engine configured to register the security control device by creating a physical-logical attribute mapping for the security control device, and generating a security service description associated with the security control device. The processing engine is further configured to register the one or more assets by creating a physical-logical attribute mapping for each of the one or more assets, and generating security service requirements for each of the one or more assets. The processing engine is further configured to generate a security service binding based on a request for service. |
US10135867B2 |
Dynamically updated computing environments for detecting and capturing unauthorized computer activities
Disclosed is a computerized system for dynamically updating a honeypot computer environment. The system typically includes a processor, a memory, and a honeypot management module stored in the memory. The system for is typically configured for: creating a honeypot environment within a computer network, the honeypot environment comprising a software application, wherein the computer network has one or more other environments, the honeypot environment being isolated from the other environments of the computer network; receiving an update to the software application for implementation in at least one of the other environments of the computer network; and, based on receiving the update to the software application for implementation in at least one of the other environments of the computer network, automatically implementing the update to the software application within the honeypot environment. |
US10135865B2 |
Identifying a potential DDOS attack using statistical analysis
Embodiments can identify requests that may be tied to a DDOS attack. For example, the primary identifiers (e.g., a source address) of requests for a network resource (e.g., an entire website or a particular element of the website) can be tracked. In one embodiment, a statistical analysis of how often a particular source address (or other primary identifier) normally makes a request can be used to identify source addresses that make substantially more requests. A normal amount can correspond to an average number of request that a source address makes. According to some embodiments, a system can use statistical analysis methods on various request data in web server logs to identify potential attacks and send data concerned potential attacks to an HBA system for further analysis. |
US10135864B2 |
Latency-based policy activation
Techniques for latency-based policy activation are disclosed. In some embodiments, a system for latency-based policy activation includes collecting a plurality of latency measures associated with monitored network communications; correlating the plurality of latency measures associated with the monitored network communications to detect anomalous network activity based on a profile; and performing a mitigation response to the anomalous network activity based on a policy. |
US10135862B1 |
Testing security incident response through automated injection of known indicators of compromise
Disclosed are various embodiments for testing the security incident response of an organization through automated injection of a known indicator of compromise. A stream of event data generated by a network monitoring system of an organization is received. The stream of event data is modified to include data embodying a fabricated indicator of compromise. The stream of event data that has been modified is then provided to an intrusion detection system of the organization. Metrics are then generated that assess the response of the organization to the fabricated indicator of compromise. |
US10135859B2 |
Automated security enclave generation
Creating security enclaves includes determining one or more parameters of one or more applications and one or more services operating in the network. An optimal number of clusters for grouping the one or more applications and the one or more services is determined based on the one or more parameters. Then, the one or more applications and the one or more services are grouped into the clusters and one or more security enclaves are applied to each of the clusters so as to maximize operational security of the network. |
US10135851B2 |
Method for pattern processing
The invention relates to a method for pattern processing on a processor platform, the method comprising: compiling a plurality of patterns into a plurality of data structures using the first processing unit, wherein the compiling is such that at least head data parts of the plurality of data structures fit into local memories of computation units of a second processing unit; and uploading the plurality of data structures into the second processing unit such that at least the head data parts of the plurality of data structures are uploaded into the local memories of the computation units of the second processing unit and remaining data parts of the plurality of data structures not fitting into the local memories are uploaded into a global memory of the second processing unit. |
US10135844B2 |
Method, apparatus, and device for detecting e-mail attack
A method, an apparatus, and a device for detecting an E-mail attack. The device receives a data flow; obtains an E-mail traffic parameter of each statistic period within a predetermined number of statistic periods, where within each statistic period, the E-mail traffic parameter of each of the statistic periods is determined according to a protocol type of the received data flow; and determines that an E-mail attack is detected when the E-mail traffic parameter of each statistic period within the predetermined number of statistic periods matches a first threshold. By applying the disclosed embodiments, a detection result of the E-mail attack is more accurate. |
US10135835B1 |
Passwordless and decentralized identity verification
Techniques include receiving request for verification of an identity, where the request includes no authentication information associated with the identity; determining, based on a ledger shared by a plurality of decentralized verification services, a credibility score for the identity; where the ledger is developed based on receiving information associated with a plurality of different types of credibility-building actions taken by the identity in an environment; determining whether the credibility score for the identity can be validated by consensus by at least a subset of the plurality of decentralized verification services; and determining whether to verify the identity, where the determination of whether to verify the identity is performed without using authentication information associated with the identity. |
US10135834B1 |
System and method of executing operations in a social network application
Embodiments are directed to improving social network applications using the power of the blockchain (or other repository of facts as a service). The embodiments include methods and systems that register users with a social network application coupled to the blockchain, including providing respective user identifiers recorded in the blockchain. The methods and systems, for each user, configure a set of verification parameters enabled to filter the participation of the respective user identifier in operations. The methods and systems initiate, by a querying user, an operation that causes the social network application to: (a) query the blockchain to locate attested-to facts specific to user identifiers of the registered users and (b) filter participation of at least one user identifier in the operation based on the attested-to facts meeting the verification parameters. The methods and systems execute the operation based on the filtering and return results based on the attested-to facts meeting an operation parameter of the executed operation. |
US10135832B1 |
Privileged communication indication
Systems and methods, which can provide for an indication of a privileged communication, are provided. A method, according to an embodiment, uses at least one processor of a communication server device. Addressee information of one or more addressee(s) of a communication, sender information of a sender of the communication, or a combination thereof is received. The sender information, the addressee information, or a combination thereof is compared to registered user information maintained in a database. The registered user information corresponds to registered users to or from whom privileged communications may be sent or received. An indication that the communication is privileged is provided when the sender information, the addressee information, or the combination thereof corresponds to respective registered user information maintained in the database. |
US10135830B2 |
Utilizing transport layer security (TLS) fingerprints to determine agents and operating systems
A computer system receives, from a first set of computing devices, a first information. The computer system creates a model based on the first information, wherein the model correlates one or more TLS fingerprints to one or more agents. The computer system receives a second information, wherein the second information includes a TLS fingerprint and a declared agent. The computer system determines a predicted agent based on comparing the TLS fingerprint included in the second information to the model. The computer system determines whether the predicted agent matches the declared agent included in the second information. |
US10135829B2 |
System and method for secure machine-to-machine communications
Embodiments of the present invention include a method for providing a secure domain name system (DNS) for machine to machine communications. In one embodiment, the method includes storing policy information for machine to machine communications in a global DNS registry database server. The method further includes communicating the policy information for machine to machine communications from the global DNS registry database server to a machine DNS registry server located in an Internet service provider (ISP) network, wherein a control signaling gateway located in the ISP network is configured to utilize the policy information for machine to machine communications to allow only registered controllers associated with a machine to communicate with the machine. |
US10135820B2 |
Server based biometric authentication
A server-side biometric authentication system is disclosed that can split data knowledge and processes, so that extensive collusion would be required in order for a fraudster to compromise the system. Biometric data provided by a user during authentication can be matched with a combination of pieces of a biometric template stored across two or more server(s), rather than on a consumer device as is typically done. More specifically, at the time of enrollment, a biometric template can be split into two or more fragments. Each of the fragments can be encrypted and stored on a template storage server. At a later point in time, during authentication, biometric data provided by a user (e.g., from a fingerprint) can be compared against a reconstructed version of the biometric template where each fragment of the template is retrieved from a matcher computer and combined together. |
US10135817B2 |
Enhancing authentication and source of proof through a dynamically updatable biometrics database
The present invention provides for biometric authentication of users using current, updatable biometric data/standards. In this regard, the present invention provides for creation of a registry of authentication information that dynamically, over time, receives biometric authentication-related information (e.g., photographs, voice samples, fingerprints, signatures and the like) from diverse devices configured to capture/sense such. The devices may be devices associated with the user, such as mobile communication devices, devices locate in the user's residence or the like, or the devices may be public devices, such as security cameras, point-of-sale devices or the like, which are configured to capture and electronically communicate biometric authentication-related information. In response to invoking a biometric authentication application and receiving a user's biometric credentials/identifier, the registry is accessed so that a comparison may be made between the user's current biometric credentials and the biometric data stored within the registry. |
US10135812B2 |
Authenticating system, information processing device, authenticating method and non-transitory computer readable recording medium
An authenticating system comprises an information processing device and an authentication server connected over a network. The information processing device includes: a storage part for storing user registration information with which the identification information of each user and authentication information other than a password are registered; an authentication information acquiring part for acquiring the authentication information based on receiving a user's instruction; an identification information acquiring part for acquiring the identification information corresponding to the authentication information by running a search through the user registration information; an authentication requesting part for generating the authentication request including the identification information and sending the generated authentication request to the authentication server; a receiving part for receiving the result of the authentication from the authentication server; and a controlling part for putting the information processing device into a logged-in state in accordance with the result of the authentication. |
US10135811B2 |
Using temporary credentials in guest mode
A method may receive, over a network and at a host's media player that is logged in to a host's media account, a play request from a guest's device. The play request may include a request to play a guest's media item from the guest's media account and may be compliant with a first protocol. In response to receiving the play request, the method may initiate a guest mode on the host's media player, log out the host's media account, and securely store the host's credentials. The method may log in the guest's media account with fewer permissions than the host's permissions. The method may play the guest's media item and establish a connection between the host's media player and the guest's device in accordance with a second protocol. Upon completion of playback, the method may log out the guest's media account and log in the host's media account. |
US10135806B2 |
Method and system for creating a virtual SIP user agent by use of a WEBRTC enabled web browser
A method for creating a virtual SIP user agent by use of a webRTC enabled web browser (200) comprises a user logging in to a web application server (400) via a webRTC enabled web browser (200). The web application server (400) uses the logged on user identity to lookup an associated SIP user identity along with a registrar server address and the web application server (400) initiates a SIP registration procedure using its IP address as the registered contact. |
US10135805B2 |
Connected authentication device using mobile single sign on credentials
Systems and methods for device-based authentication are disclosed. In some implementations, a device receives a Single Sign On PIN from a backend server. The device transmits, to a token server, the Single Sign On PIN and credentials of a subscriber identity module (SIM) to request a token for accessing a network resource via a computer different from the device. The token is associated with a user account. The device receives the token from the token server. The device stores the token at a local memory of the device. |
US10135803B2 |
Dynamic identity switching
Techniques are disclosed for dynamically switching user identity when generating a web service request by receiving, at a client application, an invocation of a web service, the invocation associated with a first authenticated user identity of a first user, identifying a second user identity, verifying that a switch from the first user identity to the second user identity is permitted by switching rules, including the second user identity in a service request when the switch is permitted, and communicating the service request to the web service. The switching rules can include associations between initial user identities and permitted user identities. Verifying that a switch is permitted can include searching the associations for an entry having an initial user identity that matches the first authenticated user identity and a new user identity that matches the second user identity, wherein the switch is permitted when the entry is found. |
US10135800B2 |
Electronic discovery insight tool
An electronic discovery insight tool is presented. The tool is implemented in an apparatus comprising one or more processors, one or more memories communicatively coupled to the one or more processors and storing instructions which, when processed by the one or more processors, cause: displaying, on a user display device: an interactive object for selecting one or more data collections, a selectable search object for selecting search functionalities, a selectable report object for selecting report functionalities, and a selectable tag management object for selecting tag management functionalities; receiving, from a user via the interactive object, a selection of a data collection from the one or more data collections; in response to receiving the selection of the data collection: accessing the data collection to make the data collection available a user invoking one or more of: to the search functionalities, the report functionalities, or the tag management functionalities. |
US10135797B2 |
Method and system for the supply of data, transactions and electronic voting
A method and system for supply of data, including generating a first digital certificate referred (empowerment certificate) signed with a first signing entity's electronic signature. The empowerment certificate includes attributes of the described entity, information identifying the first signing entity, indication of data relating to the described entity, indication of a source of the data, and identification of a relying entity to which the data can be supplied. The relying entity forwards the empowerment certificate to a source supplying the data indicated in the empowerment certificate. The data may be supplied to the relying entity by a second digital certificate (custom certificate), signed with a second signing entity's electronic signature. Custom certificates may appear in custom certificate revocation lists. A system and method for transfer of ownership of electronic property from a first entity to a second entity, and a method and system for electronic voting are also provided. |
US10135796B2 |
Masking and unmasking data over a network
An apparatus with one or more masking rules stored in a memory receives unmasked data associated with a first session identifier via a network and converts the received unmasked data into masked data by applying the one or more masking rules to the unmasked data. The apparatus generates a first mapped identifier associated with the unmasked data and first session identifier. The apparatus also receives, via a network, a second mapped identifier associated with a second session identifier. Upon receiving the second mapped identifier and second session identifier, the apparatus determines whether the second session identifier corresponds to the first session identifier and finds the first mapped identifier corresponding to the received second mapped identifier. The apparatus retrieves and sends the unmasked data associated with the first mapped identifier. |
US10135794B2 |
Cryptographic communication device, cryptographic communication method, and non-transitory storage medium storing program
When a device is connected to a home gateway, if a common connection method is selected, a not-high-security connection method is inevitably selected even for a connection of a high-capability device. In a cryptographic communication system according to the present disclosure, it is possible to select a high-security connection method taking into account a processing capability of the device. Furthermore, the connection method is allowed to be updated and thus when the security level of the connection method hitherto selected is imperiled, the connection method may be updated so as to maintain a high security level. |
US10135792B2 |
Secure communications with internet-enabled devices
A network device allows inbound connections from external addresses to a computer on a local network while forbidding output connections from the computer to that external address unless preceded by an inbound connection therefrom. In some embodiments, the computer is allowed to accept inbound connections from external addresses but is not permitted to initiate outbound connections to other computers in the local network unless preceded by an inbound connection. In some embodiments, a request from an external address is processed by the network device by transmitting network information for the computer to the external address and temporarily changes network rules to allow connections from the external address. In some embodiments, if the computer attempts a disallowed connection, the connection attempt is routed through a proxy server by providing network data for the proxy server to the computer. |
US10135790B2 |
Secure communications with internet-enabled devices
A network device allows inbound connections from external addresses to a computer on a local network while forbidding output connections from the computer to that external address unless preceded by an inbound connection therefrom. In some embodiments, the computer is allowed to accept inbound connections from external addresses but is not permitted to initiate outbound connections to other computers in the local network unless preceded by an inbound connection. In some embodiments, a request from an external address is processed by the network device by transmitting network information for the computer to the external address and temporarily changes network rules to allow connections from the external address. In some embodiments, if the computer attempts a disallowed connection, the connection attempt is routed through a proxy server by providing network data for the proxy server to the computer. |
US10135786B2 |
Discovering and selecting candidates for sinkholing of network domains
Techniques for discovering and selecting candidates for sinkholing of network domains are provided. In some embodiments, a process for discovering and selecting candidates for sinkholing of network domains includes collecting passive DNS data from a plurality of security devices to discover candidates for sinkholing of domain names; selecting one or more domain names that are most commonly queried by distinct client devices based on the passive DNS data, wherein each of the one or more domain names is not yet registered; and automatically registering each of the one or more domain names with a domain registry to a sinkholed IP address in order to sinkhole each of the one or more domain names. |
US10135784B2 |
Verifying source addresses associated with a terminal
Verifying source addresses associated with a terminal is disclosed, including: receiving a packet from a terminal, wherein the packet comprises a source Internet Protocol (IP) address and a source Media Access Control (MAC) address associated with the terminal; determining whether a matching entry associated with the terminal is found in a local verification table storing valid source IP addresses and valid source MAC addresses; determine that the matching entry associated with the terminal is not found in the local verification table; generating a request based on the source IP address and the source MAC address; transmitting the request to a dynamic host configuration protocol (DHCP) server; and determining whether the source IP address and the source MAC address associated with the terminal are valid based at least in part on a response from the DHCP server. |
US10135782B2 |
Determining close contacts using communication data
One embodiment provides a method including: accessing, using a processor, communication data received at an electronic device of a first entity; identifying, using a processor, a communication between the first entity and a second entity; determining, using a processor, a strength of the communication between the first entity and the second entity; determining, using a processor, a directionality of the communication between the first entity and the second entity; and assigning, using a processor, the second entity as a close contact of the first entity based on the strength of the communication and directionality of the communication. Other aspects are described and claimed. |
US10135775B1 |
Dynamic re-configuration of a user interface based on transaction information
A device may receive transaction information that identifies a set of third parties. The device may process messages in an electronic messaging account using a set of processing techniques after receiving the transaction information. The device may identify, in the electronic messaging account, a first set of messages associated with the set of third parties. The device may determine a manner in which to configure a user interface of an application associated with a user device to display the first set of messages based on the transaction information. The device may provide a set of instructions to the user device to configure the user interface of the application to display the first set of messages. |
US10135763B2 |
System and method for secure and efficient communication within an organization
The present disclosure relates to system(s) and method(s) for enabling secure and efficient communication between user devices within an organization. Cloud-based messaging services are popular, but organizations hesitate to use them due to the risk of private data residing on public cloud servers. Organizations prefer to host the servers within the organization (on-premise). However, this approach is neither efficient nor cost-effective. The disclosure describes a system and method for secure and efficient communication within an organization that uses an on-premise server to tokenize user messages, i.e. replacing user data in messages with token to generate a tokenized message and sending the tokenized message to the cloud server. In response, the cloud server returns a processed tokenized message, which is then de-tokenized by the on-premise server before forwarding the message to the user. The proposed system is both secure and efficient. |
US10135762B2 |
Bidirectional group text messaging system and method
A bidirectional group text messaging system is disclosed having a group owner that initiates a group by obtaining a provisioned telephone number, the group owner establishes a list of group members using identifying information for each group member, text messages from any group member are sent to the provisioned telephone number and from that provisioned telephone number sent to each group member, wherein the group members' identifying information is not available to any other group member except the group owner. The group owner may add and delete members at any time. Further, a text message sourced from a group member may be prevented from being sent to the sourcing member. In addition, a billing member can create logic sets to calculate a value prior to the message being transmitted to each group member. |
US10135761B2 |
Switch device, control method, and storage medium
A switch device includes a plurality of ports respectively including a queue and transmits a flow including packets; and a processor configured to detect congestion in one of the plurality of ports, based on an amount of packets stored in the queues, receive, from another switch device, congestion information relating to the another switch device, specify a port coupled to a link where the congestion is not occurred, the link being one of a plurality of links coupled to the another switch device, based on the congestion information received from the another switch device, extract a target flow to which no packet stored in a queue of the specified port, from among a plurality of flows scheduled to be transmitted from the port in which the congestion is detected, and transmit a plurality of packets included in the extracted target flow from the specified port to the another switch device. |
US10135760B2 |
Flexible Ethernet chip-to-chip inteface systems and methods
A Chip-to-Chip (C2C) interface utilizing Flexible Ethernet (FlexE) includes circuitry configured to provide a packet interface on a single card or over backplane/fabric links between two devices, wherein the circuitry comprises flow control and channelization for the FlexE. Each of the two devices can include any of a Network Processor (NPU), a Fabric Interface Card (FIC), a framer, and a mapper. A rate of the FlexE can be increased to support additional information for the flow control and the channelization. |
US10135759B2 |
Context and power control information management for proximity services
Management of context and power control information enables different power control schemes for point-to-point or point-to-multipoint based on proximity services or applications. Context information may be defined as situation data about a service or application that is used to help define a power control scheme to be implemented. Power control information may be defined as control or status data for power control, which can be used for reporting or controlling the transmitting power of a peer in a P2P network. Context and power control information may be managed across multiple layers such as the application layer, service layer, media access control layer, or physical layer. Context and power control information is updated and exchanged between or among peers for context-related power control in proximity services. |
US10135754B2 |
Method for coordinating web communications
Method for coordinating web communications, executable at a browser coordination server in communication with a first electronic device and a second electronic device via a network, first electronic device executing a first browser and second electronic device executing a second browser, comprising receiving, from first electronic device, an indication that first browser obtained a first version of a web resource from a web server; receiving, from second electronic device, an indication that second browser obtained a second version of web resource from web server; determining that second version of web resource is an updated version of web resource relative to first version of web resource; and sending, to first electronic device, an indication that first version of web resource is out of date. Also described is a non-transitory computer-readable medium storing program instructions executable by a browser coordination server to carry out the method. |
US10135752B2 |
Expansion device for virtual interface and network server system thereof
An expansion device for a virtual interface is provided. The expansion device is disposed on a mainboard of a server and is configured to acquire control of a plurality of physical resources of the server. The expansion device includes a virtual interface demand control module and a resource management module. The resource management module includes a transmission unit and a physical resource protocol unit. The virtual interface demand control module is configured to acquire control of a plurality of client facilities and arrange a demand timing of each of the client facilities to generate a plurality of interface operation signals. The transmission unit is configured to manage datastreams of the interface operation signals transmitted from the mainboard to the physical resources to decrease central processing unit (CPU) usage on the server. The physical resource protocol unit is configured to control the physical resources according to the interface operation signals. |
US10135741B2 |
Distribution of synchronization packets over WIFI transport links
This disclosure provides methods and an access point node for ensuring proper and correct packet based synchronization in data communications systems and networks at distribution of synchronization packets from one Access Point over a WIFI transport link to another Access Point. The access point node provides dynamic transmission rate adaption with different coding and modulation schemes. The access point node comprises an identifier unit to identify each received synchronization packet, and further comprises a controller configured to set the transmission rate for said synchronization packet according to a predetermined synchronization packet transmission rule. |
US10135739B2 |
Network-based computational accelerator
A data processing device includes a first packet communication interface for communication with at least one host processor via a network interface controller (NIC) and a second packet communication interface for communication with a packet data network. A memory holds a flow state table containing context information with respect to multiple packet flows conveyed between the host processor and the network via the first and second interfaces packet communication interfaces. Acceleration logic, coupled between the first and second packet communication interfaces, performs computational operations on payloads of packets in the multiple packet flows using the context information in the flow state table. |
US10135737B2 |
Distributed load balancing systems
Some embodiments provide a novel method for load balancing data messages that are sent by a source compute node (SCN) to one or more different groups of destination compute nodes (DCNs). In some embodiments, the method deploys a load balancer in the source compute node's egress datapath. This load balancer receives each data message sent from the source compute node, and determines whether the data message is addressed to one of the DCN groups for which the load balancer spreads the data traffic to balance the load across (e.g., data traffic directed to) the DCNs in the group. When the received data message is not addressed to one of the load balanced DCN groups, the load balancer forwards the received data message to its addressed destination. On the other hand, when the received data message is addressed to one of load balancer's DCN groups, the load balancer identifies a DCN in the addressed DCN group that should receive the data message, and directs the data message to the identified DCN. To direct the data message to the identified DCN, the load balancer in some embodiments changes the destination address (e.g., the destination IP address, destination port, destination MAC address, etc.) in the data message from the address of the identified DCN group to the address (e.g., the destination IP address) of the identified DCN. |
US10135736B1 |
Dynamic trunk distribution on egress
A method, apparatus, and system are directed toward managing network traffic over a plurality of Open Systems Interconnection (OSI) Level 2 switch ports. A network traffic is received over the plurality of OSI Level 2 switch ports. At least a part of the network traffic is categorized into a flow. The categorization may be based on a IP address, an OSI Level 4 port, a protocol type, a Virtual Local Area Network (VLAN) number, or the like, associated with the network traffic. One of the plurality of OSI Level 2 switch ports is selected based on a load-balancing metric. The load-balancing metric may be a priority of the flow, a congestion characteristic, a prediction of a load usage for the flow, a combination thereof, or the like. A frame associated with the flow is sent over the selected one of the plurality of OSI Level 2 switch ports. |
US10135732B2 |
Remotely updating routing tables
A network device may receive an instruction to update a data structure implemented by the network device and update the data structure based on receiving the instruction. The data structure may include a routing instruction to direct the network device to provide a data flow to a server device for processing. The network device may receive the data flow destined for a destination device; determine the routing instruction based on at least a portion of an internet protocol (IP) address associated with the data flow and based on the data structure; execute the routing instruction to provide the data flow to the server device and to cause the data flow to be processed by the server device to form a processed data flow; and receive the processed data flow and provide the processed data flow towards the destination device. |
US10135729B2 |
Distributed gateway for local subnet
A computer readable medium storing instructions with functionality for: receiving a first request, from a first client device in a particular IP subnet, to identify a MAC address that corresponds to a particular IP address in the particular IP subnet; transmitting a first response to the first client device that identifies a first MAC address, of a first network device in the particular IP subnet, as the MAC address that corresponds to the particular IP address; receiving a second request, from a second client device in the particular IP subnet, to identify the MAC address that corresponds to the particular IP address; transmitting a second response to the second client device that identifies a second MAC address, of a second network device in the particular IP subnet, as the MAC address that corresponds to the particular IP address, the second MAC address being different than the first MAC address. |
US10135728B2 |
Partial switching of network traffic
Various embodiments of systems, computer program products, and methods to provide partial network traffic switching are described herein. In an aspect, a request addressed to a computer application is received for routing to a computing environment hosting the application. The computer application is provided simultaneously at a productive computing environment and a backup computing environment. In another aspect, a triggering associated with the application is executed in response to the request to determining whether the request is test request. The request determined as test request is routed for processing by the application provided at the backup computing environment. In yet another aspect, the request is determined as a test request based on a predefined correspondence between the application and a client application sending the request. |
US10135722B2 |
Technique for ethernet access to packet-based services
An Ethernet Metropolitan Area Network provides connectivity to one or more customer premises to packet-bases services, such as ATM, Frame Relay, or IP while advantageously providing a mechanism for assuring security and regulation of customer traffic. Upon receipt of each customer-generated information frame, an ingress Multi-Service Platform (MSP) “tags” the frame with a customer descriptor that specifically identifies the recipient customer. In practice, the MSP tags each frame by overwriting the Virtual Local Area Network (VLAN) identifier with the routing descriptor. Using the customer descriptor in each frame, a recipient Provider Edge Router (PER) or ATM switch can map the information as appropriate to direct the information to the specific customer. In addition, the customer descriptor may also include Quality of Service (QoS) allowing the recipient Provider Edge Router (PER) or ATM switch to vary the QoS level accordingly. |
US10135713B2 |
Layer-3 performance monitoring sectionalization
A method is disclosed for the collection of performance metrics by establishing service operations administration and maintenance (OAM) sessions between an actuator and a plurality of reflectors in a communication network. Test packets from an actuator simultaneously reach a plurality of reflectors along a test path. Each single test packet results into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue. Another method is disclosed wherein an actuator generates and transmits a plurality of simultaneous test packets, one per NID device, resulting into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue. |
US10135712B2 |
Auto-scaling software-defined monitoring platform for software-defined networking service assurance
Concepts and technologies disclosed herein are directed to an auto-scaling software-defined monitoring (“SDM”) platform for software-defined networking (“SDN”) service assurance. According to one aspect of the concepts and technologies disclosed herein, an SDM controller can monitor event data associated with a network event that occurred within a virtualized IP SDN network that is monitored by a virtualized SDM resources platform. The SDM controller can measure, based upon the event data, a quality of service (“QoS”) performance metric associated with the virtualized SDM resource platform. The SDN controller can determine, based upon the QoS performance metric, whether an auto-scaling operation is to be performed. The auto-scaling operation can include reconfiguring the virtualized SDM resources platform by adding virtual machine capacity for supporting event management tasks either by instantiating a new virtual machine or by migrating an existing virtual machine to a new hardware host. |
US10135711B2 |
Technologies for sideband performance tracing of network traffic
Technologies for tracing network performance include a network computing device configured to receive a network packet from a source endpoint node, process the received network packet, capture trace data corresponding to the network packet as it is processed by the network computing device, and transmit the received network packet to a target endpoint node. The network computing device is further configured to generate a trace data network packet that includes at least a portion of the captured trace data and transmit the trace data network packet to the destination endpoint node. The destination endpoint node is configured to monitor performance of the network by reconstructing a trace of the network packet based on the trace data of the trace data network packet. Other embodiments are described herein. |
US10135710B2 |
Information processing apparatus
An information processing apparatus includes a transmission module to transmit data quantity information and data frame sequences at a first transmission rate and a reception module to receive the information and data frames and to transmit a reception buffer free capacity value. The transmission module includes a unit to set the data quantity information according to the reception buffer free capacity value and a transmission unit to transmit a sequence of data frames after the data quantity information for the sequence has been transmitted. The reception module includes a buffer to store the data frame sequences from the transmission module and a unit to calculate an expected free capacity for the buffer with the transmitted data frames stored therein. The expected free capacity is calculated using the data quantity information and is transmitted as the reception buffer free capacity value at a second transmission rate. |
US10135707B2 |
Playout delay adjustment method and electronic apparatus thereof
An electronic apparatus and a playout delay adjustment method thereof are provided. The electronic apparatus includes a target playout delay estimator configured to estimate an initial target playout delay of a current frame by using network status information of a played packet and estimate a final target playout delay of the current frame by updating the estimated initial target playout delay based on real delay information of an unplayed packet, and an adaptation controller configured to determine an adaptation method for adjusting a playout delay of the current frame based on the final target playout delay. |
US10135706B2 |
Managing a communications system based on software defined networking (SDN) architecture
Embodiments of the disclosure relate to managing a communications system based on software defined networking (SDN) architecture. An SDN controller is provided in the communications system to manage a wireless distribution system (WDS) and a local area network (LAN) based on SDN architecture. The SDN controller is communicatively coupled to a WDS control system in the WDS and a LAN control system in the LAN via respective SDN control data plane interfaces (CDPIs). The SDN controller analyzes a WDS performance report and a LAN performance report and provides a WDS configuration instruction(s) and/or a LAN configuration instruction(s) to the WDS control system and/or the LAN control system to reconfigure a WDS element(s) and/or a LAN element(s) to improve quality-of-experiences (QoEs) of the communications system. Monitoring and optimizing the WDS and the LAN based on a unified software-based network management platform can improve performance at reduced operational costs and complexity. |
US10135698B2 |
Resource budget determination for communications network
Resources (10, 20, 30) of a communications network (40), are used to provide services, some are superordinate services (A, B) which depend on contributory services (C, D, E, F). Key performance indicators R-KPI are received based on measurements from the resources, of contributory services contributing to a corresponding key performance indicator KPI of the corresponding superordinate service. A selection (120) is made of the received R-KPIs which correspond to the normal operation of the superordinate service and a characteristic division is generated (130) of relative contributions of the R-KPIs to the KPI of the corresponding superordinate service for the times that the service was operating normally. This can be used as a basis for identifying differences with other R-KPIs to determine anomalies in behavior of contributory services for root cause analysis or in managing the network. Convergence evaluation and validation can be used to improve accuracy of the characteristic division. |
US10135688B2 |
Active panel demarcation
In general, this disclosure describes a configurable cable patch panel, or “active panel,” that serves as a demarcation point between a customer area of a communication facility and a provider area of the communication facility. As described herein, the active panel may be dynamically configured to interconnect existing customer-side and provider-side connections to active panel ports in order to facilitate on-demand virtual connections within the communication facility between facility customers and/or between a facility customer and communication facility services. In some examples, a programmable network platform for the communication facility exposes a collection of interfaces by which customers may request virtual connections, which the programmable network platform provisions, in part, by configuring the active panel to interconnect select customer-side ports of the active panel with select provider-side ports of the active panel. |
US10135684B2 |
Differential staging of devices in bulk enrollment
Disclosed are various examples for differential staging of devices in bulk enrollment. In one example, a computing environment can detect a network connection event where a client device establishes a connection with a network device that is communicatively coupled to the computing environment. A configuration file can be copied from a data store of the at least one computing device to local memory of the client device. The configuration file can comprise one or more predefined configuration settings. A configuration of the at least one client device can be caused using the configuration file. The configuration can include automating user interface events on the client device to cause a setting of the client device to conform to the predefined configuration settings. |
US10135679B2 |
Network offering in cloud computing environment
A cloud system may create and support multiple network offerings for virtual machines in a cloud zone. Physical networks comprising sets of network elements, such as routers, gateways, firewalls, load balancers, and other network hardware, may be created and updated within a zone. Network offerings may be defined and associated, using tags or other techniques, with virtual machine networks, physical networks and/or network elements. Cloud end users may request specific network offerings when creating virtual machines, or may request to move existing virtual machines from one network offering to another. The cloud system may use the requested network offering to identify the virtual machine network, physical network, and/or network elements corresponding to the requested network offering. The cloud system may allocate a new virtual machine network and configure the network elements within the associated physical network to provide network services to the virtual machine. |
US10135678B2 |
Mobile network IOT convergence
A method in a network device coupled with a packet data network (PDN) gateway of a mobile operator is described. The method includes transmitting configuration information to a low powered device gateway coupled with a plurality of low powered devices based on a received configuration request, wherein the low powered device gateway does not include a Subscriber Identity Module (SIM). The method further includes communicating with an AAA server to authenticate a selection of the plurality of low powered devices and establishing a GPRS Tunnel Protocol (GTP) tunnel with the PDN gateway. The method further includes receiving from the low powered device gateway collected data from the selection of the plurality of low powered devices and sending to the PDN gateway the collected data. |
US10135674B2 |
Wireless communication system with single-subband user equipment
A radio network node is configured to operate within a system bandwidth comprising multiple subbands and to serve a user equipment limited to operating within only one subband during any given subframe. The radio network node is configured to generate configuration information and to send that configuration information to the user equipment. In some embodiments, the configuration information indicates a location within the system bandwidth of a single subband within which the user equipment is to be operated during a subframe. Alternatively or additionally, the configuration information indicates a mode according to which the user equipment is to feedback channel state information to the radio network node. According to the indicated mode, in a subframe where CQI is reported, the user equipment shall report one wideband CQI value which is calculated assuming transmission on the subband within which the user equipment is configured to operate in that subframe. |
US10135672B2 |
Log data collection system, terminal device, and log data collection method
A log data collection system includes a terminal device accumulating log data; and a collection device collecting the log data from the terminal device through a network, wherein the terminal device includes transmission determination unit which determines a timing of transmitting the log data to the collection device, within a permissible transmission period, being a time span in which transmission of the log data is permitted, based on a state of the terminal device, a state of the network, and a remaining time of the permissible transmission period. |
US10135670B2 |
Response to an inoperative network device managed by a controller
In an example, a computer-readable medium may store executable instructions. The executable instructions may be to detect an inoperative network device in a communication network managed by a controller, determine a network switching function assigned to the inoperative network device, and provide the network switching function through the controller itself instead of the inoperative network device. |
US10135668B2 |
Method, device, system and network architecture for handling a service request
The present invention relates to a method for handling a service request within a local area network. First a service request is received from a user device. The service request comprising information regarding one or more requirements needed to perform the service. Then a download location is localized by means of a localization service within a public network to obtain computer executable information on the basis of the information in the service request. The computer executable information is then retrieved for performing the service from the download location and installed on a networked device within the local area network. Finally, a message is sent to the user device regarding the availability of the service within the local area network. |
US10135667B1 |
System and method for increased indoor position tracking accuracy
A method and system for increased position tracking resolution in a localized environment for use in GPS-denied areas such as within buildings or enclosed structures, comprising: multiple reference nodes each transmitting a synchronization pulse to a multitude of body-worn or device-mounted receiving units; a high speed clock circuit in each receiver capable of measuring the Time Difference of Arrival of said sync pulses to the resolution needed for precise positioning; a central processing computer used to calculate actual position of the receiving units relative to some fixed reference point; and a display system to monitor the position of the receiving units in real time as they move around within the target area overlaid onto available GIS data or building CAD drawings. |
US10135665B2 |
Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system
The present invention relates to a transceiving method and apparatus that enable QAM signal transmission in a filter bank multi-carrier (FBMC) communication system and provides, in particular, a transceiving method and apparatus that enable quadrature amplitude modulation (QAM) signal transmission without intrinsic interference by separating filtering between a sub-carrier having an even index and a sub-carrier having an odd index, and superimposing and transmitting sub-carriers filtered by means of separation. The thus-rendered present invention is a transmission method in the FBMC communication system, the method comprising the steps of: dividing at least two QAM signals into a plurality of groups; performing filtering on each of the plurality of groups; and superimposing and transmitting the QAM signal in the plurality of groups filtered on a time axis. The present invention relates to a transmission method and apparatus, and a corresponding reception method and apparatus. |
US10135664B2 |
Transmitting apparatus and mapping method thereof
A transmitting apparatus is disclosed. The transmitting apparatus includes an encoder to perform channel encoding with respect to bits and generate a codeword, an interleaver to interleave the codeword, and a modulator to map the interleaved codeword onto a non-uniform constellation according to a modulation scheme, and the constellation may include constellation points defined based on various tables according to the modulation scheme. |
US10135662B2 |
Method for generating preamble sequence in wireless LAN system
Disclosed is a sequence generation method comprising: generating a basic sequence structure including C48 having 48 tones, X6 having six tones, and X5 having five tones; selecting any one of a plurality of phase rotation factors predetermined for a bandwidth; and generating a sequence to be inputted into a preamble to be transmitted to a terminal, by using the phase rotation factor, applied in basic sequence structural units, and the basic sequence structure. |
US10135654B2 |
Method and apparatus for generating code sequence in a communication system
A method for transmitting a synchronization signal by a transmitting side device to a receiving side device in a wireless access system. The method includes generating a concatenated code sequence in a frequency domain by concatenating a first code sequence having a first index (M1) and a second code sequence having a second index (M2). Each of the first code sequence and the second code sequence is obtained by cyclic shifting a code sequence. The concatenated code sequence is mapped to subcarriers for transmitting the synchronization signal via a secondary synchronization channel (S-SCH). The method further includes transforming the concatenated code sequence into a time domain signal; and transmitting the time domain signal to the receiving side device as the synchronization signal. The concatenated code sequence indicates a cell group identity (ID). |
US10135651B2 |
Enhanced clear channel assessment
In an example of multi-user wireless communications, an access point may send a downlink frame to a first station. The first station may generate and transmit an uplink frame. A second station in a same or different basic service set coverage area as that of the access point performs a clear channel assessment of a medium associated with the station for transmitting a frame without interrupting a frame exchange between the access point and the first station. The second station receives the downlink frame and the uplink frame of the frame exchange. The second station determines a signal measurement of the uplink frame, and determines a status of the medium based on the signal measurement and the downlink frame. The first station may update or ignore a network allocation vector timer based on the status of the medium. Other methods, apparatus, and computer-readable media are also disclosed. |
US10135650B2 |
Time variant antenna for transmitting wideband signals
A circuit for tuning a resonance frequency of an electrically small antenna. The circuit includes a first source configured for providing a modulation signal, a second source configured for providing a periodic electrical signal, an antenna, and a tuning circuit configured for modulating a resonance frequency of the antenna in response to the modulation signal. The tuning circuit includes first and second capacitors that are alternately coupled to the antenna to change the resonance frequency of the antenna. The capacitor currently coupled to the antenna is decoupled from the antenna and the other capacitor is coupled to the antenna when the voltage across the capacitor currently coupled to the antenna is momentarily zero. In an exemplary embodiment, the tuning circuit comprises first and second inductors rather than capacitors. The inductors are switched into and out of the circuit when the current through the currently coupled inductor is momentarily zero. |
US10135649B2 |
Systems and methods for performing multi-level coding in a discrete multitone modulation communication system
Embodiments described herein provide a method for performing multi-level coding in a discrete multitone modulation (DMT) communication system. A plurality of data bits are divided into a first number of un-encoded bits and a set of bits to be encoded. The set of bits to be encoded are encoded into a second number of encoded bits. The first number is different from the second number, and the first number is an even number or an odd number. The first number of un-encoded bits and the second number of encoded bits are mapped into a plurality of constellation points. The plurality of constellation points are transmitted as orthogonal frequency-division multiplexing (OFDM) symbols. |
US10135646B2 |
High-speed signaling systems and methods with adaptable, continuous-time equalization
A receiver includes a continuous-time equalizer, a decision-feedback equalizer (DFE), data and error sampling logic, and an adaptation engine. The receiver corrects for inter-symbol interference (ISI) associated with the most recent data symbol (first post cursor ISI) by establishing appropriate equalization settings for the continuous-time equalizer based upon a measure of the first-post-cursor ISI. |
US10135641B1 |
Far end crosstalk cancellation for serdes links
A serializer-deserializer (SerDes) integrated circuit (IC) chip includes a first SerDes receiver circuit having a first input for coupling to a first SerDes link, and a first output. A second SerDes receiver circuit has a second input for coupling to a second SerDes link. The second SerDes receiver circuit includes a second output. Crosstalk filter circuitry is disposed between the first SerDes receiver circuit and the second SerDes receiver circuit. |
US10135639B2 |
Multicarrier communication system and channel estimation method thereof
This invention discloses a multicarrier communication system that includes a transmitter equipment and a receiver equipment. According to a timing scheme, the transmitter equipment processes multiple original symbols for transmission on multiple subcarrier channels, and the receiver equipment processes and detects multiple received symbols from the multiple subcarrier channels. During a time frame of data transmission, the initial three of the original symbols for each of the subcarrier channels are three pilot symbols, forming a preamble. The three preambles of every consecutive three of the subcarrier channels form a preamble unit. All the pilot symbols of the preamble unit are expressed as a 3×3 matrix. When the center pilot symbol of the preamble unit is normalized to 1 or j (i.e., the imaginary unit), the matrix is [ - j - j - j j 1 - j - j j - j ] or [ 1 1 1 - 1 j 1 1 - 1 1 ] . A channel estimation method for the multicarrier communication system is also disclosed. |
US10135637B2 |
Method and apparatus for transmitting signal in communication system
A method for transmitting a signal in a communication system includes transmitting a signal using pre-generated matrix, wherein the pre-generated matrix is generated by repeating one matrix including zero elements by a predetermined number of times and a particular sequence is allocated to non-zero elements included in the pre-generated matrix. An apparatus for receiving a signal in a communication system includes at least one processor configured to make a control to receive a transmitted signal based on a pre-generated matrix and to receive the signal, wherein the pre-generated matrix is generated by repeating one matrix including zero elements by a predetermined number of times and a particular sequence is allocated to non-zero elements included in the pre-generated matrix. |
US10135632B1 |
Systems and methods for determining whether a user is authorized to perform an action in response to a detected sound
Systems and methods are described for determining whether a user is authorized to perform an action that meets a goal of a sound. A media guidance application may detect a sound generated by a first device external to a media equipment device. The media guidance application may retrieve, from a lookup table, a known goal that is associated with the sound. The media guidance application may detect a user in a viewing environment. The media guidance application may determine an identity of the user, and may modify playback to encourage or discourage the user from achieving the known goal based on the identity of the user. |
US10135630B2 |
System and method for coupling a wireless device to social networking services and a mobile communication device
A system enables digital appliances to couple to third party application services directly. The system includes a device regulation/support site configured to generate a script program and a data template, and a digital appliance that selectively couples to the device regulation/support site and receives the script program and data template from the device regulation/support site, the digital appliance executes the script program with reference to the data template to couple directly to a third party application service and query the third party application service for data. |
US10135629B2 |
Load control device user interface and database management using near field communication (NFC)
An energy control network may include a number of load control devices, such as dimmer switches, multi-button selector switch, occupancy sensors, and remote controllers, among others. These load control devices may be configured for wireless communication. Other wireless devices, such as laptops, tablets, and “smart” cellular phones may be configured to communicate with the load control devices of the energy control network. The load control devices and the other wireless communication devices may also be configured for Near Field Communication (NFC). NFC may be used to provide a load control device with its initial default configuration and/or an application specific configuration. Also, NFC may be used to transfer a configuration from one load control device that may have become faulty, to a replacement load control device. And NFC may be used to provide and trigger commands that may cause a load control load device to operate in a predetermined manner. |
US10135626B2 |
Power coupling circuits for single-pair ethernet with automotive applications
A circuit for power on data line (PoDL) injection includes a power source, a first and a second coupling component, and an interface. The power source provides one or more DC voltage levels. The first coupling component couples the power source to an interface for coupling to a transmission medium. An Ethernet device is coupled through the second coupling component to the interface. The first coupling component is a balanced component, and the Ethernet device is isolated from the power source via a pair of DC blocking capacitors connected between the first coupling component and the second coupling component. |
US10135624B2 |
Wireless sensor architecture
A Wireless Access Point (WAP) for enabling remote access to data generated by systems of an aircraft including a wireless interface having a transmitter and a receiver; and a processor. The WAP is configured to: wirelessly receive sensor data generated by a plurality of sensors on an aircraft; receive aircraft data from an avionics system of the aircraft; wirelessly receive a data request signal from a remote computing device; and, responsive to the data request signal, wirelessly transmit to the remote computing device data based on received sensor data and/or received aircraft data. |
US10135623B2 |
Method and system for checking revocation status of digital certificates in a virtualization environment
The present invention discloses a method and a system for checking revocation status of digital certificates in a virtualization environment. The method includes: 1) Setting up multiple virtual machines in a host computer; setting up a certificate revocation list manager within the virtual machine monitor of the host computer; 2) The certificates relying party in the virtual machines sends a service request for checking certificate revocation status to the certificate revocation list manager; 3) The certificate revocation list manager searches locally for the CRL file corresponding to the service request for checking certificate revocation status: a) If such a corresponding CRL file exists, the CRL file is returned to the certificate relying party in the virtual machines; or, the certificate revocation list manager checks whether the corresponding certificate serial number exists in the CRL file, then returns the result; b) if the corresponding CRL file does not exist, the corresponding CRL file is downloaded and verified according to the configuration file; then the CRL file is returned to the certificate relying party in the virtual machines; or, the certificate revocation list manager checks whether the corresponding certificate serial number exists in the CRL file, then returns the result. The present invention greatly improves the efficiency of checking revocation status of certificates. |
US10135622B2 |
Flexible provisioning of attestation keys in secure enclaves
A computing platform implements one or more secure enclaves including a first provisioning enclave to interface with a first provisioning service to obtain a first attestation key from the first provisioning service, a second provisioning enclave to interface with a different, second provisioning service to obtain a second attestation key from the second provisioning service, and a provisioning certification enclave to sign first data from the first provisioning enclave and second data from the second provisioning enclave using a hardware-based provisioning attestation key. The signed first data is used by the first provisioning enclave to authenticate to the first provisioning service to obtain the first attestation key and the signed second data is used by the second provisioning enclave to authenticate to the second provisioning service to obtain the second attestation key. |
US10135619B2 |
Methods, apparatus, and systems for secure demand paging and other paging operations for processor devices
A secure demand paging system (1020) includes a processor (1030) operable for executing instructions, an internal memory (1034) for a first page in a first virtual machine context, an external memory (1024) for a second page in a second virtual machine context, and a security circuit (1038) coupled to the processor (1030) and to the internal memory (1034) for maintaining the first page secure in the internal memory (1034). The processor (1030) is operable to execute sets of instructions representing: a central controller (4210), an abort handler (4260) coupled to supply to the central controller (4210) at least one signal representing a page fault by an instruction in the processor (1030), a scavenger (4220) responsive to the central controller (4210) and operable to identify the first page as a page to free, a virtual machine context switcher (4230) responsive to the central controller (4210) to change from the first virtual machine context to the second virtual machine context; and a swapper manager (4240) operable to swap in the second page from the external memory (1024) with decryption and integrity check, to the internal memory (1034) in place of the first page. |
US10135614B2 |
Integrated contactless MPOS implementation
Disclosed herein is a method for performing an integrated contactless point-of-sale transaction. More particularly, there is disclose a method comprising: receiving, by a mobile device 1, a seed number from a communications network; generating, by the mobile device 1, one or more session keys, in dependence on the received seed number, for use in encrypted communication with the mobile device 1; and/or generating, by the mobile device 1, a pre-image, in dependence on the received seed number, for use in generating an unpredictable number for use in secure communication with the mobile device. Advantageously, the generation of session keys and/or a pre-image in dependence on a seed number provided to the mobile device improves the security of the system since the source of the seed number can detect incorrect session keys and/or unpredictable number derived from an incorrect pre-image. |
US10135607B1 |
Distributed ledger interaction systems and methods
Distributed public ledger interaction methods and systems are presented by which one or more elements of a first smart contract are privately recorded on a secure ledger node. In some variants the first smart contract is executed so as to retrieve public ledger node data from a first public ledger node so as to configure at least one transaction that is thereafter executed at least to the first public ledger node or to a second public ledger node (or both). |
US10135601B1 |
Providing common point of control and configuration in IP-based timing systems
Embodiments herein describe a common point of control of local clocks in endpoint devices in a media production studio that are synchronized using an IP-based synchronization protocol. In one embodiment, a master clock generator outputs a master clock signal which is distributed to the endpoint devices in the media production studio. The endpoint devices include local clock generators that convert the master clock into an adjusted clock. A clock manager provides a common point of control for the local clock generators in the endpoints. The clock manager includes an input/output (I/O) interface which enables an engineer to adjust the jam time of the local clock generators as well as adjust a delay used when outputting media content to another endpoint device. |
US10135599B2 |
Frequency domain compression for fronthaul interface
Frequency domain compression of fronthaul interface for transporting frequency domain data over Ethernet includes applying Inverse Discrete Fourier Transform to frequency domain data contained in a frequency bandwidth to generate a time domain output signal in a time domain. The time domain output signal is compressed to generate a compressed time domain output signal. The compressed time domain output signal is transmitted over a fronthaul interface to a remote unit. The compressed time domain output signal is decompressable at the remote unit to generate a decompressed time domain output signal. Discreet Fourier Transform is applied to the decompressed time domain output signal at the remote unit to recover the frequency domain data. |
US10135593B2 |
Allocation signaling for wireless communication networks
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes selecting one of a plurality of allocation schemas for allocation of wireless resources to wireless communication devices. The method further includes generating an allocation message comprising an identifier of the selected allocation schema and one or more allocations of wireless resources according to selected allocation schema. The method further includes transmitting the allocation message to one or more wireless communication devices. |
US10135591B2 |
Techniques for improving URLLC communications in new radio
Various aspects described herein relate to techniques for improving ultra-reliable low-latency communications (URLLC) used in wireless communication systems (e.g., 5G New Radio). In an aspect, a method of wireless communications includes identifying at least a first hybrid automatic repeat request (HARQ) transmission and a second HARQ transmission, wherein at least one of the identified HARQ transmissions is for URLLC, receiving an indication including information of reference signal handling for the identified HARQ transmissions, and performing the reference signal handling based on the information. |
US10135589B2 |
Inserting and extracting pilot sequences
Embodiments of the present disclosure provide methods and devices for inserting and extracting a pilot sequence according to a pilot mapping indicating a location for inserting the pilot sequence in a plurality of time-frequency resources. One example method includes inserting, by a transmitter according to pilot mappings corresponding to Nt transmit antenna ports by using Nt orthogonal pilot sequences that are different from each other, a pilot sequence corresponding to each of the transmit antenna ports into OFDM symbols that are included in the pilot mapping corresponding to the transmit antenna port. There is a one-to-one correspondence between the Nt pilot sequences and the Nt transmit antenna ports of the transmitter, where Nt is a positive integer greater than or equal to 2. The pilot mappings corresponding to the transmit antenna ports are the same among the Nt transmit antenna ports. |
US10135587B2 |
Mobile communication devices and methods for controlling wireless transmission and reception
A mobile communication device having a reception circuit, a transmission circuit, and a processing unit is provided. The reception circuit and the transmission circuit are configured to receive and transmit wireless signals, respectively. The processing unit activates the reception circuit for a portion of a downlink time interval for receiving Control Channel (CCH) data and one or more Reference Signal (RS) symbols or traffic data symbols beyond the CCH data, and deactivates the reception circuit for the remaining portion of the downlink time interval. Also, the processing unit activates the transmission circuit for a portion of an uplink time interval for transmitting traffic data, determines a radio signal quality with regard to the transmission of the traffic data, and deactivates the transmission circuit for the remaining portion of the uplink time interval when the radio signal quality exceeds a predetermined threshold. |
US10135585B1 |
Adaptive trellis coding enabling and disabling in discrete multitone data communications
In a transmitter, first and second sets of discrete multitone (DMT) sub-carrier signals or tones are identified. First and second bit groups of a payload data frame corresponding to the first and second sets of tones are selected. The first bit group is then trellis encoded. The second bit group is not trellis encoded. The first trellis coded tone group and the second bit group are then constellation mapped to produce a DMT symbol for transmission. A receiver may use an estimate of signal-to-noise ratio (SNR) of each tone to determine whether to select the tone for inclusion in the first or second set of tones. The receiver may provide the transmitter with information indicating whether a tone is included the first or second set of tones. |
US10135579B2 |
Priority based scheduling for LTE uplink transmissions
Systems and methods presented herein provide for an eNodeB operating in an RF band comprising a conflicting wireless technology. One exemplary eNodeB assigns an ID to a UE, processes a scheduling request for UL data from the UE, processes another scheduling request for second UL data from the UE, determines priorities of the first and second UL data based on priority indicators in the scheduling requests, and grants time and frequency for the UE to transmit the first and second UL data. The eNodeB also waits until the UE performs an LBT operation. The LBT determines whether the granted time and frequency are occupied by another wireless system comprising a different wireless technology. The eNodeB also determines that the first UL data is stale, and transmits the ID to the UE to reserve the granted time and frequency for the second UL data when unoccupied by the other wireless system. |
US10135577B2 |
Scalable service in a wireless communication system
A method for providing scalable service in a wireless communication system is disclosed. In this method, the transmitting side device transmits base layer signals and enhancement layer signals for one scalable service to a user equipment (UE) based on a HARQ (Hybrid Automatic Repeat Request) scheme. The base layer signals can be independently used at the UE without the enhancement layer signals. On the other hand, the enhancement layer signals cannot be used at the UE without the base layer signals. The transmitting side device also retransmits the base layer signals before a retransmission of the enhancement layer signals when there are both of the base layer signals and the enhancement layer signals to be retransmitted based on the HARQ scheme. |
US10135576B2 |
Rateless encoding
A receiver node is operable to receive rateless encoded data packets from a transmitter node. The receiver node includes estimation logic operable to estimate a transiting number of rateless encoded data packets transiting between the receiver node and the transmitter node; determining logic operable to determine an acknowledgement number of received rateless encoded data packets, the acknowledgement number of received rateless encoded data packets including a difference between a decoding number of rateless encoded data packets estimated to be required from a batch of rateless encoded data packets to decode the rateless encoded data packets from the batch and the transiting number of rateless encoded data packets; and acknowledgement logic operable to transmit an acknowledgement to the transmitter node to cause the transmitter node to cease transmission of rateless encoded data packets from the batch of rateless encoded data packets when a received number of received rateless encoded data packets from the batch of rateless encoded data packets achieves the acknowledgement number of received rateless encoded data packets. |
US10135573B2 |
Method and system for improved cross polarization rejection and tolerating coupling between satellite signals
Methods and systems for improved cross polarization rejection and tolerating of coupling between satellite signals may comprise receiving radio frequency (RF) signals on a chip, where the RF signals comprising a desired signal and at least one crosstalk signal. The received RF signals may be down-converted to baseband frequencies, and the down-converted signals are converted to digital signals. Crosstalk may be determined by estimating complex coupling coefficients between the received RF signals utilizing a de-correlation algorithm across a frequency bandwidth comprising the desired and crosstalk signals. The down-converted signals may be low-pass filtered and summed with an output signal from a cancellation filter. The complex coupling coefficients may be determined utilizing the de-correlation algorithm on the summed signals, and may be used to configure the cancellation filter. Crosstalk may be canceled in a receiver path from a cancellation filter receiving low-pass filtered down-converted signals from another path. |
US10135565B2 |
Reception failure feedback scheme in wireless local area networks
A novel feedback schemes are introduced to assistant link adaptation for re-transmissions and to improve the network throughput and efficiency. When reception failure is a type B failure, then a failure report (FR) frame is feedback from the destination STA to the source STA. In the failure report frame, link adaptation information and information on failure causes are included. |
US10135561B2 |
Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
An optical communications system includes an optical transmitter and an optical receiver optically coupled to an optical combiner/splitter, the combiner/splitter coupled to optical media; and, another optical transmitter and another optical receiver optically coupled to another optical combiner/splitter, the another combiner/splitter remotely coupled to the optical media; wherein the optical transmitter and the another optical transmitter are configured to transmit optical signals at substantially the same wavelength. |
US10135560B2 |
Optical devices for the construction of compact optical nodes
Example embodiments of the present invention relate to optical wavelength directing devices used to construct compact optical nodes. |
US10135558B2 |
Wavelength-tunable pluggable optical module, optical communication system and wavelength change method of wavelength-tunable pluggable optical module
A pluggable electric connector can communicate a communication data signal and a control signal with an optical communication device. An optical signal output unit is configured to be capable of selectively output a wavelength of an optical signal. An optical power adjustment unit can adjust optical power of the optical signal. A pluggable optical receptor can output the optical signal to an optical fiber. A control unit controls a wavelength change operation according to the control signal. The control unit, according to a wavelength change command, commands the optical power adjustment unit to block output of the optical signal, commands the light signal output unit to change the wavelength of the optical signal after the optical signal is blocked, and commands the light signal output unit and the optical power adjustment unit to output the optical signal after the wavelength change operation. |
US10135540B2 |
System and method for Faster-than-Nyquist (FTN) transmission
Systems and methods are disclosed that attempt to increase spectral efficiency by using Faster-than-Nyquist (FTN) transmission. In one embodiment, a method at a transmitter includes partitioning bits into K bit streams, obtaining K power scaled symbol streams, combining the K power scaled symbol streams to obtain a stream of transmission symbols, and transmitting the stream of transmission symbols using FTN signaling. At the receiver, the received symbols are partitioned into K symbol streams, and demodulation and decoding is performed by: (i) demodulating and decoding the Kth symbol stream of the K symbol streams to obtain a Kth set of bits; (ii) mapping the Kth set of bits to a Kth set of symbols; and (iii) for each one of k=K−1, . . . , 1: demodulating and decoding a kth symbol stream of the K symbol streams to obtain a kth set of bits. The demodulating and decoding includes performing interference cancellation. |
US10135538B2 |
Signaling on a high-speed data connector
An apparatus and method for signaling and transmitting data through an optical link is described. The apparatus may include a connector including a first plurality of contacts compatible with an enhanced SFP (SFP+) connector. The connector further includes an additional contact formed at a space adjacent to the first plurality of contacts. A tone generator couples to the additional contact to receive a first signal and to generate a first distinct tone indicative of the first signal for transmission via the additional contact. The method may include generating a first distinct tone indicative of a first signal providing control or status of an apparatus and transmitting or receiving a differential data signal over a portion of a first plurality of contacts compatible with an enhanced SFP (SFP+) connector. The first distinct tone is transmitted over the additional contact formed in a space adjacent to the first plurality of contacts. |
US10135533B2 |
Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
Embodiments disclosed in the detailed description include analog distributed antenna system (DAS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals. Analog RF communications signals received from analog RF signal sources are distributed in the analog DAS without being digitized. The analog DAS is also configured to interface with digital signal sources and compatibly distribute digital communications signals. Hence, a digital signal interface in head-end equipment (HEE) is configured to convert downlink digital communications signals to downlink analog RF communications signals for distribution to a plurality of remote units. The digital signal interface is also configured to convert uplink analog RF communications signals to uplink digital communications signals for distribution to the digital signal source(s). By providing the digital signal interface in the HEE, the analog DAS can be configured to distribute digital communications signals to analog DAS components. |
US10135532B2 |
Optical receiver and method of receiving an optical communications signal
An optical receiver (10) comprising: an input (12) arranged to receive a subcarrier multiplexing, SCM, optical signal (14) comprising an optical carrier and an optical subcarrier, each having a respective optical power; a carrier suppression element, CSE, (16) arranged to receive the SCM optical signal and having a rejection band that is tunable in frequency to partially suppress the optical carrier by a variable amount; an optical amplifier (18) having a variable gain and arranged to receive the SCM optical signal from the CSE and amplify the optical carrier and the optical subcarrier; a photoreceiver (20) arranged to receive the SCM optical signal from the amplifier; and a controller (24) arranged to cause frequency tuning of the rejection band and variation of the gain of the optical amplifier to adjust a ratio of the optical power of the optical carrier at the photoreceiver to the optical power of the optical subcarrier at the photoreceiver based on an indication of performance of the SCM optical signal. |
US10135530B2 |
Techniques for optical wireless communication
Optical wireless communication techniques are described and claimed. In one embodiment, the disclosure relates to method and apparatus to provide optical signaling with visible light having variable pulse position modulation (VPPM). The optical signal includes a Start Frame Delimiter (SFD) which indicates beginning of an asynchronous optical signaling. The VPPM signaling includes a lower frequency time varying amplitude component that when subsampled by a low frame rate camera results in alias induced flicker or blinking. Such signals are quickly recognizable as signals with modulated data. In another embodiment, the disclosure provides a system, device and method for decoding a Start Frame Delimiter (SFD) to indicate arrival of incoming VPPM optical data. |
US10135528B2 |
Receiver for communications systems
A receiver system (100) having at least one receiver (101) for receiving optical communications signals (103b) that encode or transmit information; wherein the receiver system (100) is adapted to produce one or more electrical signals (104) from the received optical signal (103b) and/or from ambient light (103a) such that the receiver system (100) is usable as a source of electrical power and the encoded or transmitted information from the received optical communication signal (103b) is recovered or recoverable from the electrical signal(s) (104). Embodiments of the invention also relate to a communications system (400) that further comprises one or more transmitters (406) and a device having the receiver systems (401), along with associated methods of using and producing. Particular embodiments relate to identification tags (1000) and user devices (300) having a display (301) that at least partially overlaps the receiver(s) (302). |
US10135527B1 |
Method of communication link acquisition using search pattern
Aspects of the disclosure provide for a method of forming a communication link between two communication devices using a primary search pattern and a secondary search pattern. A misalignment between a first optical system of a first communication device and a second optical system of a second communication device is detected. The first optical system is rotated according to the primary search pattern, and the second optical system according to the secondary search pattern. At the second communication device, a set of frames is captured. Then, it is determined whether a beacon beam transmitted from the first communication device is detected in the one or more of the captured frames. When it is determined that the beacon beam is detected, the communication link is formed between the first communication device and the second communication device. |
US10135526B2 |
Bandwidth throttling
A bandwidth throttling method is provided. The method includes receiving by a receiver from a QD Vcel cannon, a plurality of multi-frequency light pulses via a plurality of channels. The receiver determines that the plurality of multi-frequency light pulses comprises an out of band (OOB) signal transmitted over a first channel of the plurality of channels. The receiver receives from a first laser device of the QD Vcel cannon, a first light pulse of the plurality of multi-frequency light pulses. The first light pulse includes a first frequency for testing a visibility of the first light pulse at the receiver. The receiver determines if the first light pulse is visible at the receiver. |
US10135522B2 |
Transceiver array with adjustment of local oscillator signals based on phase difference
Aspects of methods and systems for transceiver array synchronization are provided. An array based communications system comprises a plurality of transceiver circuits and an array coordinator. Each transceiver circuit of the plurality of transceiver circuits comprises a plurality of wireless transmitters and a local oscillator generator. Each wireless transmitter of the plurality of wireless transmitters is able to modulate a local oscillator signal from the local oscillator generator based on a weighted sum of a plurality of digital datastreams. The array coordinator is able to adjust a phase of a first local oscillator signal based on a phase difference between the first local oscillator signal and a second local oscillator signal. The first local oscillator signal is generated by a first local oscillator generator of a first transceiver circuit. The second local oscillator signal is generated by a second local oscillator generator of a second transceiver circuit. |
US10135521B2 |
System and method of predictive satellite spot beam selection
An embodiment of the present invention is a system to maximize efficiency as a mobile terminal receives data signals transmitted through multiple satellite spot beams. The multiple spot beams can be broadcast via a single satellite or multiple satellites. As a mobile terminal travels throughout a region, the system determines which spot beam would delivers data in the most efficient manner possible. This system takes into account multiple factors, including but not limited to velocity of the mobile terminal, traffic within a spot beam, business affiliations, etc. Once the system takes into account the various factors, an embodiment of the present invention generates a relative weighted factor that is subsequently associated with various available spot beams. Based on rankings of the weighted factors associated with each spot beam, the system may choose to receive data from a different spot beam. |
US10135516B2 |
Method and device for operating beam mode in wireless communication system
According to one embodiment of the present invention, provided is a method for setting a beam mode of a base station in a wireless communication system, comprising the steps of: selecting the beam mode for at least one terminal, which is serviced by the base station, on the basis of a channel state of a transmission beam or a reception beam of the base station; transmitting, to the terminal, a control message including selected beam mode information; and performing data communication with the terminal by using the transmission beam and the reception beam corresponding to the selected mode. In addition, according to one embodiment of the present invention, provided is a communication method of the terminal in the wireless communication system, comprising the steps of: receiving a beam mode setting message from the base station; setting either a beam fixation mode or a beam sweeping mode on the basis of the received beam mode setting message; and performing data communication with the base station on the basis of the set mode. |
US10135509B1 |
Optimization of full-power broadcast beamforming
Systems, methods, and computer-readable media for dynamically optimizing the use of full-power broadcast beamforming within a wireless communication network are provided herein. Though full-power broadcast beamforming may result in increased interference and decrease throughput, the increased coverage area provided by full-power broadcast beamforming is favored under certain conditions, including the locations of user devices within a network cell. Accordingly, location data may be received from user devices within a network cell utilizing a plurality of beams, and the locations of each of the user devices may be used to determine whether to enable full-power broadcast beamforming where each beam within plurality of beams is at a maximum signal strength. Upon determining to enable full-power broadcast beamforming, a signal weight for one or more of the beams may be adjusted to full power. |
US10135508B2 |
Method and apparatus for generating common signal in multiple input multiple output system
Provided is a method for generating, by a base station, a common signal commonly required for surrounding terminals of the base station in a massive multiple input multiple output (MIMO) system. The base station generates data commonly required for the surrounding terminals. The base station generates a plurality of beamforming vectors using a time-domain constant amplitude (TCA)-frequency-domain constant amplitude (FCA) sequence having a constant size in a time domain and a frequency domain. Further, the base station generates a plurality of antenna streams corresponding to the common signal by multiplying the plurality of beamforming vectors by the data. |
US10135506B2 |
Low complexity flexible beam-width for directional modulation
Method and system for transmitting a directionally modulated data stream via an antenna array. A first signal processing circuitry receives a data symbol of a first data stream, maps the first data stream to a specified number of sub-beams based on a stream beam-width assignment, assigns a direction angle for transmission of the data stream, and transmits in parallel, for each of the specified number of sub-beams, an instance of the data symbol to a second signal processing circuitry. The second signal processing circuitry generates antenna array element weights based on the data symbol and a matrix having a DFT structure. The matrix is independent of the assigned direction angle. The data symbol is transmitted via the antenna array utilizing the antenna array element weights. The DFT is implemented as a fast Fourier transform. White noise is transmitted in the sub-beams beams outside the beam-width requirement of the data stream. |
US10135504B2 |
Techniques for MU-MIMO sounding sequence protection
The disclosure provides techniques for sounding sequence protection in multi-user multiple-input-multiple-output (MU-MIMO) communications for wireless local area networks (WLANs). An access point (AP) may select a station (STA) from multiple STAs in a MU-MIMO group. The AP may then transmit a request-to-send (RTS) frame, where the RTS is addressed to the selected STA. The AP may receive a clear-to-send (CTS) frame from the selected station and may perform, in response to receiving the CTS frame, a sounding sequence with the MU-MIMO group. After completion of the sounding sequence, the AP may transmit MU-MIMO data communications to at least one of the STAs in the MU-MIMO group. |
US10135503B2 |
Detection of spatially multiplexed signals for over-determined MIMO systems
Method and apparatus of obtaining better detection performance by improving matrix condition for an M×N over-determined MIMO system are disclosed. The condition of a matrix to be inverted for solving various detection problems is improved by reordering equations of the original MIMO system, resulting in a reordered channel matrix and reordered received signal vector so that the top N×N sub-matrix has the largest determinant among all N×N sub-matrices of the reordered channel matrix. The disclosed method may be used to obtain a more accurate estimate of the transmit data bits. |
US10135502B2 |
Method and apparatus for hierarchically cooperative V-MIMO in wireless communication system
A method is provided for determining, by a base station, a Virtual-Multiple-Input Multiple-Output (V-MIMO) cluster in a wireless communication system. The base station determines a transmission efficiency of a temporary cluster and selects one or more entry candidate nodes contained in the temporary cluster. The base station determines an entry transmission efficiency. The entry transmission efficiency is a transmission efficiency when the entry candidate node enters a V-MIMO unit cluster. The base station determines whether to make the entry candidate node enter the V-MIMO unit cluster by comparing the entry transmission efficiency with the transmission efficiency of the temporary cluster. |
US10135499B2 |
Methods and systems for a distributed radio communications network
The present disclosure is directed to methods and systems for providing a distributed radio communications network. Each of a first gateway and a second gateway may separately receive modulated signals comprising at least a portion of data from a first node of a plurality of geographically-dispersed nodes. The modulated signals may be wirelessly transmitted as radio frequency (RF) signals from the first node, the data gathered or generated by the first node at a first location. A server may receive the modulated signals from the first gateway and the second gateway. As configured by software-defined radio (SDR) software, the server may perform processing of the separately received modulated signals to recover the data. The processing may include demodulation of the modulated signals. |
US10135496B2 |
Near field, full duplex data link for use in static and dynamic resonant induction wireless charging
A full duplex, low latency, near field data link controls a static and/or dynamic resonant induction, wireless power transfer system used for recharging electric vehicles and other electrically powered devices. A coherent transponder configuration enables low complexity synchronous detection and positive rejection of signals originating from nearby and adjacent vehicles. A reference crystal oscillator in the ground side apparatus provides frequency synchronization for both the forward and the return data links. Transmission is by means of near field magnetic induction between pairs of loop antennas which, together with the effective waveguide below cutoff structure comprised by the vehicle underbody and the ground surface, largely restrict signal propagation to the area in the immediate vicinity of the system antennas. |
US10135494B2 |
Connection and synchronization with a device in a non-active state based on near field communication
Technologies for one-tap connection and synchronization with a device in a non-active state are disclosed. When a user brings a first device enabled for Near Field Communication (NFC) to close proximity of a second NFC-enabled device when the second device is in a non-active state, the second device may be awakened, or placed in an active state, for a period of time to perform one or more operations before returning to the non-active state. These operations include, for example, allowing the first device to access data stored in the second device and synchronizing one or more applications installed on the second device with remote servers. |
US10135486B2 |
High-frequency front-end circuit
A high-frequency front-end circuit includes first and second switching circuits, first, second, and third splitters, and first and second lines. The first line is connected to the second splitter. The second line is connected to the third splitter. An adjustment circuit is connected between the first and second lines. The frequency of a harmonic signal of a transmission signal transmitted through the first line has a frequency band that is close to or overlaps the frequency of a reception signal transmitted through the second line. The impedance of the adjustment circuit is set such that a harmonic signal transmitted from the adjustment circuit to the second line and a harmonic signal transmitted from the third splitter to the second line are not in same phase with each other at the connection point between the adjustment circuit and the second line. |
US10135485B2 |
Signal transceiving circuit and receiving circuit control method
A transceiving circuit, which comprises: a transmitting circuit, configured to transmit a test signal; a receiving circuit, comprising a mixer configured to receive a plurality of predetermined DC bias voltage groups, wherein the receiving circuit generates a plurality of output signals according to the test signal while the mixer operates at the predetermined DC bias voltage groups; a frequency domain analyzing circuit, configured to transform the output signals to a plurality of frequency domain signals; and a DC bias voltage generating circuit, configured to generate a function according to the frequency domain signals and the predetermined bias voltage groups, and configured to generate a first DC bias voltage group to the mixer according to the function. |
US10135484B2 |
Adaptive antenna selection for interference mitigation
This disclosure relates to performing antenna selection to reduce interference in a wireless device. According to some embodiments, it may be determined whether simultaneous communication according to first and second wireless communication technologies causes performance degradation to a third wireless communication technology. If the simultaneous communication according to first and second wireless communication technologies does cause performance degradation to the third wireless communication technology, selection of antenna(s) used for the communications may be based at least in part on the determination that the simultaneous communication according to the first and second wireless communication technologies causes performance degradation to the third wireless communication technology. |
US10135483B2 |
Transmitter/receiver module for millimeter wave 5G MIMO communication systems
A transmit/receive module includes an integrated control circuit. The integrated control circuit includes an RFIC input terminal, multiple pairs of I/O terminals, a power splitter/combiner having an input connected to the RFIC input terminal, a plurality of phase shifters connected between outputs of the power splitter/combiner and the I/O terminals, and a power sensor connected to each one of the I/O terminals. The integrated control circuit further includes a plurality of transmit/receive integrated circuits that each include a TX input terminal, an RX output terminal, an antenna interface terminal, a power amplifier connected, a low noise, and a switch connected between the power amplifier, the low noise amplifier and the antenna interface terminal. Gate and drain terminals of a final stage of each power amplifier of the transmit/receive integrated circuits are independently connected to and controllable by the integrated control circuit. |
US10135481B2 |
Radio frequency shielding within a semiconductor package
Radio frequency shielding within a semiconductor package is described. In one example, a multiple chip package has a digital chip, a radio frequency chip, and an isolation layer between the digital chip and the radio frequency chip. A cover encloses the digital chip and the radio frequency chip. |
US10135480B1 |
Coupling mechanisms for enhancing the functionality of smart phones and tablet computers
Simple coupling mechanisms for attaching electronic styluses to personal information display and input devices and their use as propping instruments to position these devices to various angles and orientations with respect to a base or resting surface. |
US10135478B2 |
Wideband millimeter-wave frontend integrated circuit
According to one embodiment, a millimeter-wave (mm-wave) frontend integrated circuit includes an array of mm-wave transceivers, where each of the mm-wave transceivers transmits and receives coherent mm-wave signals with variable amplitudes and phase shifts. The mm-wave frontend IC chip further includes a wideband frequency synthesizer coupled to the mm-wave transceivers. The full-based or wideband frequency synthesizer generates and provides a local oscillator (LO) signal to each of the mm-wave transceivers to enable the mm-wave transceiver to mix, modulate, and/or demodulate mm-wave signals. The array of mm-wave wideband transceivers and the wideband frequency synthesizer may be implemented within a single IC chip as a single mm-wave frontend IC chip or package. |
US10135476B2 |
Noise cancellation
An electronic device includes an antenna configured to receive a wireless transmission. The wireless transmission includes noise and data to be received. The electronic device includes a signal splitter that splits the wireless transmission into a first signal and a second signal. The electronic device includes a filter configured to filter the data to be received in the first signal. Furthermore, the electronic device includes merging circuitry configured to subtract the first signal from the second signal to reduce the noise in the second signal. |
US10135475B1 |
Dynamic low-latency processing circuits using interleaving
Systems and methods for processing a multitude of variable and varying signals in real time with low latency using fixed hardware with fixed processing resources, such as those within an application-specific integrated circuit (ASIC) or a field-programmable gated array (FPGA). The signal processing systems and methods allow the resource allocation to continuously adjust their processing as a result of changing signal conditions. In accordance with various embodiments, fixed processing resources in ASIC or FPGA form are dynamically allocated through an intelligent interleaving methodology that efficiently maps the signal processing of incoming signals while essentially preserving the same latency as if each signal channel were processed at the full sample rate. This is accomplished by multiplexing under the control of a resource sharing algorithm. |
US10135470B2 |
System and method to auto-configure a transmitter for a sensor
An apparatus includes a memory element and a processing device. The memory element is configured to store a plurality of configurations for different sensors in an industrial process and control system. The processing device is configured to identify at least one wired connection to a sensor in the industrial process and control system. The processing device is also configured to detect a type of the sensor based on the at least one wired connection. The processing device is also configured to identify a configuration of the plurality of configurations based on the type of the sensor. |
US10135469B2 |
Uplink and downlink carrier aggregation
Improved switched multiplexer architecture for supporting carrier aggregation in front-end applications. In some embodiments, an N-plexing system can include an assembly of filters configured to provide N filtered paths, and a switching circuit in communication with the assembly of filters. The switching circuit can be configured to provide a plurality of switchable paths between the assembly of filters and an antenna port to allow simultaneous operation between the N filtered paths and the antenna port. In some embodiments, N can be 4 for a quadruplexing system or 2 for a duplexing system, and such a system can be implemented in a front-end module (FEM) for wireless devices. |
US10135468B2 |
Decoder and method for physically unclonable functions using threshold decoding
A decoder includes a feedback shift register having a plurality of register elements that implement a simplex code and take a register vector for determining an appropriate syndrome fed into the feedback shift register and stored in the plurality of register elements. A combination device algebraically combines a subset of the register elements and provides a combination result vector. A majority decision-making unit ascertains a most frequently occurring value within the combination result vector and provides it as a decision result. An input selector connects an input of the feedback shift register to an input interface arrangement or to an output of the majority decision-making unit, and provides an input vector by the input interface arrangement and corresponds to the ascertained form of the physical unclonable properties as a register vector and, and provides a decision vector comprising the decision result and further decision results as a register vector. |
US10135465B2 |
Error correction methods and apparatuses using first and second decoders
Apparatuses and methods for error correcting data are provided. A first error correction code (ECC) decoder is configured to decode a first codeword to provide a first result and to decode a second codeword to provide a second result. The decoder is configured to run up to a particular number of iterations to provide each of the results. A second ECC decoder is configured to decode a third codeword to provide decoded data, wherein the third codeword comprises the first result and the second result. An evaluation module is configured to initiate a recovery scheme responsive to the decoded data including an error. |
US10135464B2 |
Reliability-assisted bit-flipping decoding algorithm
A method for decoding low-density parity check (LDPC) codes, includes computing an initial syndrome of an initial output, obtaining an initial number of unsatisfied checks based on the computed initial syndrome, and when the initial number of unsatisfied checks is greater than zero, computing a reliability value with a parity check, performing a bit flip operation, computing a subsequent syndrome of a subsequent output, and ending decoding when a number of unsatisfied checks obtained based on the computed subsequent syndrome is equal to zero. |
US10135460B2 |
Apparatus and method for multilevel coding (MLC) with binary alphabet polar codes
A method includes receiving multiple bits to be transmitted. The method also includes applying a first binary alphabet polar code to a first subset of the multiple bits to generate first encoded bits. The first encoded bits are associated with a first bit level of a multilevel coding scheme. The method further includes generating one or more symbols using the first encoded bits and bits associated with a second bit level of the multilevel coding scheme. The first binary alphabet polar code is associated with a first coding rate. In addition, the method could include applying a second binary alphabet polar code to a second subset of the multiple bits to generate second encoded bits. The second encoded bits are associated with the second bit level. The second binary alphabet polar code is associated with a second coding rate such that the bit levels have substantially equal error rates. |
US10135455B2 |
Digitally calibrated successive approximation register analog-to-digital converter
A system can include an analog input port; a digital output port; and a successive approximation register (SAR) analog-to-digital converter (ADC). The SAR ADC can include a voltage comparator Vd having a first input, a second input, and an output; a first plurality of capacitors Cp[0:n] that are coupled with the analog input port and each have a top plate and a bottom plate; a second plurality of capacitors Cn[0:n] that are coupled with the analog input port and each have a top plate and a bottom plate; and a SAR controller coupled between the output of the voltage comparator Vd and the digital output port. |
US10135448B1 |
Phase-locked loop (PLL) with charge scaling
An integrated circuit is disclosed that implements a phase-locked loop with charge scaling. In an example aspect, the integrated circuit includes a charge pump, a filter, and a charge manager. The charge pump generates a current signal, and the filter includes a filter capacitor. The charge manager is coupled between the charge pump and the filter. The charge manager includes current-sampling capacitance circuitry and a charge manager controller that is coupled to the current-sampling capacitance circuitry. The current-sampling capacitance circuitry receives the current signal from the charge pump and retains charge from the current signal to create stored charge, with the stored charge including a first charge portion and a second charge portion. The charge manager controller causes the current-sampling capacitance circuitry to communicate the first charge portion to the filter capacitor and causes the current-sampling capacitance circuitry to divert the second charge portion away from the filter capacitor. |
US10135446B2 |
Semiconductor device and method of driving semiconductor device
A semiconductor device using a programming unit with is provided. A highly reliable semiconductor device using the programming unit is provided. A highly integrated semiconductor device using the programming unit is provided. In a semiconductor circuit having a function of changing a structure of connections between logic cells such as PLDs, connection and disconnection between the logic cells or power supply to the logic cells is controlled by a programming unit using an insulated gate field-effect transistor with a small amount of off-state current or leakage current. A transfer gate circuit may be provided in the programming unit. To lower driving voltage, a capacitor may be provided in the programming unit and the potential of the capacitor may be changed during configuration and during operation. |
US10135438B2 |
Switching system and method
The invention relates to a Radio Frequency System and method. A Radio Frequency (RF) system comprising a RF switch comprising a plurality of transistor switching elements implemented on Silicon on Insulator (SOI) for switching at least one or more RF signals and said SOI comprises a bulk substrate region and a buried oxide region. At least one filter is adapted to isolate the RF signal from the substrate and/or other high frequency signals or control signals present in the RF system. There is also provided a coupling capacitor adapted to cooperate with the filter to improve linearity of the transistor switch elements. |
US10135437B2 |
Drive control apparatus
Parallely connected first and second switches respectively have first and second on resistances. The second on resistance is higher than the first on resistance in a lower range of current, and lower than the first on resistance in a higher range of current. A current obtaining unit obtains a current parameter indicative of an input current flowing through both the first and second switches. A low-current control unit controls, based on the obtained current parameter, switching operations of the first and second switches to correspondingly increase the number of times of turn-on of the first switch relative to the number of times of turn-on of the second switch, and prevent simultaneous turn-on of the first and second switches while a value of the input current is located within a predetermined low-level current region, the low-level current region being lower than the threshold current. |
US10135434B2 |
Electronic circuit for controlling a half H-bridge
Disclosed is an electronic circuit for controlling a half H bridge, the half split H bridge including first and second MOSFET transistors of different respective types, with sources connected respectively to a supply line and to an electric mass, and with respective drains connected to a load. Moreover, the control circuit includes first and second bipolar transistors of different respective types, with collectors connected to the supply line and to the electric mass, respectively, and with respective bases connected to a control module for controlling the MOSFET transistors, as well as first and second arms mounted parallel relative to one another between the gates of the MOSFET transistors, connected to the emitter of the first bipolar transistor and of the second bipolar transistor, respectively, the first arm including a first diode and a first resistor, and the second arm including a second diode and a second resistor. |
US10135430B2 |
Adjusting drive strength for driving transistor device
A system that can include a detector that can monitor a voltage at an input of a transistor device over a period of time and provide a signal having a value representative of a capacitance between the input and an output of the transistor device. The system can further include a driver that can have a programmable drive strength and be coupled to input of the transistor device to drive the transistor device at the input thereof. The system can further include a controller that can configure the driver based on the signal to drive the transistor device with a corresponding drive strength. |
US10135424B2 |
Digital filter with confidence input
A finite impulse response (FIR) digital filter has an assigned filter function with assigned filter coefficients, an input receiving input samples, another input receiving confidence information values, and an output. Each input sample value is associated to an input confidence value and the filter output depends on both the input samples and the input confidence values. |
US10135423B1 |
90 degree hybrid with varactor diodes for low loss, simple bias and zero power consumption phase shifter
An apparatus and method for continuously shifting the phase of an input signal includes a quadrature hybrid having an input/output port for receiving an input radio frequency (RF) signal and outputting a phase shifted RF signal. An analog shifting unit is connected to the quadrature hybrid for performing an intermediate phase shift on the input RF signal. An additional analog shifting unit is connected to an isolation port of the quadrature hybrid to receive an intermediate output signal based on the intermediate phase shift, and shifting a phase of the intermediate output signal to produce an intermediate input signal. The analog shifting unit performs a final phase shift of the intermediate input signal and the final phase shifted intermediate input signal is output, at the input/output port, as the phase shifted RF signal. |
US10135422B2 |
Filter devices having improved attenuation characteristics
A filter device having improved attenuation and isolation characteristics. In one example the filter device has a common terminal, a first terminal, and a second terminal, and includes a first filter connected between the common terminal and the first terminal, a second filter connected between the common terminal and the second terminal, and an additional circuit including at least three IDT electrodes each connected to a respective one of a corresponding at least three connection points within the filter device, the at least three connection points being selected from a group consisting of the common terminal, the first terminal, the second terminal, a first node disposed between the plurality of first filter elements along a path extending between the common terminal and the first terminal, and a second node disposed between the plurality of second filter elements along a path extending between the common terminal and the second terminal. |
US10135418B2 |
Common mode filter
A common mode filter includes a body portion including a plurality of external electrodes disposed externally on the body portion, a first filter portion disposed within the body portion and including a plurality of coil electrode layers, and a second filter portion disposed within the body portion and including a plurality of coil electrode layers. The first filter portion and the second filter portion are connected to each other in series, and an area of the plurality of coil electrode layers of the first filter portion and an area of the plurality of coil electrode layers of the second filter portion are different from each other. |
US10135415B2 |
Method to reduce frequency distribution of bulk acoustic wave resonators during manufacturing
A method of tuning the resonant frequency of embedded bulk acoustic resonators during manufacturing of an integrated circuit. The rate of change in the resonant frequency of BAWs vs rate of change in top electrode thickness is determined and used to tune the resonant frequency of embedded bulk acoustic resonators during integrated circuit manufacturing. |
US10135408B2 |
Amplifier with termination circuit and resonant circuit
Aspects of this disclosure relate to efficient power amplifiers, such as class-F power amplifiers. A power amplifier transistor can provide an amplified RF signal. A termination can be coupled to an output of the power amplifier transistor and configured to provide a short circuit at a second harmonic. In some instances, the termination circuit can provide an open circuit at a third harmonic. A resonant circuit can be coupled to the output terminal of the power amplifier transistor and configured to provide an open circuit at the third harmonic. In certain embodiments, an input termination circuit coupled to an input terminal of the power amplifier transistor can provide a short circuit at the second harmonic. The power amplifiers of this disclosure can be implemented, for example, in envelope tracking applications. |
US10135404B2 |
Calibration of push-pull amplifier to a low second order distortion
An integrated circuit comprises a first amplifier circuit with a push-pull amplifier configured to be calibrated to a low second order distortion. The integrated circuit further comprises a second amplifier circuit with at least one push-pull amplifier, wherein a size ratio between sizes of the transistors is adjustable by adjusting the size of at least one transistor device. The size ratio can be consecutively adjusted to a plurality of values, and for each value, a first output signal of a push-pull amplifier with an applied test signal and a second output signal of a push-pull amplifier without applied test signal, are determined. The size ratio for which a difference between the push-pull amplifier output signals is closest to zero is determined, and the push-pull amplifier of the first amplifier circuit is calibrated in dependence of the determined size ratio. |
US10135400B2 |
Method and apparatus for improving signal quality in electronic device
A method and an apparatus for improving signal quality through noise detection in an electronic device are provided. The electronic device may include a power amplifier configured to amplify and output a transmitted signal, a noise detector configured to detect noise in a receiving band by the power amplifier and to output a power level of the detected noise, and a processor configured to acquire the power level of the noise through the noise detector, acquire control information to change the output power of the power amplifier based on the power level of the noise, and control the output power of the power amplifier based on the control information. |
US10135396B2 |
Fiber-optic node with forward data content driven power consumption
Methods and systems for modulating an amplifier power supply to efficiently attain amplified RF output power with much lower power dissipation than existing amplifiers. In a cable television (CATV) network, a processor receives a signal to be amplified by an amplifier at a location remote from the processor. A bias point of the amplifier may be variably modulated based on peaks of an input signal to reduce amplifier dissipation. |
US10135391B2 |
Oscillation circuit, electronic apparatus, and moving object
An oscillation circuit includes an oscillating circuit adapted to oscillate a resonator element, a capacitance circuit connected to the oscillating circuit, and capable of correcting an oscillation frequency of the oscillating circuit, a logic circuit to which a signal output from the oscillating circuit is input, and which is capable of correcting a frequency of the signal, and a control circuit adapted to control an operation of the capacitance circuit and an operation of the logic circuit. |
US10135389B2 |
Photovoltaic sleeve for street lights and the like
A photovoltaic panel system for assembly to an outdoor column which is ergonomic in design, modular in structure and has features of connection that are protected from the outdoor elements. The assembly comprises one or more housings, each housing comprising a photovoltaic panel extending between two collars and each collar being hinged to allow the collars to be placed around the column. The also includes an extension section extending beyond one collar at one end of the housing, and which has means to secure the section to the column and having a dimension of less than each collar. The collar of one housing extends over the extension piece of the neighboring housing to cover the column securement means and protect the securement means from the outside environment. |
US10135382B2 |
Motor control device
A motor control device calculates a velocity difference based on a velocity command and a velocity detection value of a motor and an excitation current common phase voltage difference based on an excitation current command value and an excitation current detection value, and judges that demagnetization occurs when the following conditions are all met: the excitation current common phase voltage difference exceeds a voltage threshold; the velocity difference exceeds a velocity threshold; and acceleration is being performed. |
US10135379B2 |
State display device of industrial machinery and power conversion device
An LED indicator 4 connected to industrial machinery including an inverter 1, includes: an LED substrate 8 into which a display control signal according to a state relating to the industrial machinery is input; and a plurality of displays 31, 32, and 33 configured to display in a lighting state corresponding to a state of the industrial machinery, on the basis of the display control signal input by the LED substrate 8. The plurality of displays 31, 32, and 33 each include a partially circular-arc shape, and are generally arranged in an approximately annular shape. The plurality of displays 31, 32, and 33 include the two displays 31, 32 that generally configure a half ring at one side of the approximately annular shape, and the one display 33 that generally configures a half ring at the other side of the approximately annular shape. |
US10135378B2 |
V/F control method for suppressing current oscillation of induction motor
The present invention provides a V/F control method for an induction motor comprising: extracting a reactive current and an active current and performing a differential calculation on them respectively to obtain a differential of the reactive current and a differential of the active current; multiplying the differential of the reactive current and the differential of the active current by a first coefficient and a second coefficient respectively; obtaining the sum of the result of multiplying the differential of the reactive current by the first coefficient and the result of multiplying the differential of the active current by the second coefficient; applying low-pass filtering on the sum to obtain a compensation; and superposing the compensation onto an original given angular frequency to perform V/F control. |
US10135372B2 |
Methods and apparatus for soft operation of transformers using auxiliary winding excitation
An apparatus includes a magnetizing circuit configured to be coupled to a transformer and to selectively provide a magnetizing current to the transformer and a control circuit configured to cause the magnetizing circuit to provide the magnetizing current following disconnection of the primary winding of the transformer from the power source. The magnetizing circuit may be configured to provide the magnetizing current from a first source following disconnection of the primary winding from a second source. The transformer may include a first transformer and the apparatus may further include a second, higher impedance transformer coupled between the second source and the first transformer. In further embodiments, the magnetizing circuit may include a solid-state converter. |
US10135371B2 |
Door opening/closing device and door opening/closing method
A door opening/closing device includes: a motor; and a control unit that is configured to control a rotation rate of the motor by pulse-width modulation (PWM) control. The door opening/closing device opens and closes a door of a vehicle with power of the motor. The control unit is configured to perform the PWM control on the motor at a PWM frequency set so as to deviate from a resonance point of an installation body on which the motor is installed. |
US10135370B2 |
Interface circuit and electrical appliance system comprising the same
An interface circuit, including: a micro control unit (MCU), an isolated power supply, and a signal isolating circuit. The MCU, the isolated power supply, and the signal isolating circuit are integrated on a circuit board. The output end of the isolated power supply supplies power for circuits. The input end of the isolated power supply is connected to an external input power supply. The A/D conversion input port of the MCU is connected to the analog voltage signals. The MCU is configured to convert the analog voltage signals into pulse width modulation (PWM) signals or variable frequency signals with certain duty cycles, and output the PWM signals or the variable frequency signals to the input end of the signal isolating circuit. The signal isolating circuit is configured to output the PWM signals or the variable frequency signals with certain duty cycles. |
US10135369B2 |
Linear hall effect sensors for multi-phase permanent magnet motors with PWM drive
Low cost linear Hall Effect sensors are used for determining motor shaft positions and generating voltages proportional to the motor shaft positions. The voltages from the linear Hall Effect sensors are compared to a triangle waveform and PWM signals are generated therefrom. A constant current source and constant current sink are used in the triangle waveform generator. The voltages from the linear Hall Effect sensors are adjusted to change the PWM duty cycles used to startup and vary the speed of the motor. Comparators compare the voltages from the Hall Effect sensors and product the PWM signals having duty cycles proportional to the voltage drive requirements of the motor. |
US10135368B2 |
Torque ripple cancellation algorithm involving supply voltage limit constraint
A system for reducing a torque ripple cancellation command is provided and includes a current regulator that provides motor voltage commands to a motor, and a torque ripple cancellation module that generates a torque ripple cancellation command based on input currents to the current regulator. A ramp-down command generator module that provides a ramp-down command to the torque ripple cancellation module is also provided. The ramp-down command is based on a voltage saturation indicator, and a voltage saturation indicator generator that generates a voltage saturation indicator signal. The voltage saturation indicator signal is based on a supply voltage signal and a motor voltage command. |
US10135364B2 |
Systems and methods for generating high voltage pulses
A high voltage pulse generating system has a latching element coupled in between a ferroelectric generator (FEG) and a load, such as a vector inversion generator. Such a latching element prevents the return of current to the FEG when the FEG undergoes mechanical destruction after depolarization, thereby increasing the useful amount of energy extracted from the FEG. In some embodiments, multiple FEGs are configured with multiple latching elements to deliver multiple high-voltage, high-current pulses. |
US10135360B2 |
Power converter
A third power supply circuit subjects a reference voltage to DC-DC conversion to generate a power supply voltage common to a second driver circuit for driving a second switching device and a fourth driver circuit for driving a fourth switching device. Wirings from a substrate on which the third power supply circuit is provided to a substrate on which the second driver circuit and the fourth driver circuit are provided are used by the third power supply circuit to supply the power supply voltage commonly to the second driver circuit and the fourth driver circuit. A first impedance device, a second impedance device, a third impedance device, and a fourth impedance device are provided in a substrate on which the second driver circuit and the fourth driver circuit are provided. |
US10135359B2 |
Hybrid full bridge-voltage doubler rectifier and single stage LLC converter thereof
A hybrid rectifier that works as either a hybrid full bridge or a voltage doubler. Under 220 V AC input condition, the hybrid rectifier operates in full bridge mode, while at 110 V AC input, it operates as voltage doubler rectifier. The hybrid rectifier may be used with a DC-DC converter, such as an LLC resonant converter, in a power supply. With this mode switching, the LLC converter resonant tank design only takes consideration of 220 V AC input case, such that the required operational input voltage range is reduced, and the efficiency of the LLC converter is optimized. Both the size and power loss are reduced by using a single stage structure instead of the conventional two-stage configuration. |
US10135358B2 |
Switching regulator operable to alter feedback based on load
A switching regulator has: a switching device; a rectifying device having the anode thereof connected to an output terminal from which an output voltage is output; an inductor arranged between the switching device and the output terminal; a controller having an error amplifier configured to produce an error signal commensurate with a difference between a voltage commensurate with the cathode voltage of the rectifying device and a reference voltage, the controller using the cathode voltage of the rectifying device as a supply voltage and turning ON and OFF the switching device according to the cathode voltage of the rectifying device; a monitor configured to monitor a current that flows through the inductor; and a current varier configured to increase, based on the result of monitoring by the monitor, a current that flows through the rectifying device with increase in the current flowing through the inductor. |
US10135355B2 |
Inverter DC bus bar assembly
Power inverter assemblies are provided herein for use with motor vehicles. An inverter assembly may have a symmetrical structure configured to convert DC input power to AC output power. The inverter assembly may include a housing enclosing a symmetrical DC input portion, a symmetrical AC output portion, a DC link capacitor, and a gate drive portion having a pair of power modules. The symmetrical DC input portion can include a DC input bus bar sub-assembly to which the DC link capacitor is coupled, and a second DC bus bar sub-assembly that may electrically couple the DC link capacitor with the power modules. The symmetrical AC output portion may include a three phase output AC bus bar sub-assembly to which the power modules can be electrically coupled. A cooling sub-assembly may be provided for cooling the power modules with fluid transfer using a coolant. |
US10135353B2 |
Unidirectional matrix converter with regeneration system
An AC-to-AC matrix converter includes a controlled rectifier input stage, an inverter output stage, and a regenerative unit. The controlled rectifier input stage is electrically connected to a power source and configured to convert AC input power from the power source into DC power. The controlled rectifier input stage may be unidirectional. The inverter output stage is electrically connected to a load and operates to convert the DC power into AC output power, which is then fed into the load. The regenerative unit is electrically connected to the inverter output stage and operates control energy generated by the load in a regenerative mode within the inverter output stage. The controlled rectifier input stage may be isolated from the inverter output stage in the regenerative mode. |
US10135350B2 |
AC/DC converters with wider voltage regulation range
A converter is provided. The converter includes a first DC/DC converter, a non-isolated DC/DC converter and a control circuit. The first DC/DC converter includes a transformer, a primary side inverter and a secondary side rectifier. The primary side inverter and a secondary side rectifier are operable at multiple operating modes. The control circuit determines an operating mode for the primary side inverter or the secondary side rectifier, and controls the primary side inverter or the secondary side rectifier to change its respective operating mode. |
US10135346B2 |
Power supply regulation and bidirectional flow mode
A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. The power converter circuit uses energy conveyed from the primary winding of the transformer through the secondary winding of the transformer to produce an output voltage to power a load. Control circuitry of the power converter circuit initiates conveying a portion of the received energy through the secondary winding back through the primary winding to control a magnitude of the output voltage. For example, if the magnitude of the output voltage is above a desired setpoint value, such as due to a transient load condition or change in the setpoint of the output voltage, the control circuitry reduces the magnitude of the output voltage by conveying excess energy from an output capacitor (that stores the output voltage) through the secondary winding to the primary winding. |
US10135343B2 |
Load responsive jitter
A controller for use in a power converter that includes a current limit generator coupled to receive a feedback signal representative of an output of the power converter and generate an initial current limit signal. The controller includes a modulation circuit coupled to output a modulation signal which is a percentage of the initial current limit signal. An arithmetic operator is coupled to receive the initial current limit and selectively receive the modulation signal and output a current limit. A comparator is coupled to receive a current sense signal representative of a switch current conducted by a primary switch. A drive circuit is coupled to generate a drive signal to control switching of the primary switch to regulate the output of the power converter in response to the comparator output signal, and the drive circuit turns off the primary switch when the switch current has reached the current limit. |
US10135340B1 |
Pass through regulation of buck-boost regulator
A controller may control a buck-boost regulator having an input voltage and an output voltage. The controller may include: circuitry that causes the output voltage of the buck-boost regulator to be at the bottom of a pre-determined voltage window when the input voltage goes below the bottom of the pre-determined voltage window: circuitry that causes the output voltage of the buck-boost regulator to be at the top of the pre-determined voltage window when the input voltage goes above the top of the pre-determined voltage window; and circuitry that causes the buck-boost regulator to pass the input voltage through the buck-boost regulator so as to cause the voltage output of the buck-boost regulator to be at the same level as the input voltage when the input voltage is within the pre-determined voltage window. |
US10135339B1 |
High-speed open-loop switch-mode boost converter
An open-loop switch-mode boost converter includes a switching signal generator circuit that receives a time-varying input signal and outputs a switching signal. A duty-cycle of the switching signal has a first non-linear relationship to an amplitude of the time-varying input signal. An amplifier receives the switching signal and outputs a time-varying output signal, an amplitude of which has a second non-linear relationship to the duty-cycle of the switching signal. The time-varying output signal has a linear relationship to the time-varying input signal based on the first non-linear relationship and the second non-linear relationship. A filter circuit receives the time-varying output signal and outputs a filtered time-varying output signal which has a maximum frequency component that is substantially the same as a maximum frequency component of the time-varying input signal. The switching signal generator circuit is communicatively isolated from the voltage output node and the filter output node. |
US10135333B1 |
Enhanced conduction for p-channel device
A technique for enhancing the conduction of a p-channel device is disclosed. Specifically, a negative charge pump is configured to provide a gate drive voltage to a p-channel device. The negative charge pump creates a negative voltage potential below ground and facilitates increased gate drive for the p-channel device. The gate drive voltage output by the negative charge pump may be selected such that it is optimal for the p-channel device operation. |
US10135328B2 |
Distributed driving system
A step down convertor with a distributed driving system. In one embodiment, an apparatus is disclosed that includes an inductor coupled to an output node. The apparatus also includes first and second circuits. The first circuit can transmit current to the output node via the inductor, and the second can transmit current to the output node via the inductor. The apparatus also includes a third circuit for modifying operational aspects of the first circuit or the second circuit based on a magnitude of current flowing through the inductor. |
US10135321B2 |
Heatsink design with thermal insulator to reduce encoder temperature
An electric motor assembly including a housing, an electric motor supported in a motor compartment of the housing, an encoder operatively coupled to the electric motor and supported in an encoder compartment of the housing, and a heat sink surrounding at least a portion of the encoder, the heat sink in thermal contact with an end cap of the housing at least partially defining the encoder compartment, whereby the heat sink is adapted to absorb heat from the encoder and conduct heat to the end cap. |
US10135320B2 |
Variable performance electric generator
Described is a large, thin frame gas cooled electric generator for power generation, having a gas cooled rotor arranged along a centerline of the generator; a gas cooled core arranged coaxially and surrounding the rotor; a plurality of coils arranged within the core; a support frame arranged to fixedly support the core and rotationally support the rotor; a gas cooling system that circulates a cooling gas within the generator; a pressurizing system that variably pressurizes the cooling medium to a maximum pressure of one bar relative to atmospheric pressure; and a pressure boundary member that surrounds a plurality of the rotor and an entirety of the core and stator windings, the frame configured to operatively contain an internal cooling medium pressure of 2 bar relative to atmospheric pressure. |
US10135319B2 |
Electric machine for vehicle
A vehicle electric machine includes a stator having an end face and a yoke region defining a channel. End windings are adjacent to the end face. An annular cover has inner and outer walls defining an annular cavity configured to receive the end windings. The channel opens into the cavity, and a radial distance between the inner and outer walls is less than or equal to a radial length of the end face. |
US10135318B2 |
Relating to generating your own power
An exercise apparatus for generating electrical power is disclosed comprising a rotor comprising a flywheel comprising a plurality of alternatingly poled magnets arranged radially towards a circumference of the wheel in a circumferential, circular or arc-like configuration and a stator comprising a disc or annulus comprising one or more radially arranged coil units arranged to have a circumferential, circular or arc-like configuration, wherein the stator comprises a printed coil laminate comprising a sheet of insulator material and a printed conductor comprising conductive ink printed upon the sheet of insulator material, wherein the printed conductor is arranged to form a coil unit. The flywheel rotates, in use, relative to the disc to cause the magnets to move relative to the coil unit(s) and generate electrical power in the stator. |
US10135314B2 |
Rotary power generating apparatus and electric generating apparatus
Obtaining of a secure reciprocation of piston magnets and enhance the continuity to obtain a continuous rotary power. The rotary power generating apparatus has the first, second piston magnet members the first, second connecting rods the crankshaft, the first, second guide members and the first, second fixed magnet members and it has the first, second demagnetizing member including demagnetizing rotating boards respectively. The first, second piston magnet members and the first, second fixed magnet members are arranged so that the top pole surfaces and fixed pole surfaces, having the same polarity, opposes each other. The demagnetizing rotating boards has demagnetizing magnet parts, having magnetic forces weaker than the magnetic poles of the top pole surfaces and different from the polarity of the top pole surfaces and the non-magnetic force parts. |
US10135310B2 |
System and apparatus for modular axial field rotary energy device
An axial field rotary energy device can include a housing having coupling structures configured to mechanically couple the housing to a second housing of a second module. In addition, the housing can include electrical elements configured to electrically couple the housing to the second housing. A rotor can be rotatably mounted to the housing. The rotor can include an axis and a magnet. A stator can be mounted to the housing coaxially with the rotor. The stator can include a printed circuit board (PCB) having a PCB layer comprising a coil. |
US10135309B2 |
Electrical machine having a flux-concentrating permanent magnet rotor and reduction of the axial leakage flux
A rotor having a number of tangentially magnetized permanent magnets tangentially evenly distributed and arranged both in the center region and in the outer regions in the axial direction is disclosed. Flux-guiding elements between the permanent magnets guide the magnetic fields of the permanent magnets radially toward the center region of the stator. The flux-guiding elements comprise a plurality of sheets stacked on one another in the axial direction. The sheets in the outer regions are smaller than the sheets in the center region. The sheets arranged in the outer regions are surrounded on their radially outside end by a retaining apparatus. Form-fitting elements transmit centrifugal forces acting on the sheets arranged in the center region are transmitted to the sheets arranged in the outer regions. |
US10135306B2 |
Reluctance motor and flux barrier structure thereof
A reluctance motor and a flux barrier structure thereof are provided. The flux barrier structure is disposed in a rotor, and the flux barrier structure has at least one flux barrier space and a plurality of support bars. The flux barrier space is formed by at least one surrounding wall of the rotor. The support bars are intersected with each other in the flux barrier space, and the support bars are extended from one side of the enclosure wall to the opposite side thereof. |
US10135305B2 |
Multi-mode wireless power transmitter
Some embodiments relate to a multi-mode wireless power transmitter. The transmitter includes an inverter configured to produce at its output a first signal having a first frequency or a second signal having a second frequency. The transmitter also includes a first transmit coil coupled to the output of the inverter and configured to wirelessly transmit power at the first frequency. The transmitter also includes a second transmit coil coupled to the output of the inverter and configured to wirelessly transmit power at the second frequency. The transmitter further includes at least one matching network coupled to the first transmit coil, the second transmit coil, and the output of the inverter. The at least one matching network is configured to provide power to the first transmit coil in response to the first signal and inhibit providing power to the second transmit coil in response to the first signal. |
US10135304B2 |
Supporter
A supporter includes a housing and a guide member formed at one side of the housing. The guide member has an inclined surface. A fixing member faces the guide member to fix an object and a transmission coil is disposed in the housing to wirelessly transmit power. |
US10135303B2 |
Operating a wireless power transfer system at multiple frequencies
A transmitter device in an inductive energy transfer system includes a first transmitter coil operatively connected to a first resonant circuitry. A receiver device includes a first receiver coil operatively connected to a first resonant circuitry. The first transmitter coil and the first receiver coil form a first transformer. The transmitter device, the receiver device, or both the transmitter and receiver devices can also include an auxiliary coil or inductor, which may form an auxiliary transformer. Energy can be transferred from the transmitter device to the receiver device using the first transformer or the auxiliary transformer. The transfer of energy may be adaptively adjusted based on the efficiency of the energy transfer. For example, the transfer of energy can be adjusted based on the operating conditions of the load. |
US10135300B2 |
Non-contact power reception apparatus
A non-contact power reception apparatus comprises a power reception coil which receives AC power supplied from a power transmission apparatus in a non-contact manner; a diode full-wave rectifier circuit which inputs AC power from a resonance circuit to first and second input ends and outputs DC power between an output end and a reference potential end; a common mode filter which comprises first and second coils wound around a common magnetic body in parallel in the same direction for only the same number of turns, connects one end of the first coil with the output end of the diode full-wave rectifier circuit and connects one end of the second coil with the reference potential end; a smoothing capacitor connected between the other end of the first coil of the common mode filter and the other end of the second coil; and a load connected with the smoothing capacitor in parallel. |
US10135299B2 |
Elevator wireless power transfer system
An elevator system includes a car arranged to move along a hoistway and a wireless power transfer system that includes a secondary resonant coil mounted to the car and configured to induce an electro-motive force and output a voltage or current, and a plurality of primary resonant coils distributed along the hoistway and configured to transmit power to the secondary resonant coil when a primary resonant coil is adjacent to the secondary resonant coil and is selectively energized. A control system of the wireless power transfer system is configured to select and energize the plurality of primary resonant coils, and includes a plurality of switches with each one being associated with a respective one of the plurality of primary resonant coils. The plurality of switches are configured to selectively close to energize a selected one of the plurality of primary resonant coils associated with a location of the car. |
US10135298B2 |
Variable frequency receivers for guided surface wave transmissions
Disclosed herein are various embodiments for a guided surface waveguide probe and a guided surface wave receiver, where the guided surface wave receiver comprises processing circuitry that (a) identifies at least one frequency from a plurality of available frequencies associated with a transmission of Zenneck surface waves along a terrestrial medium, and (b) adjusts a frequency at which the guided surface wave receiver receives electrical energy from the Zenneck surface waves via the terrestrial medium to a predetermined frequency. |
US10135296B2 |
Coil structure for wireless power transmissions and wireless power transmitter including the same
A coil structure for wireless power transmissions includes: a body having a cylindrical shape; an upper transmission coil formed on the body and configured to generate an electromagnetic field passing through an upper surface of the body; and at least one side transmission coil formed on the body and configured to generate an electromagnetic field passing through a side surface of the body. |
US10135291B2 |
Method for charging one or more electronic devices and charging device therefor
A charging device for charging one or more electronic devices is provided. The charging device includes a charging unit configured to include a first charging unit, and a second charging unit, the second charging unit protruding upward from a surface of the charging unit at an angle greater than or equal to a predetermined reference angle with respect to the surface of the charging unit, wherein, if at least one of the first charging unit and the second charging unit is arranged to face at least one electronic device in a face-to-face manner, the at least one of the first charging unit and the second charging unit supplies a wireless power to the at least one electronic device. |
US10135289B2 |
Wireless power receiver and method for controlling the wireless power receiver
A wireless power receiver and a method for controlling the wireless power receiver are provided. The wireless power receiver includes a resonant circuit configured to receiving electromagnetic waves from a wireless power transmitter and output alternate current (AC) power, a rectifier configured to rectify the AC power received from the resonant circuit into direct current (DC) power, a DC/DC converter configured to convert the DC power received from the rectifier and output the converted DC power, a battery, a charger configured to charge the battery with the converted DC power, and a controller configured to, upon detection of an event indicating a change in impedance at an output end of the DC/DC converter, control the impedance at the output end of the DC/DC converter and keep the impedance constant by adjusting voltage at the output end of the DC/DC converter. |
US10135282B2 |
Storage battery control apparatus, power storage system, and method for charging storage battery
A storage battery control apparatus is provided with which a system capable of charging a storage battery using power from an electric power system and also charging the storage battery using power from a power generation system is inexpensively built. A storage battery control apparatus includes a switching control unit and a switch for connecting a CT to a current sensor connecting portion in a power generation system during a period during which a storage battery is charged using power from an electric power system, and for connecting a CT to the current sensor connecting portion during a period during which the storage battery is charged using power from the power generation system. |
US10135279B2 |
Method and apparatus of battery charging
Embodiments of the present application provide a method of battery charging, which relates to the field of battery charging and is capable of effectively improving safety performance of the battery. The method includes: obtaining an anode open circuit voltage curve, an anode impedance curve, a lithium deposition potential threshold and a state of charge, corresponding to a battery; determining a current anode open circuit voltage according to the anode open circuit voltage curve and the state of charge; determining a current anode impedance according to the anode impedance curve and the state of charge; determining a current charging current according to the current anode open circuit voltage, the current anode impedance and the lithium deposition potential threshold; and charging the battery according to the current charging current. Embodiments of the present application are applicable to a rapid battery charging process. |
US10135278B2 |
Controller charging adapter and method for charging mobile terminal
The present disclosure provides a charging method and a charging system. The charging system includes a charging adapter and a mobile terminal, the charging adapter includes a second controller and an adjusting circuit, and the mobile terminal includes a cell detection circuit and a cell. The cell detection circuit acquires a voltage value of the cell, and sends the voltage value of the cell to the second controller, the second controller searches a threshold range table for a current adjusting instruction matched with a threshold range containing the voltage value of the cell, and sends the current adjusting instruction to the adjusting circuit, and the adjusting circuit performs a current adjustment according to the current adjusting instruction and outputs a power signal after the current adjustment, in which the threshold range table records threshold ranges and current adjusting instructions having a one-to-one mapping relation with threshold ranges. |
US10135276B2 |
Discharging circuit with voltage detection that selectively couples second node to ground
A discharging circuit discharging electrical charges of an external energy storage device coupled to a power transmission line coupled between a power supply device and a load is provided. The discharging circuit includes a current-limiting unit, an internal energy storage unit, a voltage detection unit and a discharge unit. The current-limiting unit is coupled between the power transmission line and a first node. The internal energy storage unit is coupled between the first node and a ground node. The ground node receives a ground level. The voltage detection unit detects a level of the first node. The discharge unit is coupled between the power transmission line and a second node. When the level of the first node is less than a pre-determined level, the voltage detection unit directs the second node to couple to the ground node. |
US10135274B2 |
Charging circuit and electronic device having the same
A charging circuit for charging a battery of an electronic device includes a first switch having one side connected to an interface into which external power is input, a second switch having one side connected to the other side of the first switch, a third switch having one side connected to the other side of the second switch, a fourth switch having one side connected to the other side of the third switch, a flying capacitor located between the other side of the first switch and the other side of the third switch, an inductor having one side connected to the other side of the second switch, and a control circuit for controlling a charging function of the battery by controlling on/off of the first switch, the second switch, the third switch and the fourth switch. |
US10135271B2 |
Multi-functional portable power charger
A portable charger capable of jump starting a 12 V car battery includes a charger battery, a jump start circuit operatively electrically connected with the charger battery and with an ignition power outlet, and a microcontroller for coordinating safety functions to establish or interrupt the operative electrical connection of the jump start circuit with the ignition power outlet. The ignition power outlet comprises a positive power socket, a negative power socket, a positive sensing socket and a negative sensing socket. The sensing sockets are electrically isolated from the power sockets, and the microcontroller senses voltage across the sensing sockets and is configured to interrupt the operative electrical connection of the jump start circuit to the ignition power outlet until proper voltage is sensed across the sensing sockets. |
US10135267B2 |
Secondary battery system
Provided is a secondary battery system capable of suppressing degradation of a battery capacity. When it is determined that a battery pack is brought into a non-use state, a battery state detection unit in a battery controller compares an SOC of the battery pack calculated by a battery state operation unit and a standard SOC. When the SOC of the battery pack is higher than the standard SOC, the battery state detection unit in the battery controller calculates a capacity value in which the SOC of the battery pack becomes lower than the standard SOC, from a difference of the SOC of the battery pack and the standard SOC, and transmits the calculated capacity value to a cell controller. The cell controller discharges the battery pack, on the basis of the capacity value transmitted from the battery state detection unit. |
US10135266B2 |
Battery system for motor vehicle with loss-free switching and automatic charge equalization
A battery system having a battery having at least one first battery element, at least one second battery element and a center tap between the at least one first and the at least one second battery element, a power changeover switch having a plurality of switching elements for changing over between the at least one first battery element and the at least one second battery element, and at least one pair of output terminals that is electrically connected to the battery, wherein the center tap has a first capacitive store arranged on it that has a store voltage that appears over an appropriate period in accordance with a first and/or second battery element voltage provided by the first and/or second battery element, wherein during the period in which the store voltage appears, a store current decreases from a maximum value to a value of zero. |
US10135264B2 |
Electric power supply system for vehicle
An electric power supply system for a vehicle includes a first battery, a second battery connected in parallel with the first battery, a voltage sensor configured to detect a voltage value of the second battery, a current sensor configured to detect a current value of the second battery, an electronic control unit configured to make a voltage of the alternator fluctuate according to a predetermined voltage waveform, and calculate internal resistance of the second battery using the voltage value and the current value of the second battery respectively detected by the voltage sensor and the current sensor while the electronic control unit is making the voltage of the alternator fluctuate according to the predetermined voltage waveform. |
US10135263B2 |
Method and apparatus for charging a battery
A method is provided comprising: detecting a connection between an electronic device and a battery charger; transmitting to the battery charger a first request for at least one of a first voltage level and a first current level; receiving from the battery charger a signal; and charging a battery of the electronic device with the signal. |
US10135262B2 |
Authorization in a networked electric vehicle charging system
Networked electric vehicle charging stations for charging electric vehicles are coupled with an electric vehicle charging station network server that performs authorization for charging session requests while the communication connection between the charging stations and the server are operating correctly. When the communication connection is not operating correctly, the networked electric vehicle charging stations enter into a local authorization mode to perform a local authorization process for incoming charging session requests. |
US10135261B2 |
Power transmitting apparatus, power receiving apparatus, control methods thereof, and program
A power transmitting apparatus that transmits power to a power receiving apparatus executes intermittent wireless transmission of power. The power transmitting apparatus operates according to one of a first power transmitting method including detecting a signal load-modulated by the power receiving apparatus using an ID in response to the transmitted power during the intermittent transmission and a second power transmitting method including transmitting the power having modulated the power according to an ID determined in advance so that the power receiving apparatus detects the ID determined in advance. |
US10135260B2 |
Method for avoiding signal collision in wireless power transfer
A wireless power transmitter is provided that includes a power conversion unit configured to form a wireless power signal for power transmission, and a power transmission control unit. The power transmission control unit is configured to control the power conversion unit to receive a first packet from a first wireless power receiver and a second packet from a second wireless power receiver in the same time slot, detect a collision between the first packet and the second packet, and control the power conversion unit to receive at least one of the first packet from the first wireless power receiver and the second packet from the second wireless power receiver in at least one time slot if the collision is detected at the same time slot. |
US10135259B2 |
Wireless power transfer—near field communication enabled communication device
Various configurations and arrangements of various communication devices are disclosed. Various integrated circuits that form these communication devices can be fabricated onto one or more semiconductor substrates, chips, and/or dies using a high voltage semiconductor process, a low voltage semiconductor process, or any combination thereof. Some of these high voltage and/or low voltage semiconductor process integrated circuits can be fabricated along with other high voltage and/or low voltage semiconductor process integrated circuits of other modules onto a single semiconductor substrate, chip, and/or die. This allows the low voltage semiconductor process integrated circuits and/or high voltage semiconductor process integrated circuits of one module to be combined with low voltage semiconductor process integrated circuits and/or high voltage semiconductor process integrated circuits of another module of the communication device. |
US10135252B2 |
Intra-module DC-DC converter and a PV-module comprising same
The present invention relates to an intra-module DC-DC power converter and a Photovoltaic (PV) module comprising same. The switching frequency of said intra-module DC-DC power converters may be 500 kHz. The PV module may have a controller and a plurality of switches for allowing each individual string of said PV module to be connected to one corresponding DC-DC converter, or for allowing two or more strings of said module to be connected in series and to apply the voltage of the combined string to a single DC-DC converter. The input voltage range of the DC-DC converters may be 10V to 30V, and the output voltage range may be 120V. The DC-DC converters may be connected in series or in parallel. Multiple such PV panels may be connected in a DC-grid. |
US10135251B2 |
Apparatus and method for controlling a microgrid
Aspects and embodiments described herein are directed to power interface devices and methods. In one aspect, a method for controlling a microgrid is provided. The microgrid includes a power interface device coupled to one or more microgrid elements comprising power sources and loads. The method includes determining, by the power interface device, a mode of operation of the microgrid, determining a power load of the one or more microgrid elements, and based on the mode of operation of the microgrid and the power load of the one or more microgrid elements, adjusting, by the power interface device, a frequency of a voltage of the power interface device to control the one or more microgrid elements. |
US10135245B2 |
Apparatus and method for controlling the energy usage of an appliance
A system and method for controlling an appliance with respect to the appliance's energy usage, in which a signal relating to the energy used by the appliance is received, and a determination of whether to continue or interrupt a cycle of operation being conducted by the appliance is made based at least on part upon the receipt of the signal. |
US10135243B2 |
Management device and power storage system
In management device (10) for managing power storage device (20) in which a plurality of power storage blocks (B1 to B3) in which a plurality of series circuits of fuses and power storage cells is connected in parallel is connected in series, equalization controller 15 performs, when a voltage difference among the power storage blocks exceeds a set voltage difference, a control for equalizing power storage blocks (B1 to B3). Fuse blowout determination unit 18 determines, based on a frequency of equalization performed by equalization controller 15, whether one of the fuses is blown. |
US10135241B2 |
Power converter for a solar panel
A solar array power generation system includes a solar array electrically connected to a control system. The solar array has a plurality of solar modules, each module having at least one DC/DC converter for converting the raw panel output to an optimized high voltage, low current output. In a further embodiment, each DC/DC converter requires a signal to enable power output of the solar modules. |
US10135238B2 |
Monitoring circuit and electronic device
A monitoring circuit includes a configuration interface, a control circuit, a detection circuit, a direct current voltage source, a switch circuit, and a first resistor. A first end of the configuration interface is separately connected to the direct current voltage source and an input end of the switch circuit; a second end of the configuration interface is separately connected to a first end of the first resistor and an output end of the switch circuit; a control end of the switch circuit is connected to the control circuit; a second end of the first resistor is grounded; the detection circuit is connected to the first end of the first resistor; the configuration interface is configured to connect to a dry contact; the control circuit controls closing or opening of the switch circuit; and the detection circuit detects a voltage between two ends of the first resistor. |
US10135231B2 |
Connector for an electrical device housed in a recessed box
A connector (1) adapted to connect at least one electrical conductor to an electrical accessory that is intended to be housed in an electrical box (200) for flush mounting in a wall (300), the connector including: a base (10) that defines an inlet opening for the electrical conductor; and at least one connection element that is fastened to the base and that includes an inlet terminal for connecting the electrical conductor, and an outlet terminal that is accessible via the front of the base for connecting the electrical accessory. The connector includes at least two distinct arms (14, 16) that extend from the base, towards the front, and having free ends that present catch elements (15, 17) for catching on the wall. |
US10135230B1 |
Electrical connector with removable spacer
An electrical connector for receipt of EMT or rigid conduit has a body with first and second body portions, the first portion having a hollow interior with an inner smooth cylindrical surface having a radius of curvature dimensioned for receipt of a rigid electrical conduit, a removable spacer having an inner smooth surface with a radius of curvature substantially corresponding to a radius of curvature of an outer surface of an EMT, the removable spacer also having an outer surface corresponding to the inner smooth cylindrical surface of the first body portion, and wherein the second body portion forms a stop adjacent the second end of the first body portion so as to contact a terminating end of a rigid conduit or EMT. The second body portion has a central bore for the passage of electrical conductors. |
US10135229B2 |
Protector and wire harness
A protector is equipped with a first bent portion protecting part protecting a horizontally-bent first bent part of a wire group; a second bent portion protecting part protecting a downwardly-bending second bent part; a first cover part; a second cover part; and a first locking part, the first cover part being integrally linked to the first bent portion protecting part and being closed and locked, and the second cover part being integrally formed with, and developed on the same plane as, the first cover part and being bent downwardly and closed and locked after the first cover part is closed, and the second cover part being equipped with a second locking part. |
US10135224B2 |
Apparatus and method of forming chip package with waveguide for light coupling having a molding layer for a laser die
An apparatus and method of forming a chip package with a waveguide for light coupling is disclosed. The method includes depositing an adhesive layer over a carrier. The method further includes depositing a laser diode (LD) die having a laser emitting area onto the adhesive layer and depositing a molding compound layer over the LD die and the adhesive layer. The method still further includes curing the molding compound layer and partially removing the molding compound layer to expose the laser emitting area. The method also includes depositing a ridge waveguide structure adjacent to the laser emitting area and depositing an upper cladding layer over the ridge waveguide structure. |
US10135223B2 |
Optical module
An optical module includes: a wiring substrate that has a wiring pattern including a connecting portion and is arranged on an optical subassembly so as to be electrically connected thereto; and a flexible insulating layer formed between the optical subassembly and the wiring substrate. The optical subassembly includes: a conductive stem that has a surface opposed to the wiring substrate, the conductive stem being shaped so that the surface has a through hole opened therein and being connected to a reference potential; and a signal lead for transmitting a signal, the signal lead passing through the through hole while being electrically insulated from the conductive stem. The signal lead passes through the flexible insulating layer to be joined to the connecting portion. The flexible insulating layer is in contact with the connecting portion, the signal lead, and the surface of the conductive stem. |
US10135222B2 |
VCSELs and VCSEL arrays designed for improved performance as illumination sources and sensors
A VCSEL package including a VCSEL, a housing, containing the VCSEL, and a diffuser operably attached to the housing and configured to receive an emitted beam of light from the VCSEL and produce a beam of predetermined angular divergence. The housing may be a PLLC package, a ceramic package, or a TO-style package. The diffuser could be a substantially planar diffuser sheet, which in some cases may be comprised of glass or plastic. In some embodiments, the diffuser could be a diffractive optical element or holographic light shaping diffuser. In some embodiments, the diffuser can be designed to produce a beam with an illumination full angle of up to about 90 degrees. |
US10135219B2 |
Gain control for arbitrary triggering of short pulse lasers
A device may include a transient optical amplifier having stored energy associated with a lower boundary and an upper boundary of a dynamic equilibrium, and a target level defining stored energy for amplifying a high energy input pulse to a higher energy output pulse. The device may include a pump to increase the amplifier's stored energy, and a source to pass low energy control pulses or the high energy input pulse to the amplifier. The device may include a controller configured to maintain the amplifier's stored energy in the dynamic equilibrium by requesting low energy control pulses for the amplifier at a high repetition frequency. The controller may wait to receive a trigger. Based on receiving the trigger, the device may stop passing low energy control pulses to the amplifier, and may pass the high energy input pulse to the amplifier when the amplifier's stored energy reaches the target level. |
US10135217B2 |
Optical device and excimer laser annealing equipment
The embodiments of the present disclosure provide an optical device and an excimer laser annealing equipment. The optical device includes: a light source; a transparent window spaced apart from the light source by a distance; and an optical system disposed between the light source and the transparent window. The transparent window is configured such that emergent light of the light source is vertically incident onto the transparent window after passing through the optical system. |
US10135216B1 |
Monitoring method and apparatus for surgical laser fibers
A method and apparatus for detecting excess absorption of therapeutic radiation at a bend in a fiber, and the possibility of imminent fiber failure, by monitoring stimulated radiation emission by phosphors in a coating of the fiber, the stimulated emission being caused by leakage of an aiming beam through the cladding into the coating. To accomplish the detection, a conventional monitoring method and equipment are modified to detect the absence of, or an interruption in, the stimulated emission, which is caused by separation of the coating from the cladding in the area of the bend as a result of the excess absorption. |
US10135213B2 |
Wearable sensor system with an article of clothing and an electronics module, article of clothing for a wearable sensor system, and electronics module for a wearable sensor system
A wearable sensor system has an article of clothing and an electronics module. The electronics module includes a housing, a circuit board, and a contact element. The article of clothing includes a glove, an operational element, and a holder for attaching the electronics module having a receiving space and a mating contact. The guide being configured such that the contact element performs one of a linear movement and a pivoting movement toward the bottom when moving to the final position with respect to the mating contact. Further, an article of clothing and an electronics module for the wearable sensor system are shown. |
US10135208B2 |
Hinged low profile modular electrical power bar for a vehicle
Systems and apparatus are disclosed for a hinged low profile modular electrical power bar of a vehicle. An example disclosed vehicle power bar includes a connector including first and second sockets. The vehicle power bar also includes first and second pins. Additionally, the vehicle power bar includes a first busbar rotatably coupled to the connector via the first pin coupled to a first terminal of the first busbar and inserted into the first socket, and a second busbar rotatably coupled to the connector via the second pin coupled to a second terminal of the second busbar and inserted into the second socket. |
US10135206B2 |
Electrical connector having a base with an inverted T-shaped channel
Electrical connectors are described. More particularly, electrical connectors including a plurality of contacts are described. Both connector plugs and sockets are described. Electrical connectors that are suitable for mounting on a printed circuit board and electrical connectors that include a printed circuit board are described. |
US10135205B2 |
Communication cable
In a communication cable having a multi-core cable with a plurality of core cables in which a pair of signal lines are covered with an insulator, in which the insulator is covered with a shield tape, and in which the shield tape is covered with a wrapping tape, and having a connector formed on an end portion of the multi-core cable, the communication cable further has a substrate to which each core cable is connected; a first joint portion at which the signal line and the substrate are solder-joined to each other; a second joint portion at which the shield tape and the substrate are solder-joined to each other; and a resin portion which molds a connection portion between the core cable and the substrate, and the connection portion excluding the first joint portion and the second joint portion is molded by the resin portion. |
US10135200B2 |
Embedded platform in electrical cables
A platform embedded in an electrical cable that stores and transmits data or information related to the electrical cable is designed. The embedded platform includes a non-volatile memory element to store product data describing at least one of electrical characteristics and certifications of the electrical cable. The platform also includes a current detector to detect a current that flows in the electrical cable based on a magnetic field generated by the current. The platform further includes a communication circuit to transmit at least one of the stored product data and information related to the detection of the current to a remote device. |
US10135198B2 |
Electrical connector assembly
An electrical connector assembly includes: a circuit board; a connector, located in front of the circuit board and electrically connected to the circuit board; a chip, provided on the circuit board, and electrically connected to the circuit board; a metal shell, covering the connector and the circuit board; and an inner film, made of a high heat conductive material, and wrapping the chip and the circuit board. At least a part of the inner film is located between the metal shell and the circuit board. When the chip generates a great amount of heat, the inner film, serving as a medium, can absorb the heat rapidly and conduct the heat to the metal shell so as to dissipate the heat outside. |
US10135197B2 |
Electrical connector having common grounding
An electrical connector includes an insulative housing defining a front cavity for receiving a plug and a rear cavity, a terminal assembly assembled in the rear cavity, and a ground member. The terminal assembly includes an upper terminal module, a lower terminal module, and a shielding module sandwiched therebetween. The upper terminal module includes a pair of upper ground terminals. The lower terminal module includes a pair of lower ground terminals. The shielding module includes a metallic shielding plate. The ground member is associated with the shielding module to mechanically and electrically connect at least one of the upper ground terminals and the lower ground terminals with the shielding plate. |
US10135195B1 |
RJ-45 plug for high frequency applications
A communications plug, for high frequency applications, includes a housing, a plurality of contact conductor blades and insulation displacement contacts. A printed circuit board has a plurality of transmission paths connecting corresponding blades and insulation displacement contacts. The plug has a major coupling including coupling between the blades. The PCB further includes a compensation coupling arrangement that provides a smaller coupling as compared to the major coupling. The compensation coupling is no more than one half of the major coupling and has a different polarity from that of the major coupling. The compensation coupling is connected to a set of transmission paths at a location between the major coupling and the insulation displacement contacts. |
US10135190B2 |
Electrical plug and socket securement system
An electrical plug fastener or retention mechanism comprising a system of binding or securing electrical plugs or other connectors to avoid unintentional or accidental disconnection. The retention mechanism comprises a base for connecting to a first cord and a clamp for connecting to a second cord. The clamp and base may be connected via at least one extension bar. The base may be two separate halves with means for connecting to one of the power cords and the clamp may comprise a fixed half and a moveable half enabled to lock to the fixed half. |
US10135187B2 |
Electrical connector assembly and electrical connector assembly pair
A plug connector includes a locking member of the plug having extension bases fixed to a second plug housing and cantilever extensions extending from the respective extension bases in the direction of a plugging operation. The cantilever extensions each have an engaged hole to receive corresponding one of protrusions protruded from a receptacle housing. The cantilever extensions are each resilient enough to bend in the protruding direction of the corresponding protrusion. A releasing member allows the protrusions to relatively move in the directions of plugging and unplugging operations. When the releasing member is slid relative to the second plug housing, the releasing member bends the cantilever extensions in the protruding directions of the respective protrusions and thereby release engagement of the protrusions with the engaged holes. |
US10135186B2 |
Electrical connection device
An electrical connection device includes: a first insulating body; a first conductor is accommodated in the first insulating body, a foremost end of a lower surface of the first conductor is provided with a lower edge, and a contact area extends backward from the lower edge; a second mating element including a second conductor located below the first conductor and provided with a front edge and a rear edge and a top surface connected to the front edge and the rear edge; an elastic body located above the first conductor; and a pressing member presses the elastic body and provides a downward acting force such that the first conductor downward abuts the second conductor, the contact area is fully attached to the top surface, the lower edge is located between the front edge and the rear edge and abuts the top surface, and the rear edge abuts the contact area. |
US10135185B2 |
Connector unit
Provided is a connector unit which can prevent damage to respective parts during rotation of a lever member. A fitting portion of a female outer housing fits with a to-be-fitted portion of a male outer housing, wherein timing of the fitting is after timing of insertion of a guide projection into a guide groove and timing of releasing of a restriction arm by a release projection. Fitting of the fitting portion with the to-be-fitted portion allows an operator to feel a change in force required for operation during moving the male outer housing and the female outer housing toward each other. By rotating the lever member after the operator felt the change in the force, damage to the guide projection and the restriction arm and such can be prevented. |
US10135184B2 |
Lever-type connector
A lever-type connector (10) includes a lever (40) provided with a cam groove (41), a first housing (30) having the lever (40) movably mounted thereon, and a second housing (60) provided to be connectable to the first housing (30). The second housing (60) includes a lever shaft (64) movable along the cam groove (41) according to a movement of the lever (40), a lever fitting portion (72) to which a peripheral edge part of the lever (40) is fit, and a bracket mounting portion (66) disposed behind an entrance space (71) for the lever (40) and provided with a locking claw (67). The locking claw (67) is disposed between the lever shaft (64) and the lever fitting portion (72) when the second housing (60) is viewed from a connecting direction. |
US10135179B2 |
Power supply system
A system for providing power to a cordless appliance is provided. The system includes a coupler, and a complementary coupler on the appliance is also present. The coupler has symmetrically configured concentric power terminals, which are connected to a main power source in use, and a magnetic coupling region disposed concentrically around an outer periphery of the power terminals. The complementary coupler has complementary power terminals configured to engage with the symmetrically configured concentric power terminals of the coupler, and an engaging region disposed concentrically around an outer periphery of the complementary terminals. A magnetic force provides a mutual attraction between the magnetic coupling region and the engaging region, thereby engaging the power terminals and complementary power terminals and establishing an electrical connection between the coupler and the appliance. |
US10135178B2 |
Electrical device assembly and electrical connector therewith
An electrical device assembly includes a first connector assembly coupled with a second connector assembly via a sliding arrangement. The first connector assembly includes a first terminal module and a first coupling device. The first terminal module includes a first mating face and the first contacts exposed thereon. The first coupling device includes the sliding rail forming a sliding slot with an insertion opening including a sliding opening so as to expose the sliding slot to an exterior. |
US10135172B1 |
Connector position assurance member
A connector position assurance device having a base portion and a pair of resiliently deformable beams. Cam engaging members extend from side walls of the pair of resiliently deformable beams. A first lockout projection engagement member is provided proximate the beam front ends of the pair of resiliently deformable beams and extends between the first beam and the second beam. A second lockout projection engagement member is spaced from the base front end and spaced from the first lockout projection engagement member. The second lockout projection engagement member extends between the first beam and the second beam. A lockout projection receiving opening is formed by the first lockout projection engagement member, the second lockout projection engagement member, and portions of the pair of resiliently deformable beams. |
US10135171B2 |
Connector
It is aimed to provide a connector capable of preventing the breakage of side walls (18). A housing (10) includes a mounting hole (17) into which a retainer (60) is mounted, and side walls (18) for closing the mounting hole (17) from opposite sides. The side wall (18) is provided with lock receiving portions (22). Lock protrusions (68) configured to slide while deflecting the side walls (18) in the process of inserting the retainer (60) into the mounting hole (17) and release the side walls (18) from a deflected state and enter the lock receiving portions (22) when reaching positions corresponding to the lock receiving portions (22) are provided on outer surfaces of the retainer (60). Both end corner parts of the lock protrusion (68) in a sliding width direction (Y) perpendicular to a sliding direction on the side wall (18) are chamfered. |
US10135167B2 |
Contact lamella part and plug connector with contact lamella part
A contact lamella part for transmitting an electrical current or signal between a first contact element, such as a contact socket, and a second contact element which can be coupled thereto, such as a contact pin, having a plurality of contact lamellae extending substantially parallel to one another in a longitudinal direction (L), each having a contact zone for contacting the first contact element and/or the second contact element, wherein the contact zone of a first contact lamella is arranged offset in the longitudinal direction (L) in relation to the contact zone of a second contact lamella. |
US10135165B2 |
Contact structure for high reliability electrical connector
This application relates to electrical connectors. An electrical connector, according to some embodiments, comprises a housing, a slot formed in the housing, the slot comprising an entrance, and first and second rows of conductive elements arranged in the housing. Each conductive element comprises a mounting end, a mating end opposite the mounting end, and an intermediate portion that extends between the mounting end and the mating end. The mating end comprises first and second contact portions projecting into the slot, and the first contact portion is closer to the entrance than the second contact portion. The first and second contact portions are capable of flexing along a width direction of the slot between a first position and a second position, the second contact portions form a receiving space between the first and second rows of conductive element, and the receiving space is smaller at the first position than the second position. |
US10135164B1 |
Electrical connector with adjustable insertion height and orientations
An electrical connector with adjustable insertion height and orientations includes a first circuit board, an insulating base with a plurality of conduction terminals electrically connected to the first circuit board, a USB type-C connector been set on the insulating base having an opening and twenty-four connection terminals, and a second circuit board with twenty-four connection terminals and a plurality of transferring terminals for electrically connecting to the USB type-C connector and the insulating base, wherein the height of the insulating base with respective to the first circuit board can be adjusted. The height of the USB type-C connector with respective to the first circuit board therefore can be adjusted. The relative orientation between the opening of the mentioned USB type-C and the normal of the first circuit board plane also can be adjusted through re-arranging the configuration of the plurality of conduction terminals on the insulating base. |
US10135163B2 |
Electrical connector having an improved power terminal
An electrical connector includes: an insulative housing defining a mating cavity upwardly communicating with an exterior through a top mating face thereof along an up-to-down direction, the mating cavity including a pair of side walls facing each other in a lengthwise direction perpendicular to the up-to-down direction; and a pair of flat power terminals retained in the two side walls of the mating cavity, respectively; wherein each flat power terminal includes a pair of elastic arms extending on two opposite sides thereof in the up-to-down direction, the pair of elastic arms of each flat power terminal are staggered in a transverse direction perpendicular to the up-to-down direction and the lengthwise direction. |
US10135158B2 |
Split connector with circular dove tail
An electrical connector is disclosed. The electrical connector has a first body and a second body. The second body is mechanically coupled to the first body in a coupling state and enters the coupling state through a lateral side of the first body. |
US10135157B2 |
Binding screw for a wire connection assembly and wire connection assembly
A binding screw for a wire connection assembly comprises a driving section, a threaded section, and a contact section. The contact section has a tapered penetration portion establishing electrical contact with a stranded wire. A length of the penetration portion is at least three-quarters of a diameter of the binding screw in the threaded section. |
US10135156B2 |
Multi-mode composite antenna
A multi-mode composite antenna includes two crossed dipole elements each consisting of a bow-tie antenna having two bow-tie antenna segments, and a conductive tube which houses signal transmission lines connected to each bow-tie antenna segment. A conductive flared portion surrounds the conductive tube and forms a monopole element. The bow-tie antenna segments are shaped so that slots extend between each adjacent bow-tie antenna, each slot forming a tapered slot antenna that has a pair of non-linear curved edges that diverge from each other. |
US10135152B2 |
Antenna device and electronic device
An antenna device includes a power supply coil coupled to a first power supply circuit operating in a first frequency band, a first conductive member including a first main surface, a second conductive member including a second main surface, a third conductive member, and first connections. The second main surface of the second conductive member is disposed with at least a portion thereof opposing the first main surface. The third conductive member has an area that is smaller than an area of the first conductive member when viewed in a direction perpendicular or substantially perpendicular to the first main surface. The first conductive member, the third conductive member, and the first connections define a loop of a magnetic field antenna in the first frequency band. The power supply coil is closer to the third conductive member than to the first conductive member when viewed in the Z-direction. |
US10135143B2 |
High-efficiency broadband antenna
Techniques for tuning a crossed-field antenna are provided. An example of an antenna system includes a D-plate with a D-plate feed conductor, such that the D-plate is a horizontal conductor raised above and insulated from a ground plane, an E-cylinder with an E-cylinder feed conductor, such that the E-cylinder is a vertical hollow conductive cylinder of smaller diameter than the D-plate, which is mounted concentrically above and insulated from the D-plate, a transmitter tuning circuit configured to receive a signal from a transmitter, an E-cylinder tuning circuit operably coupled to the transmitter tuning circuit and the E-cylinder feed conductor, and a D-plate tuning circuit operably coupled to the transmitter tuning circuit and the D-plate feed conductor. |
US10135140B2 |
Antenna
An antenna includes antenna coil having a magnetic-material core and a coil conductor. The antenna coil is arranged toward a side of a planar conductor, such as a circuit board. Of the coil conductor, a first conductor part close to a first main face of the magnetic-material core and a second conductor part close to a second main face of the magnetic-material core are provided such that the first conductor part is not over the second conductor part in view from a line in a direction normal to the first main face or the second main face of the magnetic-material core. In addition, a coil axis of the coil conductor is orthogonal to the side of the planar conductor. |
US10135136B2 |
Time delay device and phased array antenna
The present invention provides a time delay device which allows changing, in accordance with a frequency of a local signal, a delay in a radio frequency signal supplied to an antenna element and also allows reducing a degree of dependency of the delay on a radio frequency in a band which is used. Each of (i) dispersion caused by a first dispersion imparting filter which gives a delay to a first local signal and (ii) dispersion caused by a second dispersion imparting filter which gives a delay to an intermediate frequency signal generated from the first local signal and the radio frequency signal is set to have a positive or negative sign which is opposite to the sign of the other. |
US10135133B2 |
Apparatus and methods for reducing mutual couplings in an antenna array
A device is presented for improving radio frequency (RF) and microwave array antenna performance. The device sits in the near field, the reactive region, of the antenna array with a pattern of electrically isolated rectangular, cross-shaped, ell, and/or similarly-shaped patches of flat metal or other conductor in a flat plane. The patches are segmented into smaller shapes no greater than 0.3 of a shortest wavelength of the nominal operating range of the antenna and/or the height of the plane is greater than 0.25 and/or less than 0.4 of the center frequency's wavelength. Mutual coupling S-parameters between neighboring elements are either simulated or measured, and the patch sizes or height are designed such that |S21Refl| is in a range of |S21Array|±20% of |S21Array|; and Phase(S21Refl) is in a range of Phase(S21Array)+180±30 degrees, where S21Array is an S-parameter between antenna two neighboring antenna elements measured or simulated without the device, where S21ADS is the same with the device, and S21Refl=S21ADS−S21Array. |
US10135131B2 |
Electromagnetic-wave transmitting cover
To provide an electromagnetic-wave transmitting cover which can achieve range extension and angle widening of a sensing radar and is excellent in design property. An electromagnetic-wave transmitting cover of the invention includes a base material made of an electromagnetic-wave-transmissive material, a light-transmitting base material formed on a surface of the base material and made of a light-transmissive material, and a design layer disposed between the base material and the light-transmitting base material, the electromagnetic-wave transmitting cover transmitting an electromagnetic wave, the electromagnetic-wave transmitting cover has an electromagnetic-wave transmitting area which transmits the electromagnetic wave, the base material and the light-transmitting base material in the electromagnetic-wave transmitting area has an interval of 0.12 mm or less, an adhesive layer is formed on an entire surface between the base materials, and a deviation in angle when the electromagnetic wave is transmitted is 0.3° or less. |
US10135130B1 |
Enclosure for electronic equipment on pole
A system for concealing electronic equipment on a utility pole, the utility pole having an arm supporting at least one lamp. The system includes a mounting bracket, to be positioned on the utility pole; at least one equipment mounting plate, attachable to the mounting bracket. Each at least one equipment mounting plate is constructed and adapted to support a corresponding piece of communication equipment attached thereto; a concealment shroud having at least one slot and attachable to the mounting bracket; a bottom portion, attachable to the mounting bracket. A top part of the bottom portion has substantially the same shape as a bottom part of the concealment shroud. A cap is attachable to the mounting bracket. A bottom part of the cap has substantially the same shape as a top part of the concealment shroud. |
US10135129B2 |
Low-cost ultra wideband LTE antenna
An antenna system capable of operating among all LTE bands, and also capable of operation among all remote side cellular applications, such as GSM, AMPS, GPRS, CDMA, WCDMA, UMTS, and HSPA among others. The antenna provides a low cost alternative to active-tunable antennas suggested in the prior art for the same multi-platform objective. |
US10135127B2 |
System and apparatus for driving antenna
A multiple-antenna positioning system with a single drive element, providing reduced weight and complexity over systems that have a drive element for each antenna. In certain examples, each antenna can be coupled with a rotating spindle, with each antenna spindle being coupled with a pair of link arms. By driving a single drive spindle, each of the antenna spindles in the system can be rotated by the associated pair of link arms. The link arms can have an adjustable length, such as through a turnbuckle mechanism, to reduce backlash in the system, and in some examples can apply a preload to the system. By reducing backlash, the multiple antenna positioning system can have improved responsiveness to a rotation of the single drive element, as well as improved stability of the positioning of each antenna when the drive element is held in a fixed position. |
US10135125B2 |
Ultra-wideband (UWB) antenna
A small-sized ultra-wideband (UWB) antenna includes a radiating unit configured to have a contour of a first shape, a ground unit configured to have a contour of a shape substantially equal to the first shape, and disposed parallel to the radiating unit, at least one shorting pin connected orthogonal to the ground unit and the radiating unit to connect a first area of the ground unit and a first area of the radiating unit, and a feeding unit connected orthogonal to the ground unit and the radiating unit to connect a second area of the ground unit and a second area of the radiating unit. |
US10135108B2 |
Directional coupler and diplexer
In a directional coupler, a rectangular waveguide includes a second narrow wall and has a width varying part resulting from the second narrow wall protruding toward a first narrow wall, the width varying part including at least a portion of an opening, the protruding part protruding by a protrusion amount larger at the center of the width varying part than at both ends thereof. |
US10135100B2 |
Method for recovering lead oxide from waste lead paste
A method for recovering lead oxide from a pre-desalted lead paste, comprising the following steps: a. dissolving the pre-desalted lead plaster by using a complexing agent solution, and making all of PbO therein react with the complexing agent to generate lead complexing ions, obtaining a lead-containing solution and a filter residue; b. adding a precipitant to the lead-containing solution, and then the precipitant reacting with the lead complexing ions to generate a lead salt precipitate and the regenerated complexing agent; c. calcining the lead salt precipitate to obtain lead oxide and regenerate the precipitant. The final recovery rate of lead oxide of the method can reach 99% or more. |
US10135098B2 |
Method and system for dynamically adjusting battery undervoltage protection
The present invention provides a method for dynamically adjusting battery undervoltage protection, including: real time acquiring a current operation environment temperature value of a battery; real time selecting a preset undervoltage protection voltage and a preset undervoltage protection delay time according to the temperature value; real time determining whether an output voltage of the battery is less than the undervoltage protection voltage; if yes, then: determining whether a time interval when the output voltage of the battery is less than the undervoltage protection voltage satisfies the undervoltage protection delay time, if yes, then: enabling the battery undervoltage protection. The present invention is capable of performing a flexible battery undervoltage protection according to a current operation environment temperature of the battery. The present invention also provides a system for dynamically adjusting battery undervoltage protection. |
US10135093B2 |
High voltage solid electrolyte compositions
An electrochemical cell having an anode, a solid electrolyte, and a cathode. The solid electrolyte includes a polymer gel formed from an ethylene oxide polymer combined with a liquid precursor. The liquid precursor contains at least 15 molar percent of a lithium salt in a solvent. |
US10135092B2 |
Polymer electrolyte, lithium secondary battery using same, and method for manufacturing lithium secondary battery
Provided are a polymer electrolyte, a lithium secondary battery using the same, and a manufacturing method thereof, in which a gel polymer electrolyte is formed from a monomer for forming a gel polymer by a rapid polymerization reaction, when using a porous nanofiber web as an electrolyte matrix, and injecting an organic electrolytic solution formed by mixing the gel polymer forming monomer and a polymerization initiator, to induce an addition polymerization reaction, but the porous nanofiber web maintains a web-like shape. The polymer electrolyte includes: a separator made of a porous nanofiber web having a plurality of nanofibers; and a gel polymer portion impregnated in the porous nanofiber web. the gel polymer portion is formed by impregnating an electrolytic solution containing a non-aqueous organic solvent, a lithium salt solute, a gel polymer forming monomer, and a polymerization initiator in the porous nanofiber web and polymerizing the gel polymer forming monomer. |
US10135091B2 |
Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for producing solid electrolyte battery
A lithium secondary battery (solid electrolyte battery) includes a positive electrode which includes a positive electrode active material layer containing lithium oxide, a negative electrode which includes a negative electrode active material layer, a first solid electrolyte layer which is provided in contact with the positive electrode active material layer between the positive electrode and the negative electrode and contains lithium and oxygen, and a second solid electrolyte layer which is provided in contact with the negative electrode active material layer between the positive electrode and the negative electrode and contains lithium, nitrogen, and oxygen. It is preferred that each of the first solid electrolyte layer and the second solid electrolyte layer further contains boron. |
US10135090B2 |
Method for manufacturing electrode assembly
Provided is an electrode assembly manufacturing method including a radical unit manufacturing stage in which a radical unit having a four-layer structure is manufactured by sequentially stacking a first electrode, a first separator, a second electrode, and a second separator, and a radical unit stacking stage in which the radical unit as a unit is repeatedly stacked to manufacture an electrode assembly, and whenever a predetermined number of radical units are stacked, the radical units are adhered to each other by heating and pressing an outermost one of the radical units. |
US10135089B2 |
Battery cell of vertically stacked structure
A battery cell is configured to have a structure in which an electrode stack is configured to have a structure in which positive electrodes and negative electrodes are stacked in a height direction. Separators are disposed respectively between the positive electrodes and the negative electrodes, and when mounted in a battery case in a sealed state. The electrode stack is configured to have a structure in which a length in a height direction, which is a stacked direction of the electrode stack, on the basis of the ground is greater than that in a width direction perpendicular to the height direction, and the battery case is formed in the shape of a pipe corresponding to an outside of the electrode stack. |
US10135082B2 |
Fuel cell system and control method of fuel cell system
A fuel cell system includes: a fuel cell outputting a current; a supply unit supplying oxidant gas; a flow-amount measurement unit measuring a flow amount of the oxidant gas; and a controller that feed-back controls the supply unit such that a measured flow-amount value converges toward a target flow-amount value, wherein the controller determines an acceptable current value in accordance with the measured flow-amount value, restricts the current to the acceptable current value or less, controls the current in accordance with a requested current value of the fuel cell; and performs a changing-suppression processing, when a condition continues for a predetermined period, the condition including that a changing width of the requested current value is equal to or less than a first value and a difference between the requested current value and the acceptable current value is equal to or less than a second value. |
US10135081B2 |
Warming feature for aircraft fuel cells
A system and method for warming a fuel cell on an aircraft, the system includes at least one fuel cell. The fuel cell includes an anode and a cathode for creating thermal and electrical energy. A temperature sensor measures a first temperature of the fuel cell. A control unit is coupled to the temperature sensor. The control unit increases the first temperature to a second temperature in response to the first temperature being at least equal to a selected temperature threshold. Increasing of the first temperature is indicative of the control unit operating in a warming mode. The second temperature is higher than the selected temperature threshold. |
US10135076B1 |
Tear-activated micro-battery for use on smart contact lenses
A body-mountable device includes an electrochemical battery configured to provide power when exposed to an aqueous fluid. The aqueous fluid could be blood, sweat, tears, or some other bodily fluid. The electrochemical battery includes an anode that includes zinc metal and is configured to provide an electrical potential relative to a cathode when the anode and cathode are exposed to oxygen and an aqueous fluid. The electrochemical battery could provide power to electronics configured to measure a physiological parameter at a plurality of points in time, to record such measured parameters, to transmit such measured parameters to an external system, or to perform some other functions. Components of the body-mountable device could be embedded in a polymeric material configured for mounting to a surface of an eye. Components of the body-mountable device could be disposed on a flexible substrate configured for mounting to a skin surface. |
US10135072B2 |
Method for manufacturing a composite
A method for manufacturing a composite is disclosed. The method includes steps of (a) providing a powder in a first weight ratio, a graphene oxide in a second weight ratio, a first modifying agent having a negative electric charge, and a second modifying agent having a positive electric charge; (b) reacting the first modifying agent with the powder so that a surface of the powder has the negative electric charge; (c) reacting the second modifying agent with the graphene oxide so that a surface of the graphene oxide has the positive electric charge; and (d) mixing the powder having the negative electric charge and the graphene oxide having the positive electric charge to form a composite. |
US10135071B2 |
Conductive carbons for lithium ion batteries
Disclosed herein are cathode formulations comprising a lithium ion-based electroactive material and a carbon black having a BET surface area ranging from 130 to 700 m2/g and a ratio of STSA/BET ranging from 0.5 to 1. Also disclosed are cathodes comprising the cathode formulations, electro-chemical cells comprising the cathodes, and methods of making the cathode formulations and cathodes. |
US10135066B2 |
Positive electrode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same
A positive electrode active material of the present invention includes lithium cobalt oxide particles; and a surface treatment layer positioned on a surface of the lithium cobalt oxide particle, and the lithium cobalt oxide particle includes lithium deficient lithium cobalt oxide having a Li/Co molar ratio of less than 1, included in an Fd-3m space group, and having a cubic-type crystal structure, in a surface side of the particle. The surface treatment layer includes at least one element selected from the group consisting of transition metals and elements in group 13. |
US10135064B2 |
Cathode active material for lithium ion secondary battery
To provide a cathode active material for a lithium ion secondary battery excellent in the cycle characteristics and rate characteristics even when charging is conducted at a high voltage. A cathode active material for a lithium ion secondary battery, which comprises particles (III) having a covering layer comprising a metal oxide (I) containing at least one metal element selected from the group consisting of Al, Y, Ga, In, La, Pr, Nd, Gd, Dy, Er and Yb, and a compound (II) containing Li and at least one non-metal element selected from the group consisting of S and B, on the surface of a lithium-containing composite oxide, wherein the atomic ratio (the non-metal element/the metal element) contained within 5 nm of the surface layer of the particles (III) is within a specific range. |
US10135058B2 |
Rechargeable battery with multi-layer vent
One aspect of the present invention provides a rechargeable battery that is capable of preventing a vent from being oxidized by preserving a plating layer of a surface of a vent.An exemplary embodiment of the present invention provides a rechargeable battery, including: an electrode assembly for performing charging and discharging operations; a case for accommodating the electrode assembly; and a cap assembly combined to an opening of the case and sealing the case. The case includes a vent at one side, and the vent has a plurality of ends in a thickness direction of the case and includes a plating layer on its surface. |
US10135050B2 |
Secondary battery
According to one embodiment, the secondary battery includes a container, an electrode structure provided in the container and an electrolyte provided in the container. The electrode structure includes a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode. The separator includes an organic fiber layer accumulated on at least one of the positive electrode and the negative electrode. The organic fiber layer has contacts in which the organic fiber intersects with itself. The form of the intersections is changed by a tensile stress. |
US10135048B2 |
Lead-acid battery
Provided is a lead-acid battery which includes: a power generating element; an electrolyte solution; a container which houses the power generating element and the electrolyte solution; and a lid member which is configured to seal the container and in which an exhaust space and a sleeve member are formed, the exhaust space communicating with an outside, an inside of the container being communicated with the exhaust space through the sleeve member. A bottom surface of the exhaust space is inclined such that a solution in the space returns to the inside of the container. The sleeve member has blocking elements arranged in a spaced-apart manner in an extending direction of the sleeve member. The inside of the container is communicated with the exhaust space through a space formed between the blocking elements. |
US10135045B2 |
Battery pack with light source
A battery pack comprises a housing shaped to fit into a battery compartment of a battery-operated device. A battery is disposed within the housing. A light source emitting at least 50 lumens is mounted to the housing and is operably coupled to the battery such that the light source is selectably powered by the battery via a manually operated switch and the battery pack is configured to operate as a lighting device so that the battery pack can be used as a stand-alone lighting device. The battery pack has electrical connections for electrically connecting to the battery-operated device when the battery pack is inserted into the battery compartment of the battery-operated device. The battery pack includes a positive battery terminal and a negative battery terminal disposed on the housing and configured to contact a mating positive terminal and negative terminal of the battery-operated device. |
US10135039B2 |
Battery cell comprising a covering plate fixed in a form-fitting manner in a housing
The invention relates to a battery cell (1), in particular a lithium ion battery cell, in which a wrapping element, two current collectors and an electrolyte are accommodated in a housing (11). The prismatically formed housing (11) comprises a container that is open towards the upper side and a cover arrangement having a cover plate (23) closing the opening (14) of said container. The cover plate (23) and a wall of the container (13) are designed in the region of the opening (14) in such a manner that the wall prevents a movement of the cover plate (23) from the opening by means of a positive connection. An elastically compressible sealing element (31) is provided between the wall and a wall surface of an outer edge (27) of the cover plate directed towards said wall, in order to seal the cover plate (23) hermetically against the container (13). On the basis of the positive connection between the cover plate (23) and the edge of the container (13) a sealing effect can hereby likewise increase while the inner pressure in the housing (11) increases. The invention relates to a battery cell (1), in which it can be prevented that the cover plate (23) must be welded to the container (13). |
US10135038B2 |
Packaging material for lithium-ion battery
A packaging material for lithium-ion battery comprises a substrate layer made of a plastic film, and a first adhesive layer, a metal foil layer, an anti-corrosion layer, a second adhesive layer and a sealant layer successively laminated on one surface of the substrate layer. The plastic film has a water absorption rate of not less than about 01% to not larger than about 3% when determined by a method described in JIS K 7209:2000 and when the plastic film is subjected to a tensile test (wherein the sample of the plastic film is stored for 24 hours in an environment of 23° C. and 40% R.H., and subjected to a tensile test in the same environment as indicated above under conditions of a sample width of 6 mm, a gauge length of 35 mm and a tensile speed of 300 mm/minute), stress values in an MD direction of the sample and in a TD direction of the sample after stretching by about 10% relative to a length of the sample prior to the tensile test are both from not larger than about 110 MPa and at least one of the stress values in the MD direction of the sample and in the TD direction of the sample is not less than about 70 MPa. |
US10135034B1 |
Display device with pixel-integrated black matrix and elliptical polarizer
Display panel configurations are described in which a pixel-level integrated black matrix layer is combined with an elliptical polarizer. The elliptical polarizer may allow for increased transmission of emissive LEDs in the display panel, while the black matrix layer may mitigate internal reflection of ambient light. |
US10135028B2 |
Flexible display device including the crack preventing portion
A flexible display device includes a base substrate defining a display area and a non-display area; a thin film transistor in the display area of the base substrate; an organic light emitting diode on and connected with the thin film transistor; an encapsulation layer on the organic light emitting diode; and a crack preventing portion in the non-display area defined by the base substrate. |
US10135026B2 |
Display device and method of manufacturing the same
Provided are a display device and a method for manufacturing the same. According to exemplary embodiments, a display device includes a substrate in which a display area and a non-display area disposed outside the display area are defined, an interlayer insulating film disposed on the substrate, a passivation film disposed on the interlayer insulating film, an anode disposed on the passivation film, an intermediate layer disposed on the anode, a cathode disposed on the intermediate layer, a capping layer disposed on the cathode, and an encapsulation film disposed on the capping layer. |
US10135019B2 |
Lighting apparatus using organic light-emitting diode and method of fabricating the same
A lighting apparatus using an organic light-emitting diode and a method of fabricating the same according to the present disclosure are characterized in that contact electrodes are formed by laser ablation and printing after an organic emissive material, a conductive film as a cathode, and passivation layers are deposited on the entire surface of a substrate. The lighting apparatus may be fabricated in a simplified manner without using an open mask (metal mask), which is a complicated tool, and may be useful especially in roll-to-roll manufacturing. |
US10135018B2 |
Rollable display apparatus
A rollable display apparatus includes a flexible panel including a main panel with a display and a dummy panel with a wire connected to the display, a housing to accommodate the flexible panel, a rotatable rolling drum in the housing and coupled to a first end of the flexible panel, a supporting base moveable into and out of the housing and coupled to a second end of the flexible panel, and a printed circuit board connected to the second end of the flexible panel, the printed circuit board being on the supporting base. |
US10135013B2 |
Method for manufacturing display device and display device having a flexible substrate
A method for manufacturing a display device includes the steps of preparing a spacer that includes a first alignment mark, forming a notch on a back reinforcing film and cutting the back reinforcing film in a size corresponding to a size of a first bottom surface, disposing the back reinforcing film on a back surface side of a display area, disposing the spacer on a back surface side of a flexible substrate, and bending a bent area so as to conform to a shape of the spacer and disposing a terminal area on a back surface side of the spacer. In the step of disposing the spacer, viewed from the back surface side of the flexible substrate, the spacer is positioned on the back reinforcing film based on a position of the notch and a position of the first alignment mark. |
US10135010B2 |
Display apparatus including laser blocking layer
A display apparatus includes a substrate including at least one hole disposed in a hole area of the substrate, a thin film transistor disposed on the substrate, a light-emitting component disposed on the substrate and electrically connected to the thin film transistor, an insulating layer disposed on the substrate, a thin film encapsulation layer disposed on the substrate, and a laser blocking layer. The substrate includes a display area and a non-display area that is disposed between the display area and the hole area. The laser blocking layer is disposed on the insulating layer in the non-display area. |
US10135009B2 |
Organometallic compound and organic light-emitting device including the same
An organometallic compound represented by Formula 1: M(L1)n1(L2)n2, Formula 1 wherein M is selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), thulium (Tm), and rhodium (Rd), and wherein L1 is a ligand represented by Formula 2A and L2 is a ligand represented by Formula 2B, and wherein L1 and L2 in Formula 1 are different from each other, |
US10135007B2 |
Organic electroluminescent materials and devices
A compound having a structure according to formula Ir(LA)n(LB)3-n: is described. In the structure of Formula Ir(LA)n(LB)3-n: A1, A2, A3, A4, A5, A6, A7, and A8 are each independently either carbon or nitrogen; at least one of A1, A2, A3, A4, A5, A6, A7, and A8 is nitrogen; ring B is bonded to ring A through a C—C bond; the iridium is bonded to ring A through an Ir—C bond; X is O, S, or Se; R1, R2, R3, and R4 each independently represent no substitution up to the maximum possible substitutions; any adjacent substitutions in R1, R2, R3, and R4 are optionally linked together to form a ring; R1, R2, R3, R4, and R5 are each independently selected from a variety of substituents; and n is 1, 2, or 3. Formulations and devices, such as an OLEDs, that include the compound of Formula Ir(LA)n(LB)3-n are also described. |
US10135005B2 |
Delayed fluorescence compound, and organic light emitting diode and display device using the same
Embodiments relate to a delayed fluorescence compound of Formula 1: or Formula 2: The excitons in the triplet state are engaged in emission such that the emitting efficiency of the delayed fluorescent compound is increased. Embodiments also relate to a display device with an organic light emitting diode (OLED) that includes the delayed fluorescence compound. |
US10135001B1 |
Organic electroluminescent compound and organic electroluminescent device containing the same
The present disclosure provides an organic electroluminescent compound represented by the formula (I): wherein R1, R2, R3 and R4 each independently represents a substituted or unsubstituted (C6-C30) aryl group, a substituted or unsubstituted 3- to 30-membered heteroaryl group, —NR5R6, —SiR7R8R9, —SR10, —OR11, a cyano group, a nitro group, or a hydroxyl group. The present disclosure further provides an organic electroluminescent device comprising the organic electroluminescent compound represented by the formula (I). |
US10134999B2 |
Organic light-emitting device
An organic light-emitting device includes a first electrode; a second electrode facing the first electrode; and an organic layer including an emission layer between the first electrode and the second electrode. The emission layer may include a first material represented by Formula 1 and a second material represented by Formula 2: |
US10134997B2 |
Indenopyridine-based compound and organic light-emitting device including the same
Provided are an indenopyridine-based compound and an organic light-emitting device including the same. The indenopyridine-based compound is represented by Formula 1: |
US10134992B2 |
Method for manufacturing electronic element including transparent conductive structure
Provided is a method for manufacturing an electronic device including a transparent conductive structure, the method including preparing a transparent electrode in which, among a first region and a second region, the first region is selectively surface-modified, preparing a mixed composition including a first composition and a second composition having a different polarity from the first composition, and applying the mixed composition onto the transparent electrode, wherein the applied mixed composition is disposed in the surface modified first region, and the mixed composition disposed in the first region is phase-separated into a first composition layer and a second composition layer disposed on the first composition layer. |
US10134989B2 |
Optical discs as low-cost, quasi-random nanoimprinting templates for photon management
Photonic devices are provided comprising a photoactive layer and at least one additional layer, wherein a surface of the photoactive layer or a surface of the at least one additional layer has imprinted thereon a quasi-random pattern of nanostructures corresponding to a quasi-random pattern of nanostructures defined in a recording layer of a pre-written optical media disc. Methods of patterning a layer of a photonic device are also provided. |
US10134985B2 |
Non-volatile solid state resistive switching devices
Non-crystalline silicon non-volatile resistive switching devices include a metal electrode, a non-crystalline silicon layer and a planar doped silicon electrode. An electrical signal applied to the metal electrode drives metal ions from the metal electrode into the non-crystalline silicon layer to form a conducting filament from the metal electrode to the planar doped silicon electrode to alter a resistance of the non-crystalline silicon layer. Another electrical signal applied to the metal electrode removes at least some of the metal ions forming the conducting filament from the non-crystalline silicon layer to further alter the resistance of the non-crystalline silicon layer. |
US10134983B2 |
Nonvolatile resistive switching memory device and manufacturing method thereof
A nonvolatile resistive switching memory, comprising an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode, and characterized in that: a graphene barrier layer is inserted between the inert metal electrode and the resistive switching functional layer, which is capable of preventing the easily oxidizable metal ions from migrating into the inert metal electrode through the resistive switching functional layer under the action of electric field during the programming of the device. The manufacturing method therefore comprises adding a monolayer or multilayer graphene thin film between the inert electrode and the solid-state electrolyte resistive switching functional layer which services as a metal ion barrier layer to stop electrically-conductive metal filaments formed in the resistive switching layer from diffusing into the inert electrode layer during a RRAM device programming process, eliminating erroneous programming phenomenon occurring during the erasing process, improving device reliability. |
US10134980B2 |
Magnetoresistive random access memory device
In a method of manufacturing an MRAM device, a lower electrode and a preliminary first free layer pattern sequentially stacked are formed on a substrate. An upper portion of the preliminary first free layer pattern is removed to form a first free layer pattern. A second free layer and a tunnel barrier layer are sequentially formed on the first free layer pattern. The second free layer is partially oxidized to form a second free layer pattern. A fixed layer structure is formed on the tunnel barrier layer. |
US10134975B2 |
Electromechanical actuator
An electromechanical actuator includes an oscillation resonator having the shape of a rod. The oscillation resonator is divided by a dividing plane that is not parallel to the longitudinal direction of the oscillation resonator into a first resonator portion and a second resonator portion. At least the first resonator portion includes electromechanical means which, when activated, are configured to generate a 3-dimensional acoustic bulk wave are with a mode shape asymmetric with respect to the dividing plane. |
US10134974B2 |
Method for identifying an overcurrent when charging a piezo actuator
A method for identifying an overcurrent when charging a piezo actuator, by periodically connecting and disconnecting the piezo actuator to and from an energy source via a charging coil. A connection is followed by a disconnection when the charging current has reached a prescribed maximum current value and a minimum switched-on time has elapsed, and a connection is effected again when either a prescribed minimum current value has been reached or a maximum switched-off time has elapsed. An overcurrent is identified when a disconnection is effected when the minimum switched-on time has elapsed and the charging current has previously reached or exceeded a prescribed maximum current value. An overcurrent is also identified when, after a disconnection on account of the prescribed maximum current value having been reached, a connection is effected again when the maximum switched-off time has elapsed without the minimum current value having been reached. |
US10134972B2 |
Qubit and coupler circuit structures and coupling techniques
A cryogenic quantum bit package with multiple qubit circuits facilitates inter-qubit signal propagation using a multi-chip module (MCM). Multiple qubits are grouped within the package into one or more qubit integrated circuits (ICs). The qubit ICs themselves are electrically coupled to each other via a structure including a superconducting MCM and superconducting interconnects. Coupling of quantum electrical signals between a qubit and other qubits, a substrate, or the MCM uses a coupler circuit, such as a Josephson junction, capacitor, inductor, or resonator. |
US10134963B2 |
Package structure of an ultraviolet light emitting diode
A package structure of an ultraviolet light emitting diode is provided, which includes a substrate, a transparent body, at least one ultraviolet light emitting diode, a connecting element and an ultraviolet shielding layer. The transparent body is disposed on the substrate. The transparent body has a space inside thereof. The at least one ultraviolet light emitting diode is disposed on the substrate and inside the space. The connecting element is disposed between the substrate and the transparent body. The ultraviolet shielding layer is disposed between the transparent body and the connecting element. |
US10134958B2 |
Phosphor layer, wavelength converter, projector, and lighting device
A phosphor layer contains phosphor particles, and satisfies the following relations: y≥0.0623x2+0.2107x+28.789 and y≤−0.1172x2+7.584x+81.148 where x represents the average particle size (μm) of the phosphor particles, and y represents the thickness (μm) of the phosphor layer. |
US10134953B2 |
Light-emitting device package including lead frame and using lead terminal as a reflective cavity
A light emitting device package is provided. The light emitting device package includes a package body comprising a first cavity, and a second cavity connected to the first cavity; a first lead electrode, at least a portion of which is disposed within the second cavity; a second lead electrode, at least a portion of which is disposed within the first cavity; a light emitting device disposed within the second cavity; a first wire disposed within the second cavity, the first wire electrically connecting the light emitting device to the first lead electrode; and a second wire electrically connecting the light emitting device to the second lead electrode. |
US10134952B2 |
Manufacturing method of light emitting device
The invention relates to a light emitting device, a manufacturing method thereof and a display device. The light emitting device comprises: a substrate, and a first electrode layer, a second electrode layer and a light emitting layer arranged above the substrate, the light emitting layer being disposed between the first electrode layer and the second electrode layer, the light emitting layer comprises a hole transport layer having a first thickness which is capable of avoiding performance degradation of the light emitting device. |
US10134951B2 |
Light emitting device method of manufacture
A method of manufacturing a light emitting device includes preparing a wafer having a sapphire substrate with semiconductor structures, forming a plurality of straight-line cleavage starting portions within the substrate by scanning a laser beam, and cleaving the wafer along the cleavage starting portions to obtain a plurality of light emitting devices each having a hexagonal shape. The forming step includes forming first cleavage starting portions with each first cleavage starting portion separated by a first interval from a common vertex point of three adjacent light emitting devices, forming second cleavage starting portions with each first cleavage starting portion separated by a second interval, which is shorter than the first interval, away from the common vertex point, and forming third cleavage starting portions with each first cleavage starting portion separated by a third interval, which is shorter than the first interval, away from the common vertex point. |
US10134950B2 |
Micro light emitting diode and manufacturing method thereof
A μLED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the μLED is also provided. |
US10134948B2 |
Light emitting diode with polarization control
An improved light emitting heterostructure is provided. The heterostructure includes an active region having a set of barrier layers and a set of quantum wells, each of which is adjoined by a barrier layer. The quantum wells have a delta doped p-type sub-layer located therein, which results in a change of the band structure of the quantum well. The change can reduce the effects of polarization in the quantum wells, which can provide improved light emission from the active region. |
US10134947B2 |
Light emitting device and method of fabricating the same
A compound semiconductor device includes a substrate, including a top surface, a bottom surface, a side surface connecting the top surface and the bottom surface; and a semiconductor stack formed on the top surface, wherein the side surface includes a first deteriorated surface, a second deteriorated surface, a first crack surface between the first and second deteriorated surfaces, a second crack surface between the first deteriorated surface and the top surface, and a third crack surface between the second deteriorated surface and the bottom surface, wherein a convex region or a concave region is formed by the first deteriorated surface, the first crack surface and the second crack surface, or the second deteriorated surface, the first crack surface and the third crack surface; and wherein the second crack surface or the third crack surface is substantially perpendicular to the top surface or the bottom surface. |
US10134945B1 |
Wafer to wafer bonding techniques for III-V wafers and CMOS wafers
A method for wafer to wafer bonding for III-V and CMOS wafers is provided. A silicon carrier wafer is provided having an epitaxial III-V semiconductor region and an oxide region disposed over the wafer top surface, the regions having substantially equal heights. A sidewall of the epitaxial III-V semiconductor region directly contacts a sidewall of the oxide region. A eutectic bonding layer is formed over a top surface of the epitaxial III-V semiconductor region and the oxide region for bonding to the CMOS wafer which contains semiconductor devices. The silicon carrier wafer is removed, and the CMOS wafer is singulated to form a plurality of three-dimensional integrated circuits, each including a CMOS substrate corresponding to a portion of the CMOS wafer and a III-V optical device corresponding to a portion of the III-V epitaxial semiconductor region. |
US10134940B2 |
Method of manufacturing solar cell
A method of manufacturing a solar cell includes: forming a solar cell substrate having one main surface and the other main surface and having a p-type surface and an n-type surface which are exposed on one region and another region in the one main surface, respectively; forming seed layers in an electrically separated state on the p-type surface and the n-type surface, respectively; and forming a plated film on the seed layer on each of the p-type surface and the n-type surface by an electrolytic plating method. |
US10134939B2 |
Optical sensor module and a wearable device including the same
An optical sensor module has a light receiver and a light-emitter which is surrounded by a light blocking wall, wherein the light receiver is disposed on a main plate and the light-emitter is disposed on a side plate separately from the main plate. The light blocking wall is formed as a light barrier wall between the light receiver and the light-emitter. A projecting portion projecting upward from the main plate is enclosed by the light barrier wall, and a top face of the projecting portion is higher than the light receiving face and the light-emitting face. |
US10134934B2 |
Method for producing concentrating solar cell module and concentrating solar cell module
A method for producing a concentrating solar cell module having the steps of: preparing a base portion having a plurality of mounting regions for mounting solar cells and a plurality of lead electrodes for electrically connecting the solar cells with external electrodes, and a support composed of a thermosetting resin, the support surrounding each of the mounting regions of the base portion; mounting the solar cells on the mounting regions; molding a condensing lens above the mounting regions so as to encapsulate the solar cells, plating a surface of the mounting regions of the prepared base portion after the preparing step and before the mounting step; and joining the support to the base portion after the mounting step and before the molding step, wherein in the molding step, the condensing lens is molded with a transparent thermosetting silicone resin. |
US10134933B2 |
System for isolating portions of a power supply array
A system for isolating portions of a power supply array comprising at least one isolation mechanism being in electrical communication with a terminal of at least one portion of the power supply array, the isolation mechanism being arranged to disconnect the at least one portion from the power supply array when the isolation mechanism is actuated. |
US10134931B2 |
Layer system for thin-film solar cells
The present invention relates to a layer system (1) for thin-film solar cells (100) and solar modules, comprising an absorber layer (4), which includes a chalcogenide compound semiconductor, and a buffer layer (5), which is arranged on the absorber layer (4) and includes halogen-enriched ZnxIn1-xSy with 0.01≤x≤0.9 and 1≤y≤2, wherein the buffer layer (5) consists of a first layer region (5.1) adjoining the absorber layer (4) with a halogen mole fraction A1 and a second layer region (5.2) adjoining the first layer region (5.1) with a halogen mole fraction A2 and the ratio A1/A2 is ≥2 and the layer thickness (d1) of the first layer region (5.1) is ≤50% of the layer thickness (d) of the buffer layer (5). |
US10134928B2 |
Photoelectric conversion element and solar cell module provided with same
There is provided a photoelectric conversion element which includes an n-type single crystal silicon substrate (1). The n-type single crystal silicon substrate (1) includes a central region (11) and an end-portion region (12). The central region (11) is a region which has the same central point as the central point of the n-type single crystal silicon substrate (1) and is surrounded by a circle. The diameter of the circle is set to be a length which is 40% of a length of the shortest side among four sides of the n-type single crystal silicon substrate (1). The central region (11) has a thickness t1. The end-portion region (12) is a region of being within 5 mm from an edge of the n-type single crystal silicon substrate (1). The end-portion region (12) is disposed on an outside of the central region (11) in an in-plane direction of the n-type single crystal silicon substrate (1), and has a thickness t2 which is thinner than the thickness t1. The end-portion region (12) has average surface roughness which is smaller than average surface roughness of the central region (11). |
US10134925B2 |
Conductive paste composition and semiconductor devices made therewith
The present invention provides a thick-film paste composition for printing the front side of a solar cell device having one or more insulating layers. The thick-film paste comprises an electrically conductive metal and a dual-frit oxide composition dispersed in an organic medium. |
US10134921B2 |
Semiconductor device
A semiconductor device includes an anode electrode, a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a conductive portion and a cathode electrode. The first semiconductor region is electrically connected to the anode electrode. The second semiconductor region is provided on the first semiconductor region. The conductive portion is provided in the first semiconductor region and the second semiconductor region with an insulating layer interposed between the conductive portion and the first and second semiconductor regions. The cathode electrode is electrically connected to the conductive portions and is electrically isolated from the second semiconductor region. |
US10134918B2 |
Memory device and method for fabricating the same
A method includes patterning a substrate to form a nanowire over the substrate, applying a plurality of doping processes to the nanowire to form a first drain/source region at a lower portion of the nanowire, a second drain/source region at an upper portion of the nanowire and a channel region, wherein the channel region is between the first drain/source region and the second drain/source region, depositing a first dielectric layer along sidewalls of the channel region, depositing a control gate layer over the first dielectric layer, wherein the control gate layer surrounds a lower portion of the channel region, depositing a second dielectric layer along the sidewalls of the channel region and over the control gate layer and forming a floating gate region surrounding an upper portion of the channel region. |
US10134915B2 |
2-D material transistor with vertical structure
Semiconductor structures including two-dimensional (2-D) materials and methods of manufacture thereof are described. By implementing 2-D materials in transistor gate architectures such as field-effect transistors (FETs), the semiconductor structures in accordance with this disclosure include vertical gate structures and incorporate 2-D materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene. |
US10134911B2 |
Semiconductor device
A transistor whose channel is formed in a semiconductor having dielectric anisotropy is provided. A transistor having a small subthreshold swing value is provided. A transistor having normally-off electrical characteristics is provided. A transistor having a low leakage current in an off state is provided. A semiconductor device includes an insulator, a semiconductor, and a conductor. In the semiconductor device, the semiconductor includes a region overlapping with the conductor with the insulator positioned therebetween, and a dielectric constant of the region in a direction perpendicular to a top surface of the region is higher than a dielectric constant of the region in a direction parallel to the top surface. |
US10134902B2 |
PMOS FinFET
A system is configured to perform plasma related fabrication processes. The system includes a process chamber and a wafer stage positioned within the process chamber. The wafer stage is configured to secure a process wafer. The system further includes a bottom electrode positioned beneath the wafer stage, a top electrode positioned external to the chamber, and a plasma distribution mechanism. The plasma distribution mechanism is reconfigurable to allow for more than one plasma distribution profile. |
US10134901B1 |
Methods of forming a bulk field effect transistor (FET) with sub-source/drain isolation layers and the resulting structures
Disclosed are structures (e.g., a fin-type field effect transistor (FINFET) and a nanowire-type FET (NWFET)) and methods of forming the structures. In the methods, a fin is formed. For a FINFET, the fin includes a first semiconductor material. For an NWFET, the fin includes alternating layers of first and second semiconductor materials. A gate is formed on the fin. Recesses are formed in the fin adjacent to the gate and extend to (or into) a semiconductor layer, below, made of the second semiconductor material. An oxidation process forms oxide layers on exposed semiconductor surfaces in the recesses including a first oxide material on the first semiconductor material and a second oxide material on the second semiconductor material. The first oxide material is then selectively removed and source/drain regions are formed by lateral epitaxial deposition in the recesses. The remaining second oxide material minimizes sub-channel region source-to-drain leakage. |
US10134899B2 |
Facet-free strained silicon transistor
The presence of a facet or a void in an epitaxially grown crystal indicates that crystal growth has been interrupted by defects or by certain material boundaries. Faceting can be suppressed during epitaxial growth of silicon compounds that form source and drain regions of strained silicon transistors. It has been observed that faceting can occur when epitaxial layers of certain silicon compounds are grown adjacent to an oxide boundary, but faceting does not occur when the epitaxial layer is grown adjacent to a silicon boundary or adjacent to a nitride boundary. Because epitaxial growth of silicon compounds is often necessary in the vicinity of isolation trenches that are filled with oxide, techniques for suppression of faceting in these areas are of particular interest. One such technique, presented herein, is to line the isolation trenches with SiN to provide a barrier between the oxide and the region in which epitaxial growth is intended. |
US10134897B2 |
Semiconductor device and fabrication method thereof
A semiconductor device and a method for fabricating the semiconductor device are disclosed. A gate stack is formed over a surface of the substrate. A recess cavity is formed in the substrate adjacent to the gate stack. A first epitaxial (epi) material is then formed in the recess cavity. A second epi material is formed over the first epi material. A portion of the second epi material is removed by a removing process. The disclosed method provides an improved method by providing a second epi material and the removing process for forming the strained feature, therefor, to enhance carrier mobility and upgrade the device performance. |
US10134895B2 |
Facet-free strained silicon transistor
The presence of a facet or a void in an epitaxially grown crystal indicates that crystal growth has been interrupted by defects or by certain material boundaries. Faceting can be suppressed during epitaxial growth of silicon compounds that form source and drain regions of strained silicon transistors. It has been observed that faceting can occur when epitaxial layers of certain silicon compounds are grown adjacent to an oxide boundary, but faceting does not occur when the epitaxial layer is grown adjacent to a silicon boundary or adjacent to a nitride boundary. Because epitaxial growth of silicon compounds is often necessary in the vicinity of isolation trenches that are filled with oxide, techniques for suppression of faceting in these areas are of particular interest. One such technique, presented herein, is to line the isolation trenches with SiN to provide a barrier between the oxide and the region in which epitaxial growth is intended. |
US10134894B2 |
Dual gate FD-SOI transistor
Circuit module designs that incorporate dual gate field effect transistors are implemented with fully depleted silicon-on-insulator (FD-SOI) technology. Lowering the threshold voltages of the transistors can be accomplished through dynamic secondary gate control in which a back-biasing technique is used to operate the dual gate FD-SOI transistors with enhanced switching performance. Consequently, such transistors can operate at very low core voltage supply levels, down to as low as about 0.4 V, which allows the transistors to respond quickly and to switch at higher speeds. Performance improvements are shown in circuit simulations of an inverter, an amplifier, a level shifter, and a voltage detection circuit module. |
US10134892B2 |
High voltage device with low Rdson
High voltage devices and methods for forming a high voltage device are disclosed. The method includes providing a substrate having top and bottom surfaces. The substrate is defined with a device region and a recessed region disposed within the device region. The recessed region includes a recessed surface disposed lower than the top surface of the substrate. A transistor is formed over the substrate. Forming the transistor includes forming a gate at least over the recessed surface and forming a source region adjacent to a first side of the gate below the recessed surface. Forming the transistor also includes forming a drain region displaced away from a second side of the gate. First and second device wells are formed in the substrate within the device region. The first device well encompasses the drain region and the second device well encompasses the source region. |
US10134889B2 |
Compound semiconductor device and method of manufacturing the compound semiconductor device
A disclosed compound semiconductor device includes a substrate, a channel layer formed over the substrate, an electron supply layer famed on the channel layer, a first cap layer and a second cap layer formed at a distance from each other on the electron supply layer, a source electrode formed on the first cap layer, a drain electrode formed on the second cap layer, and a gate electrode formed on the electron supply layer between the first cap layer and the second cap layer. Each of the first cap layer and the second cap layer is a stacked film formed by alternately stacking i-type first compound semiconductor layers and n-type second compound semiconductor layers having a wider bandgap than the first compound semiconductor layers. |
US10134888B2 |
Semiconductor device and method of manufacturing the same
A performance of a semiconductor device is improved. A semiconductor device includes two element portions and an interposition portion interposed between the two element portions. The interposition portion includes a p-type body region formed in a part of a semiconductor layer, the part being located between two trenches, and two p-type floating regions formed in two respective parts of the semiconductor layer, the two respective portions being located on both sides of the p-type body region via the two respective trenches. A lower end of the p-type floating region is arranged on a lower side with reference to a lower end of the p-type body region. |
US10134880B2 |
Self-aligned bipolar junction transistors with a base grown in a dielectric cavity
Fabrication methods and device structures for bipolar junction transistors and heterojunction bipolar transistors. A first dielectric layer is formed and a second dielectric layer is formed on the first dielectric layer. An opening is etched extending vertically through the first dielectric layer and the second dielectric layer. A collector is formed inside the opening. An intrinsic base, which is also formed inside the opening, has a vertical arrangement relative to the collector. |
US10134877B2 |
Organic light emitting diode display having thin film transistor substrate using oxide semiconductor
A method for manufacturing an organic light emitting diode (OLED) display can include forming a gate electrode on a substrate, forming a semiconductor layer by depositing a gate insulating layer and an oxide semiconductor material and patterning the oxide semiconductor material, forming an etch stopper on a central portion of the semiconductor layer, conducting a plasma treatment using the etch stopper as a mask to conductorize portions of the semiconductor layer exposed by the etch stopper for defining a channel area, a source area and a drain area, and forming a source electrode contacting portions of the conductorized source area and a drain electrode contacting portions of the conductorized drain area. |
US10134876B2 |
FinFETs with strained channels and reduced on state resistance
The present disclosure generally relates to semiconductor structures and, more particularly, to finFETs with strained channels and reduced on state resistances and methods of manufacture. The structure includes: a plurality of fin structures comprising doped source and drain regions with a diffusion blocking layer between the doped source and drain regions and an underlying fin region formed within dielectric material. |
US10134875B2 |
Method for fabricating a transistor having a vertical channel having nano layers
The invention relates to a process for fabricating a vertical transistor, comprising the step of providing a substrate surmounted by a stack of first, second and third layers made of first, second and third semiconductors, respectively, said second semiconductor being different from the first and third semiconductors. The process further includes horizontally growing first, second and third dielectric layers, by oxidation, from the first, second and third semiconductor layers, respectively, with a second dielectric layer, the thickness of which differs from the thickness of said first and third dielectric layers and removing the second dielectric layer so as to form a recess that is vertically self-aligned with the second semiconductor layer, which recess is positioned vertically between first and second blocks that are made facing the first and third semiconductor layers. Finally, the process includes forming a gate stack in said self-aligned recess. |
US10134874B2 |
Vertical field effect transistors with bottom source/drain epitaxy
A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes a substrate, a first source/drain layer including a plurality of pillar structures, and a plurality of fins disposed on and in contact with the plurality of pillar structures. A doped layer epitaxially grown from the first source/drain layer is in contact with the plurality of fins and the plurality of pillar structures. A gate structure is disposed in contact with two or more fins in the plurality of fins. The gate structure includes a dielectric layer and a gate layer. A second source/drain layer is disposed on the gate structure. The method includes epitaxially growing a doped layer in contact with a plurality of fins and a plurality of pillar structures. A gate structure is formed in contact with two or more fins. A second source/drain layer is formed on the gate structure. |
US10134873B2 |
Semiconductor device gate structure and method of fabricating thereof
A method of forming a gate structure of a semiconductor device including depositing a high-k dielectric layer over a substrate is provided. A dummy metal layer is formed over the high-k dielectric layer. The dummy metal layer includes fluorine. A high temperature process is performed to drive the fluorine from the dummy metal layer into the high-k dielectric layer thereby forming a passivated high-k dielectric layer. Thereafter, the dummy metal layer is removed. At least one work function layer over the passivated high-k dielectric layer is formed. A fill metal layer is formed over the at least one work function layer. |
US10134872B2 |
Semiconductor device and a method for fabricating the same
In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a substrate. A source/drain region is formed. A first insulating layer is formed over the dummy gate structure and the source/drain region. A gate space is formed by removing the dummy gate structure. The gate space is filled with a first metal layer. A gate recess is formed by removing an upper portion of the filled first metal layer. A second metal layer is formed over the first metal layer in the gate recess. A second insulating layer is formed over the second metal layer in the gate recess. |
US10134869B2 |
Method of manufacturing semiconductor device
To provide a semiconductor device having improved reliability. After formation of an n+ type semiconductor region for source/drain, a first insulating film is formed on a semiconductor substrate so as to cover a gate electrode and a sidewall spacer. After heat treatment, a second insulating film is formed on the first insulating film and a resist pattern is formed on the second insulating film. Then, these insulating films are etched with the resist pattern as an etching mask. The resist pattern is removed, followed by wet washing treatment. A metal silicide layer is then formed by the salicide process. |
US10134868B2 |
MOS devices with mask layers and methods for forming the same
A device includes a substrate, a gate dielectric over the substrate, and a gate electrode over the gate dielectric. A drain region and a source region are disposed on opposite sides of the gate electrode. Insulation regions are disposed in the substrate, wherein edges of the insulation regions are in contact with edges of the drain region and the source region. A dielectric mask includes a portion overlapping a first interface between the drain region and an adjoining portion of the insulation regions. A drain silicide region is disposed over the drain region, wherein an edge of the silicide region is substantially aligned to an edge of the first portion of the dielectric mask. |
US10134867B2 |
Method for fabricating semiconductor device
A method for manufacturing semiconductor device includes depositing a contact metal layer over a III-V compound layer. An anti-reflective coating (ARC) layer is deposited over the contact metal layer, and an etch stop layer is deposited over the ARC layer. The etch stop layer, the ARC layer, and the contact metal layer are etched to form a contact stack over the III-V compound layer. A conductive layer is deposited over the III-V compound layer, and the conductive layer is etched to form a gate field plate. The etch stop layer has an etch selectivity different from that of the conductive layer. |
US10134858B2 |
Semiconductor having isolated gate structure
A semiconductor process includes the following step. A metal gate strip and a cap layer are sequentially formed in a trench of a dielectric layer. The cap layer and the metal gate strip are cut off to form a plurality of caps on a plurality of metal gates, and a gap isolates adjacent caps and adjacent metal gates. An isolation material fills in the gap. The present invention also provides semiconductor structures formed by said semiconductor process. For example, the semiconductor structure includes a plurality of stacked structures in a trench of a dielectric layer, where each of the stacked structures includes a metal gate and a cap on the metal gate, where an isolation slot isolates and contacts adjacent stacked structures at end to end, and the isolation slot has same level as the stacked structures. |
US10134857B2 |
Semiconductor device
The semiconductor device including: two fins having rectangular parallelepiped shapes arranged in parallel in X-direction; and a gate electrode arranged thereon via a gate insulating film and extending in Y-direction is configured as follows. First, a drain plug is provided over a drain region located on one side of the gate electrode and extending in Y-direction. Then, two source plugs are provided over a source region located on the other side of the gate electrode and extending in Y-direction. Also, the drain plug is arranged in a displaced manner so that its position in Y-direction may not overlap with the two source plugs. According to such a configuration, the gate-drain capacitance can be made smaller than the gate-source capacitance and a Miller effect-based circuit delay can be suppressed. Further, as compared with capacitance on the drain side, capacitance on the source side increases, thereby improving stability of circuit operation. |
US10134855B2 |
Thin film transistor substrate
A thin film transistor includes a gate electrode, a semiconductor layer, and source and drain electrodes contacting the semiconductor layer. The source and drain electrodes include a metal oxide having a crystal size in a c-axis direction Lc(002) that ranges from 67 Å or more to 144 Å or less. |
US10134854B2 |
High electron mobility transistor and fabrication method thereof
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole. |
US10134853B2 |
Method of manufacturing a semiconductor device having an impurity concentration
A method of manufacturing a semiconductor device includes irradiating the semiconductor body with particles through a first side of the semiconductor body, removing at least a part of impurities from an irradiated part of the semiconductor body by out-diffusion during thermal treatment in a temperature range between 450° C. to 1200° C., and forming a first load terminal structure at the first side of the semiconductor body. |
US10134852B2 |
Semiconductor device
In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3. |
US10134846B2 |
Semiconductor device
A semiconductor device including a semiconductor substrate having an edge termination portion and an active portion is provided. The edge termination portion includes an outer edge region provided on an end portion of a front surface of the semiconductor substrate and within a predetermined depth range. The active portion includes a well region provided on an inner side relative to the outer edge region of the front surface of the semiconductor substrate and within a predetermined depth range. The semiconductor device further includes an insulating film provided on the front surface of the semiconductor substrate and at least between the outer edge region and the well region and having a taper portion, and a resistive film provided on the insulating film and electrically connected to the outer edge region and the well region. A taper angle of the taper portion of the insulating film is 60 degrees or less. |
US10134843B2 |
Multi-gate device and method of fabrication thereof
A semiconductor device includes a fin extending from a substrate. The fin has a source/drain region and a channel region. The channel region includes a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer and vertically separated from the first semiconductor layer by a spacing area. A high-k dielectric layer at least partially wraps around the first semiconductor layer and the second semiconductor layer. A metal layer is formed along opposing sidewalls of the high-k dielectric layer. The metal layer includes a first material. The spacing area is free of the first material. |
US10134839B2 |
Field effect transistor structure having notched mesa
A Field Effect Transistor structure is provided having: a semi-insulating substrate; a semiconductor mesa structure disposed on the substrate and having a notch in an outer sidewall of the mesa structure; a source electrode disposed within the opposing sidewalls in ohmic contact with a source region of the mesa structure; a drain electrode disposed within the opposing sidewalls in ohmic contact with a drain region of the mesa; and a gate electrode, having an inner portion disposed between, and laterally of, the source electrode and the drain electrode and in Schottky contact with the mesa structure, extending longitudinally towards the notch and having outer portions extending beyond the mesa structure and over portions of the substrate outside of the mesa structure. In one embodiment, the mesa structure includes a pair of notches projecting inwardly towards each other and the inner portion of the gate extends longitudinally between the pair of notches. |
US10134837B1 |
Porous silicon post processing
A semiconductor on insulator (SOI) device may include a semiconductor handle substrate. The semiconductor hand may include a porous semiconductor layer, and an etch stop layer proximate the porous semiconductor layer. The SOI may also include an insulator layer on the etch stop layer. The SOI may further include a device semiconductor layer on the insulator layer. |
US10134834B2 |
Field effect transistor devices with buried well protection regions
A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator. |
US10134828B2 |
Display device and method of manufacturing a display device
A display device according to an embodiment of the present invention includes: a base material including a display region, and a peripheral region which is located outside the display region, at least a part of the peripheral region being a bending region; an insulating layer that is disposed on the base material, extends from the display region to a part of the peripheral region, and is located apart from an edge of the base material; at least one level difference moderating layer that is disposed under the insulating layer and extends from an edge of the insulating layer toward a side of the bending region; and at least one wiring disposed on the insulating layer and the at least one level difference moderating layer. |
US10134823B2 |
OLED display, display device and manufacturing method thereof
An organic light emitting diode (OLED) display, a display device and a manufacturing method thereof are provided. The OLED display includes a base substrate; and OLED pixel units arranged on the base substrate in a matrix. Each OLED pixel unit includes at least one OLED structure, and the OLED structure includes a cathode layer, an anode layer and an organic light emitting layer located therebetween, and the OLED pixel unit further includes a pixel circuit that is connected correspondingly with the OLED structure and configured to drive it to illuminate light. The pixel circuit includes a switching unit and a capacitor located above or below the layer in which the switching unit is located. |
US10134822B2 |
Electro-optical device and electronic apparatus
Subpixels of R, G, and B corresponding to a scanning line as a first conductive layer extended in a row direction and a data transfer line as a second conductive layer extended in a column direction are provided. A plurality of transistors in the subpixel of each of the colors is disposed along the column direction, and a reflective layer in the subpixel of at least one color is disposed along the row direction so as to overlap any transistor of subpixels of each display color. A center position of a disposition region of a reflective layer in one pixel unit including the subpixels of R, G, and B is different from a center position of a disposition region of a transistor in one pixel unit. |
US10134820B2 |
Organic light-emitting display device having a repair area
Provided is an organic light-emitting display device which enables a fast and secure repair process without changing optical characteristics. The organic light-emitting display device includes a lower electrode, an organic emitting layer, an upper electrode and an optical compensation layer which are sequentially stacked. The upper electrode is thinner than the lower electrode. An opening is formed by particles in the organic emitting layer and the upper electrode. The opening caused by the particles is extended between the lower electrode and the organic emitting layer. |
US10134819B2 |
Display device and electronic apparatus
There is provided a display device including: a pixel region that includes a plurality of pixels arranged in a matrix; and a peripheral region outside of the pixel region. The pixel region includes first liquid-repellent parts in inter-column regions between the plurality of pixels. The peripheral region includes second liquid-repellent parts that are continuous with the first liquid-repellent parts. |
US10134816B2 |
Organic light emitting display
An organic light emitting display includes a first substrate including a display area and a non-display area, a plurality of dummy pixels positioned on at least a part of the non-display area of the first substrate, a light guide plate positioned on the plurality of dummy pixels, and a light sensor positioned at one side of the light guide plate. |
US10134812B2 |
Electronic device, image display device, and sensor to improve charge injection efficiency
An electronic device includes a control electrode 11 formed on a substrate 10, an insulating layer 12 covering the control electrode 11, an active layer 13 including an organic semiconductor material, which is formed on the insulating layer 12, and a first electrode 14A and a second electrode 14B formed on the active layer 13, and portions 15 of the first electrode and second electrode in contact with the active layer 13 are modified with an electrode modification material. |
US10134810B2 |
Three dimensional memory array with select device
Three dimensional memory arrays and methods of forming the same are provided. An example three dimensional memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines such that the at least one conductive extension intersects each of the plurality of first conductive lines. Storage element material is arranged around the at least one conductive extension, and a select device is arranged around the storage element material. The storage element material is radially adjacent an insulation material separating the plurality of first conductive lines, and the plurality of materials arranged around the storage element material are radially adjacent each of the plurality of first conductive lines. |
US10134809B2 |
Dual-layer dielectric in memory device
Embodiments of the present disclosure describe techniques and configurations for a memory device comprising a memory array having a plurality of wordlines disposed in a memory region of a die. Fill regions may be disposed between respective pairs of adjacent wordlines of the plurality of wordlines. The fill regions may include a first dielectric layer and a second dielectric layer disposed on the first dielectric layer. The first dielectric layer may comprise organic (e.g., carbon-based) spin-on dielectric material (CSOD). The second dielectric layer may comprise a different dielectric material than the first dielectric layer, such as, for example, inorganic dielectric material. Other embodiments may be described and/or claimed. |
US10134807B2 |
Structure and formation method of integrated circuit structure
Integrated circuit structures and methods for forming the same are provided. An integrated circuit includes a dielectric layer in a memory region and a logic region. The integrated circuit structure also includes a first conductive feature in the dielectric layer in the memory region. The integrated circuit structure further includes a second conductive feature in the dielectric layer in the logic region. In addition, the integrated circuit structure includes an active memory cell over the dielectric layer in the memory region. The active memory cell is connected to the first conductive feature. The integrated circuit structure also includes a dummy memory cell over the dielectric layer in the logic region. The dummy memory cell is connected to the second conductive feature. |
US10134795B2 |
Semiconductor device with multiple substrates electrically connected through an insulating film and manufacturing method
A semiconductor device includes a first substrate having an attaching surface on which first electrodes and a first insulating film are exposed, an insulating thin film that covers the attaching surface of the first substrate, and a second substrate which has an attaching surface on which second electrodes and a second insulating film are exposed and is attached to the first substrate in a state in which the attaching surface of the second substrate and the attaching surface of the first substrate are attached together sandwiching the insulating thin film therebetween, and the first electrodes and the second electrodes deform and break a part of the insulating thin film so as to be directly electrically connected to each other. |
US10134792B2 |
Semiconductor devices
Semiconductor devices are provided. The semiconductor devices may include a substrate, a device isolation pattern in the substrate to electrically isolate a first pixel and a second pixel from each other, a conductive pattern in the device isolation pattern, and a doping layer on a side surface of the device isolation pattern. The doping layer may have a conductivity type different from a conductivity type of the substrate. |
US10134790B1 |
Image sensor and fabrication method therefor
A method of fabricating an image sensor includes depositing a first dielectric layer over a substrate, removing a portion of the first dielectric layer from the substrate to form a trench, depositing a conductive layer over the first dielectric layer and in the trench, forming a protective layer lining a top surface of the conductive layer and sidewalls and a bottom surface of the groove in the conductive layer, and removing a portion of the conductive layer to form a grid structure. A groove corresponding to the trench is formed in the conductive layer. |
US10134784B2 |
Peeling apparatus and manufacturing apparatus of semiconductor device
To eliminate electric discharge when an element formation layer including a semiconductor element is peeled from a substrate used for manufacturing the semiconductor element, a substrate over which an element formation layer and a peeling layer are formed and a film are made to go through a gap between pressurization rollers. The film is attached to the element formation layer between the pressurization rollers, bent along a curved surface of the pressurization roller on a side of the pressurization rollers, and collected. Peeling is generated between the element formation layer and the peeling layer and the element formation layer is transferred to the film. Liquid is sequentially supplied by a nozzle to a gap between the element formation layer and the peeling layer, which is generated by peeling, so that electric charge generated on surfaces of the element formation layer and the peeling layer is diffused by the liquid. |
US10134776B2 |
Display substrate and method of repairing defects thereof
A display substrate includes a gate metal pattern including a gate line extending in a first direction, a gate electrode electrically connected to the gate line and a storage line, a data metal pattern including a data line extending in a second direction crossing the first direction, a source electrode electrically connected to the data line and a drain electrode spaced apart from the source electrode, a repair electrode extending in the second direction and overlapping the storage line, an organic layer disposed on the data metal pattern and a pixel electrode disposed on the organic layer and electrically connected to the drain electrode. |
US10134771B2 |
Array substrate, method of producing array substrate, and display panel
An array substrate, a method of producing the array substrate, and a display panel incorporating the array substrate are disclosed. The array substrate includes a substrate, a gate line, a data line, and a spacer. The gate line and the data line are arranged over the substrate. The spacer is arranged over the gate line and the data line. The gate line and/or the data line is provided with a via hole at a position corresponding to a spacer. In this manner, a problem of a display panel having gaps of different sizes after assembly because of non-uniform thicknesses of the gate line and/or the data line can be avoided, which, in turn, prevents inhomogeneous color in the display. |
US10134769B2 |
Array substrate, method for manufacturing thereof, and display device
Disclosed is an array substrate, a method for manufacturing the same, and a display device. The array substrate includes: a base substrate and a plurality of data lines disposed on the base substrate. The base substrate comprises a plurality of attaching areas in which the end of each data line attaches to the base substrate, and non-attaching areas between each two adjacent attaching areas, and a height layer is disposed between a passivation layer and the base substrate in the non-attaching area. By interposing a height layer between the passivation layer and the base substrate in the non-attaching area, the height difference between the passivation layer in the attaching area and the non-attaching area is decreased or disappeared, then the problem of fall-off of the passivation layer is solved, and the reliability of the product is increased. |
US10134752B2 |
Memory device
A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate. |
US10134749B2 |
Semiconductor memory device
A semiconductor memory device comprises a memory block including conductive layers at different levels from a substrate and separated from each other by a first insulation material. A memory pillar extends through the first conductive layers. A hookup region is adjacent to the memory block and includes conductive layers stacked on the substrate at levels from the substrate that corresponds to the conductive layers in the memory block. An isolation region is between the memory block and the hookup region and includes first insulating layers of a second insulating material different than the first insulating material. Each first insulating layer is at a level from the substrate that corresponds to one of the first conductive layers and each first insulating layer is between one of the conductive layers in the memory block and one of the conductive layers in hookup region. |
US10134747B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device may include a first cell structure, a second cell structure, a pad structure, a circuit, and an opening. The pad structure may include a first stepped structure and a second stepped structure located between the first cell structure and the second cell structure. The first stepped structure may include first pads electrically connected to the first and second cell structures and stacked on top of each other, and the second stepped structure may include second pads electrically connected to the first and second cell structures and stacked on top of each other. The circuit may be located under the pad structure. The opening may pass through the pad structure to expose the circuit, and may be located between the first stepped structure and the second stepped structure to insulate the first pads and the second pads from each other. |
US10134742B2 |
Semiconductor device including a semiconductor substrate, a pillar, and a beam
The semiconductor storage device includes a lower electrode that are vertically extended from a semiconductor substrate, a beam including a first portion extending in a horizontal direction to support the lower electrode and a second portion that is vertically extended along the exterior wall of the electrode from the first portion. |
US10134738B2 |
Low power memory device with JFET device structures
There is provided a low power memory device with JFET device structures. Specifically, a low power memory device is provided that includes a plurality memory cells having a memory element and a JFET access device electrically coupled to the memory element. The memory cells may be isolated using diffusion based isolation. |
US10134736B2 |
Method of integrating thyristor and metal-oxide semiconductor transistor on a semiconductor substrate
A method for fabricating a semiconductor device includes the steps of: providing a substrate having a cell region and a peripheral region; forming a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a fourth semiconductor layer on the substrate; forming a thyristor on the cell region; removing the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer on the peripheral region; and forming a metal oxide semiconductor (MOS) transistor on the peripheral region. |
US10134735B2 |
Heterogeneously integrated semiconductor device and manufacturing method thereof
A heterogeneously integrated semiconductor devices includes a base substrate; a Ge-containing film formed on the base substrate; a PMOSFET transistor having a first fin formed on the Ge-containing film; and a NMOSFET transistor having a second fin formed on the Ge-containing film; wherein the PMOSFET transistor and the NMOSFET transistor compose a CMOS transistor, and the first fin comprises Ge-containing material and the second fin comprises a Group III-V compound. |
US10134730B2 |
FinFET device with enlarged channel regions
A method of manufacturing a semiconductor device includes providing a semiconductor layer, forming a plurality of semiconductor fins on a surface of the semiconductor layer extending in parallel to each other along a first direction parallel to the surface of the semiconductor layer, and forming a plurality of gate electrodes comprising longitudinal portions extending parallel to the semiconductor fins along the first direction. |
US10134725B2 |
Electrostatic discharge protection circuit applied in integrated circuit
The present application provides an electrostatic discharge protection circuit including a first N-type transistor, a second N-type transistor and a high-voltage tracing circuit. The high-voltage tracing circuit includes a first input terminal, a second input terminal and an output terminal. The first input terminal is coupled to the metal pad to receive a metal pad voltage. The second input terminal receives a supply voltage. The output terminal is coupled to the second N-type transistor and configured to output a high-voltage tracing voltage, wherein the high-voltage tracing voltage is larger than or equal to the metal pad voltage. |
US10134724B2 |
Electro-static discharge protection devices having a low trigger voltage
An electro-static discharge (ESD) protection device includes a first PN diode, a second PN diode and a silicon controlled rectifier (SCR). The first PN diode and the second PN diode are coupled in series between a pad and a ground voltage to provide a first discharge current path. The SCR is coupled between the pad and the ground voltage to provide a second discharge current path. The SCR has a PNPN structure. |
US10134722B2 |
Embedded PMOS-trigger silicon controlled rectifier (SCR) with suppression rings for electro-static-discharge (ESD) protection
An Electro-Static-Discharge (ESD) protection device has a Silicon-Controlled Rectifier (SCR) with a triggering PMOS transistor. The SCR is a PNPN structure with a P+ anode/source within a center N-well, a P-substrate, and an outer N-well that connects to a cathode using N+ well taps. The P+ anode/source is both the source of the triggering PMOS transistor and the anode of the SCR. A trigger circuit drives the gate of the triggering PMOS transistor low, turning it on to charge the P+ drain. Since the P+ drain straddles the well boundary, making physical contact with both the center N-well and the P-substrate, holes flow into the P-substrate. The P+ drain is located near guard rings that suppress latch-up. The holes from the P+ drain flood the region under the guard rings, temporarily weakening their effect and reducing the trigger voltage. |
US10134721B2 |
Variable holding voltage silicon controlled rectifier using separate and distinct bipolars
A silicon controlled rectifier (SCR) using separate bipolar transistors is disclosed. The separate bipolar SCR enables access to internal feedback terminals of the SCR, which may then may be used to adjust the gain of individual bipolar transistors. Further embodiments provide custom design latch up immune solutions. The latch up immunity is achieved by integrating an active Field Effect Transistor (FET) into the internal feedback node of the SCR. This provides access to ‘feedback’ node of the SCR allowing for latch-up free SCR design. The active FET times out in a short time period (e.g., microseconds) thus shutting off the SCR feedback mechanism making the SCR latch-up immune. |
US10134718B2 |
Power semiconductor module
A power semiconductor module including a positive-side switching device and a positive-side diode device which are mounted on a positive-side conductive pattern, and a negative-side switching device and a negative-side diode device which are mounted on an output-side conductive pattern. When an insulating substrate is viewed in plan view, the positive-side diode device and the negative-side diode device are disposed between the positive-side switching device and the negative-side switching device, and the negative-side diode device is disposed closer to the positive-side switching device than the positive-side diode device is. |
US10134716B2 |
Multi-package integrated circuit assembly with through-mold via
A multi-package integrated circuit assembly can include a first electronic package having a first package substrate including a first die side and a first interface side. A first die can be electrically coupled to the first die side. A second electronic package can include a second package substrate having a second die side and a second interface side. A second die can be electrically coupled to the second die side. A metallic plated hole can be electrically coupled from the interface side of the first package substrate to the interface side of the second package substrate. A collective substrate can be attached to the first electronic package. For instance, the collective substrate can be located on a face of the first electronic package opposing the first package substrate. The collective substrate is electrically coupled to the first die and the second die through the first package substrate. |
US10134713B2 |
Semiconductor package
A semiconductor package includes a printed circuit board, a resistor circuit, and first and second semiconductor chips. First and second pads are on a first surface of the printed circuit board, and external connection terminal is on a second surface of the printed circuit board. The resistor circuit has a first connection terminal connected to the first pad and a second connection terminal connected to the second pad. The first semiconductor chip is connected to the first pad and the second semiconductor chip is stacked on the first semiconductor chip and connected to the second pad. The printed circuit board includes a signal transfer line connecting a branch in the printed circuit board to the external connection terminal. A first transfer line connects the branch to the first pad. A second transfer line connects the branch to the second pad. |
US10134712B1 |
Methods and systems for improving power delivery and signaling in stacked semiconductor devices
Semiconductor die assemblies including stacked semiconductor dies having parallel plate capacitors formed between adjacent pairs of semiconductor dies in the stack, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor die assembly includes a first semiconductor die and a second semiconductor die stacked over the first semiconductor die. The first semiconductor die includes an upper surface having a first capacitor plate formed thereon, and the second semiconductor die includes a lower surface facing the upper surface of the first semiconductor die and having a second capacitor plate formed thereon. A dielectric material is formed at least partially between the first and second capacitor plates. The first capacitor plate, second capacitor plate, and dielectric material together form a capacitor that stores charge locally within the stack, and that can be accessed by the first and/or second semiconductor dies. |
US10134710B2 |
Semiconductor package
A stacked semiconductor package in an embodiment includes a first semiconductor package including a first circuit board and a first semiconductor element mounted on the first circuit board; and a second semiconductor package including a second circuit board and a second semiconductor element mounted on the second circuit board, the second semiconductor package being stacked on the first semiconductor package. The first semiconductor package further includes a sealing resin sealing the first semiconductor element; a conductive layer located in contact with the sealing resin; and a thermal via connected to the conductive layer and located on the first circuit board. |
US10134703B2 |
Package on-package process for applying molding compound
A method of packaging includes placing a package component over a release film, wherein solder regions on a surface of the package component are in physical contact with the release film. Next, A molding compound filled between the release film and the package component is cured, wherein during the step of curing, the solder regions remain in physical contact with the release film. |
US10134702B2 |
Semiconductor chip, semiconductor package including the same, and method of manufacturing semiconductor chip
The semiconductor chip including a semiconductor device layer including a pad region and a cell region, a plurality of uppermost wirings formed on the semiconductor device layer to be arranged at an equal distance in the cell region, a passivation layer formed in the cell region and the pad region, and a plurality of thermal bumps disposed on the passivation layer to be electrically insulated from the plurality of uppermost wirings may be provided. The semiconductor device layer may include a plurality of through silicon via (TSV) structures in the pad region. The plurality of uppermost wirings may extend in parallel along one direction and have a same width. The passivation layer may cover at least a top surface of the plurality of uppermost wirings in the cell region and includes a top surface having a wave shape. |
US10134700B2 |
Via structure for packaging and a method of forming
A via or pillar structure, and a method of forming, is provided. In an embodiment, a polymer layer is formed having openings exposing portions of an underlying conductive pad. A conductive layer is formed over the polymer layer, filling the openings. The dies are covered with a molding material and a planarization process is performed to form pillars in the openings. In another embodiment, pillars are formed and then a polymer layer is formed over the pillars. The dies are covered with a molding material and a planarization process is performed to expose the pillars. In yet another embodiment, pillars are formed and a molding material is formed directly over the pillars. A planarization process is performed to expose the pillars. In still yet another embodiment, bumps are formed and a molding material is formed directly over the bumps. A planarization process is performed to expose the bumps. |
US10134697B2 |
Semiconductor chip and method of processing a semiconductor chip
Various embodiments provide a semiconductor chip, wherein the semiconductor chip comprises a first contact area and a second contact area both formed at a frontside of the semiconductor chip; a passivation layer arranged at the frontside between the first contact area and the second contact area; and a contact stack formed over the frontside of the semiconductor chip and comprising a plurality of layers, wherein at least one layer of the plurality of layers is removed from the passivation layer and boundary regions of the contact areas being adjacent to the passivation layer and wherein at least one another layer of the plurality of different layer is present in the boundary region of the contact areas adjoining the passivation layer. |
US10134693B2 |
Printed wiring board
A printed wiring board includes a lowermost resin insulating layer, a first conductor layer formed on first surface of the lowermost layer, a conductor post having upper surface facing the first surface of the lowermost layer, a metal post formed such that the metal post is protruding from second surface of the lowermost layer and is positioned at lower surface of the conductor post, an electronic component embedded in the lowermost layer such that the component is positioned on second surface side of the lowermost layer and has an electrode facing the first surface of the lowermost layer, and via conductors formed in the lowermost layer and including first and second via conductors such that the first via conductor is connecting the first conductor layer and the upper surface of the conductor post and the second via conductor is connecting the first conductor layer and the electrode of the component. |
US10134690B2 |
Floating package stiffener
Embodiments herein may relate to a package with one or more layers. A silicon die may be coupled with the one or more layers via an adhesive. A package stiffener may also be coupled with the adhesive adjacent to the die. A magnetic thin film may be coupled with the package stiffener. Other embodiments may be described and/or claimed. |
US10134689B1 |
Warpage compensation metal for wafer level packaging technology
A wafer level package device and method are disclosed that include a warpage compensation metal adhered to a backside of a semiconductor wafer for minimizing warpage of the semiconductor wafer, where multiple metal features have been formed on the device side of the semiconductor substrate. The warpage compensation metal may include a copper film. |
US10134686B2 |
Systems and methods for providing electromagnetic interference (EMI) compartment shielding for components disposed inside of system electronic packages
A compartment EMI shield is provided that is suitable for use in system module packages having thin form factors and/or smaller widths and/or lengths. The compartment EMI shield comprises a fence arranged along a compartment boundary at least in between first and second sets of electrical components of the system module package. The fence being configured to attenuate EMI of a frequency of interest traveling in at least one of a first direction and a second direction, where the first direction is from the first set of electrical components toward the second set of electrical components and the second direction is from the second set of electrical components toward the first set of electrical components. |
US10134684B2 |
Patterned shield structure
A patterned shield structure applied to an integrated circuit (IC) is disposed between an inductor and a substrate of the integrated circuit. The patterned shield structure includes a center structure unit, a first patterned structure unit, and a second patterned structure unit. The center structure unit includes a first sub-center structure unit and a second sub-center structure unit. The second sub-center structure unit and the first sub-center structure unit are symmetrically disposed with respect to a middle of the center structure unit. The first patterned structure unit is disposed on one side of the center structure unit. The second patterned structure unit is disposed on another side of the center structure unit. The second patterned structure unit and the first patterned structure unit are symmetrically disposed with respect to the center structure unit. |
US10134681B2 |
Laser processing method for cutting semiconductor wafer having metal layer formed thereon and laser processing device
Disclosed are a laser processing method for cutting a semiconductor wafer having a metal layer formed thereon and a laser processing device. The disclosed laser processing method transmits a plurality of laser beams, which propagate coaxially, to the semiconductor wafer, thereby forming focusing points in positions adjacent to a surface of the metal layer, which constitutes a boundary with the semiconductor wafer, and to one surface of the semiconductor wafer, respectively. |
US10134679B2 |
Printed circuit board, package substrate comprising same, and method for manufacturing same
The printed circuit board, according to one embodiment, comprises: an insulation substrate; a pad formed on at least one side of the insulation substrate; a protection layer which is formed on the insulation substrate and exposes an upper surface of the pad; and a bump formed on the pad exposed by the protection layer, wherein the bump comprises a plurality of solder layers having melting points different from each other. |
US10134671B1 |
3D interconnect multi-die inductors with through-substrate via cores
A semiconductor device having a first die and a second die is provided. The first die of the device includes a first surface and a through-substrate via (TSV) extending at least substantially through the first die, the TSV having a portion extending past the first surface. The first die further includes a first substantially helical conductor disposed around the TSV. The second die of the device includes a second surface, an opening in the second surface in which the portion of the TSV is disposed, and a second substantially helical conductor disposed around the opening. |
US10134670B2 |
Wafer with plated wires and method of fabricating same
An aspect of the invention includes a method for plating wires on a wafer comprising: forming an array of integrated circuit (IC) chips having a redistribution level; forming a kerf bus, the kerf bus separating each of the IC chips from each other, the kerf bus being connected to an edge of the wafer; forming an array of wires in the redistribution level of each IC chip; electrically connecting at least one wire in the array of wires on each IC chip to the kerf bus; and electroplating the array of IC chips. |
US10134667B2 |
Chip-on-film semiconductor packages and display apparatus including the same
Provided are a chip-on-film (COF) semiconductor package capable of improving connection characteristics and a display apparatus including the package. The COF semiconductor package includes a film substrate, a conductive interconnection located on at least one surface of the film substrate and an output pin connected to the conductive interconnection and located at one edge on a first surface of the film substrate, a semiconductor chip connected to the conductive interconnection and mounted on the first surface of the film substrate, a solder resist layer on the first surface of the film substrate to cover at least a portion of the conductive interconnection, and at least one barrier dam on the solder resist layer between the semiconductor chip and the output pin. |
US10134664B2 |
Integrated circuit packaging system with embedded pad on layered substrate and method of manufacture thereof
An integrated circuit packaging system and method of manufacture thereof includes: a dielectric core having an embedded pad; a top solder resist layer on the dielectric core, a pad top surface of the embedded pad below the top solder resist layer; a device interconnect attached to the embedded pad; and an integrated circuit device having an interconnect pillar, the interconnect pillar attached to the device interconnect for mounting the integrated circuit device to the dielectric core. |
US10134663B2 |
Semiconductor device
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate. |
US10134660B2 |
Semiconductor device having corrugated leads and method for forming
A semiconductor device includes a lead frame site including a die attach region and corrugated metal leads around the die attach region. Each of the corrugated metal leads includes two or more corrugations. Each of the two or more corrugations includes a first flat horizontal portion, a first vertical portion with a first end directly adjacent and connected to a first end of the first flat horizontal portion, a second flat horizontal portion with a first end directly adjacent and connected to a second end of the first vertical portion, and a second vertical portion with a first end directly adjacent and connected to a second end of the second flat horizontal portion. The first flat horizontal portion is in a different plane than the second flat horizontal portion. |
US10134657B2 |
Inorganic wafer having through-holes attached to semiconductor wafer
A process comprises bonding a semiconductor wafer to an inorganic wafer. The semiconductor wafer is opaque to a wavelength of light to which the inorganic wafer is transparent. After the bonding, a damage track is formed in the inorganic wafer using a laser that emits the wavelength of light. The damage track in the inorganic wafer is enlarged to form a hole through the inorganic wafer by etching. The hole terminates at an interface between the semiconductor wafer and the inorganic wafer. An article is also provided, comprising a semiconductor wafer bonded to an inorganic wafer. The semiconductor wafer is opaque to a wavelength of light to which the inorganic wafer is transparent. The inorganic wafer has a hole formed through the inorganic wafer. The hole terminates at an interface between the semiconductor wafer and the inorganic wafer. |
US10134655B2 |
Semiconductor device packages with direct electrical connections and related methods
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate. |
US10134653B2 |
Semiconductor device having electrode pads arranged between groups of external electrodes
The semiconductor device has the CSP structure, and may include a plurality of electrode pads formed on a semiconductor integrated circuit in order to input/output signals from/to exterior; solder bumps for making external lead electrodes; and rewiring. The solder bumps may be arranged in two rows along the periphery of the semiconductor device. The electrode pads may be arranged inside the outermost solder bumps so as to be interposed between the two rows of solder bumps. Each trace of the rewiring may be extended from an electrode pad, and may be connected to any one of the outermost solder bumps or any one of the inner solder bumps. |
US10134649B2 |
Scanning acoustic microscope sensor array for chip-packaging interaction package reliability monitoring
A method includes forming a flip-chip module including a chip connected to a substrate with a layer of underfill material adhered to the chip and the substrate; sensing chip-packaging interaction failure in the underfilled flip-chip module in situ; reporting in-situ chip-packaging interaction failure to a device in real-time; and imaging the chip-packaging interaction failure with an indirect scanning acoustic microscope. |
US10134647B2 |
Methods for forming interconnect assemblies with probed bond pads
An interconnect assembly includes a bond pad and an interconnect structure configured to electrically couple an electronic structure to the bond pad. The interconnect structure physically contacts areas of the bond pad that are located outside of a probe contact area that may have been damaged during testing. Insulating material covers the probe contact area and defines openings spaced apart from the probe contact area. The interconnect structure extends through the openings to contact the bond pad. |
US10134646B2 |
Display device and testing method thereof
A display device and a testing method thereof are disclosed, in which a defect caused by an overflow of an organic film constituting an encapsulation film can be detected. The display device comprises a substrate including a display area where pixels are arranged, and a pad area including a plurality of pads formed outside the display area; an encapsulation film covering the display area, including at least one inorganic film and at least one organic film; a dam arranged between the display area and the pad area; and a conductive testing line arranged between the dam and the pad area and not electrically connected with another conductive line or electrode arranged on the substrate. |
US10134645B2 |
Stress monitoring device and method of manufacturing the same
A stress monitoring device includes an anchor structure, a freestanding structure and a Vernier structure. The anchor structure is over a substrate. The freestanding structure is over the substrate, wherein the freestanding structure is connected to the anchor structure and includes a free end suspended from the substrate. The Vernier structure is over the substrate and adjacent to the free end of the freestanding structure, wherein the Vernier structure comprises scales configured to measure a displacement of the free end of the freestanding structure. |
US10134644B2 |
Method of manufacturing a semiconductor device having deep wells
A semiconductor device includes first and second voltage device regions and a deep well common to the first and second voltage device regions. An operation voltage of electronic devices in the second voltage device region is higher than that of electronic devices in the first voltage device region. The deep well has a first conductivity type. The first voltage device region includes a first well having the second conductivity type and a second well having the first conductivity type. The second voltage region includes a third well having a second conductivity type and a fourth well having the first conductivity type. A second deep well having the second conductivity type is formed below the fourth well. The first, second and third wells are in contact with the first deep well, and the fourth well is separated by the second deep well from the first deep well. |
US10134642B2 |
Semiconductor device and method of forming the semiconductor device
A method of forming a semiconductor device, includes forming a first work function metal and sacrificial layer on an n-type field effect transistor (nFET) and on a p-type field effect transistor (pFET), removing the sacrificial layer and the first work function metal from one of the nFET and the pFET, forming a second work function metal on the one of the nFET and the pFET, a thickness of the second work function metal being substantially the same as a thickness of the first work function metal, and removing the sacrificial layer from the other of the nFET and the pFET. |
US10134640B1 |
Semiconductor device structure with semiconductor wire
A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a base portion and a fin portion over the base portion. The semiconductor device structure includes a gate structure over the fin portion and extending across the fin portion. The semiconductor device structure includes a first semiconductor wire over the fin portion and passing through the gate structure. The semiconductor device structure includes a second semiconductor wire over the first semiconductor wire and passing through the gate structure. The gate structure surrounds the second semiconductor wire and separates the first semiconductor wire from the second semiconductor wire. The first semiconductor wire and the second semiconductor wire are made of different materials. |
US10134637B1 |
Method of forming a semiconductor component having multiple bipolar transistors with different characteristics
A semiconductor component is formed by providing a substrate having partially formed first and second transistors, a base electrode stack formed over the transistors, first and second emitter windows formed in the electrode stack over first and second collector regions of the transistors, and an oxide layer extending over the collector regions. A process entails forming a mask layer in a selected emitter window, optionally forming a selectively implanted collector (SIC) in an un-masked emitter window, and removing an oxide layer and forming an epitaxial layer in the un-masked emitter window. The process further entails forming an oxide layer over the epitaxial layer and repeating the operations of forming a mask layer for another selected emitter window, optionally forming a SIC in another un-masked emitter window, and removing an oxide layer and forming an epitaxial layer in the un-masked emitter window. The epitaxial layers may have different epitaxial growth profiles. |
US10134636B2 |
Methods for producing semiconductor devices
A method for producing a semiconductor device in accordance with various embodiments may include providing a semiconductor workpiece attached to a first carrier; dicing the semiconductor workpiece and the carrier so as to form at least one individual semiconductor chip; mounting the at least one semiconductor chip with a side facing away from the carrier, to an additional carrier. |
US10134633B1 |
Self-aligned contact with CMP stop layer
In a self-aligned contact (SAC) process, a sacrificial etch stop layer is embedded over source/drain regions, i.e., directly over an interlayer dielectric (IDL) disposed over source/drain regions to enable polishing of a nitride capping layer with respect to the interlayer dielectric. The sacrificial etch stop layer may comprise cobalt metal, and is adapted to be removed and replaced with additional ILD material after controlled polishing of the nitride capping layer. |
US10134632B2 |
Low-K dielectric layer and porogen
A system and method for a low-k dielectric layer are provided. A preferred embodiment comprises forming a matrix and forming a porogen within the matrix. The porogen comprises an organic ring structure with fewer than fifteen carbons and a large percentage of single bonds. Additionally, the porogen may have a viscosity greater than 1.3 and a Reynolds numbers less than 0.5. |
US10134631B2 |
Size-filtered multimetal structures
A size-filtered metal interconnect structure allows formation of metal structures having different compositions. Trenches having different widths are formed in a dielectric material layer. A blocking material layer is conformally deposited to completely fill trenches having a width less than a threshold width. An isotropic etch is performed to remove the blocking material layer in wide trenches, i.e., trenches having a width greater than the threshold width, while narrow trenches, i.e., trenches having a width less than the threshold width, remain plugged with remaining portions of the blocking material layer. The wide trenches are filled and planarized with a first metal to form first metal structures having a width greater than the critical width. The remaining portions of the blocking material layer are removed to form cavities, which are filled with a second metal to form second metal structures having a width less than the critical width. |
US10134624B2 |
Substrate alignment detection using circumferentially extending timing pattern
Apparatus and method for aligning a rotatable substrate to a support mechanism to write a feature to the substrate, and a substrate so configured. In some embodiments, the substrate has a circumferentially extending timing pattern with spaced apart first and second timing marks disposed on opposing sides of a center point of the timing pattern and an identification (ID) field that stores a unique identifier value associated with the substrate. Upon mounting of the substrate to a support mechanism that rotates the substrate about a central axis that is offset from the center point, a control circuit generates a compensation value to compensate for the offset using the first and second timing marks and outputs a process instruction to authorize processing of the substrate using the unique identifier value. In some cases, the unique identifier value is used as a lookup to a computerized database. |
US10134620B2 |
Robot system and incline detection method
A robot system includes: a robotic hand configured to load and unload a workpiece into and from a cassette in which a plurality of workpieces are aligned in a first direction; a sensor configured to detect the workpiece; a transporter configured to change a relative position of the sensor with respect to the cassette in the first direction and in a second direction; and circuitry configured to: control the transporter to arrange the sensor at a first position; command the sensor to scan in the first direction, to acquire first mapping data; control the transporter to arrange the sensor at a second position by changing the relative position of the sensor in the second direction; command the sensor to scan in the first direction, to acquire second mapping data; and determine that one or more of the workpieces are inclined based on the first and second mapping data. |
US10134618B2 |
Substrates storing container
The bottom plate has a plate-like shape, is arranged to face an outer face of a lower wall, and has a locking portion. The groove member has: a groove-forming portion having a groove opening downward formed therein, a surrounding wall portion, which is connected to the groove-forming portion, and is arranged around the groove-forming portion; and a locked portion, which is connected to the surrounding wall portion, is elastically deformable, and is locked by way of the locking portion of the bottom plate by being elastically deformed. The groove member is supported and fixed by way of the lower wall and the bottom plate. |
US10134614B2 |
Substrate peripheral portion measuring device, and substrate peripheral portion polishing apparatus
A projecting/receiving unit (52) projects a laser light to a peripheral portion (30) and receives the reflected light while a liquid is being fed to a substrate (14) and is flowing on the peripheral portion (30). A signal processing controller (54) processes the electric signal of the reflected light to decide the state of the peripheral portion (30). The state of the peripheral portion being polished is monitored. Moreover, the polish end point is detected. A transmission wave other than the laser light may also be used. The peripheral portion (30) may also be enclosed by a passage forming member thereby to form a passage properly. The peripheral portion can be properly measured even in the situation where the liquid is flowing on the substrate peripheral portion. |
US10134613B2 |
Cluster tool apparatus and a method of controlling a cluster tool apparatus
A system and method for a cluster tool apparatus for processing a semiconductor product including processing modules located adjacent each other and configured to process a semiconductor module, loadlocks configured to retain and dispense unprocessed semiconductor products and each positioned adjacent one of the processing modules, a robot configured to load, transfer and unload a semiconductor product to and from the processing modules, a hardware controller in communication with the robot and executing a method to close down the cluster tool apparatus to an idle state, the method including determining a status of the processing modules, determining if a close down process is required based on the status or based on a close down signal, and, if required, determining a schedule for a close down process based on a semiconductor product residency parameter, and controlling the operation of the robot based on the schedule to perform the close down process. |
US10134612B2 |
Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
In one embodiment, a semiconductor manufacturing apparatus includes a support module configured to support a wafer having first and second faces. The apparatus further includes a chamber configured to contain the support module. The apparatus further includes a microwave generator configured to generate a microwave. The apparatus further includes a waveguide configured to emit the microwave into the chamber to irradiate the first or second face of the wafer with the microwave, the waveguide being provided to the chamber such that an incidence direction of the microwave emitted from the waveguide onto the first or second face is non-vertical to the first or second face. |