Document Document Title
US09893687B2 Radio-frequency and bias signal coupling in power amplifier devices
A power amplifier die includes a semiconductor substrate, a power amplifier implemented on the semiconductor substrate, a radio-frequency input configured to receive a radio-frequency input signal having a radio-frequency component and a DC bias component, a bias circuit implemented on the semiconductor substrate, the bias circuit coupled to the power amplifier, and a bias tee circuit implemented on the semiconductor substrate, the bias tee circuit configured to receive the radio-frequency input signal and pass at least a portion of the DC component to the bias circuit and at least a portion of the radio-frequency component to the power amplifier.
US09893684B2 Radio-frequency power amplifiers driven by boost converter
Radio-frequency (RF) power amplifiers driven by boost converter. In some embodiments, a power amplification system can include a supply system configured to provide a high-voltage (HV) supply signal based on a battery voltage, and a power amplifier (PA) configured to receive the HV supply signal and amplify an RF signal. The power amplification system can further include an output path configured to route the amplified RF signal to a filter. Such an output path can be substantially free of either or both of an impedance transformation circuit and a band selection switch.
US09893683B2 Systems for amplifying a signal using a transformer matched transistor
A circuit for amplifying a source signal generated by a signal source having a first impedance includes a transmission line transformer (TLT) having a first, a second, a third, and a fourth port wherein the TLT is coupled to receive the source signal at the first port and configured to output a corresponding impedance matched signal at the second port, the second port is coupled to the third port of the TLT, the circuit also including a TLT load having a first terminal coupled to the fourth port of the TLT and a second terminal coupled to a reference potential. The circuit additionally includes an amplifier device responsive to the impedance matched signal to generate an amplified signal.
US09893682B2 Amplifier linearization in a radio frequency system
A linearization circuit that reduces intermodulation distortion in an amplifier output receives a first signal that includes a first frequency and a second frequency and generates a difference signal having a frequency approximately equal to the difference of the first frequency and the second frequency. The linearization circuit generates an envelope signal based at least in part on a power level of the first signal and adjusts a magnitude of the difference signal based on the envelope signal. When the amplifier receives the first signal at an input terminal and the adjusted signal at a second terminal, intermodulation between the adjusted signal and the first signal cancels at least a portion of the intermodulation products that result from the intermodulation of the first frequency and the second frequency.
US09893674B2 Motor control device including torque command limit unit
A motor control device includes: a power failure detection unit that detects a power failure; a voltage detection unit that detects a DC link voltage; a switch unit which connects a motor to an amplifier or a resistance; a voltage comparison unit which compares a DC link voltage with a threshold value; a limit value setting unit which sets a torque limit value in accordance with a result of comparison; a torque command limit unit which limits a torque command when a power failure is detected; a prediction value calculation unit which calculates, using an angular velocity, a torque prediction value of the motor when the motor is connected to the resistance; and a torque comparison unit which compares the torque limit value with the torque prediction value, in which in accordance with a result of comparison, the switch unit connects the motor to the amplifier or the resistance.
US09893671B2 Electric-motor control device, system and method
Provided is an electric-motor control device, including: a command value calculation unit configured to calculate a command value directed to an electric motor based on a command value and a given moment-of-inertia value; a difference detection unit configured to detect a difference between the moment-of-inertia value and an estimated moment-of-inertia value; a moment-of-inertia value change unit configured to change at least anyone of the moment-of-inertia value and a correction coefficient for the moment-of-inertia value based on the difference; and a change restriction unit configured to restrict a change in the moment-of-inertia value or the correction coefficient when at least any one of the moment-of-inertia value and the correction coefficient is changed to decrease by the moment-of-inertia value change unit.
US09893668B2 Control system and method
Embodiments of the present invention relate to an a method, apparatus and computer program product for controlling the operation of a drive unit comprising a plurality of switching modules arranged to receive a DC electricity supply and generate an AC electricity supply for driving a load from the received DC electricity supply, the AC electricity supply being generated by the switching of the plurality of switching modules between a conducting state and a non-conducting state. The method comprises receiving one or more characteristics associated with each of the switching modules, comparing, for each switching module of the plurality of switching modules, a characteristic of the switching module with an equivalent characteristic associated with one or more other switching modules of the plurality of switching modules, and controlling a time period during which one or more of the plurality of switching modules are in the conducting state in accordance with a result of the comparison.
US09893667B2 Divided phase AC synchronous motor controller
A circuit includes phase windings, a direct current (DC) power supply, and a power switch circuit. The power switch circuit includes at least one power switch. The circuit also includes a control circuit to control the power switch circuit. The control circuit includes a logic control shut off circuit to shut off the control circuit when the motor is at synchronous speed. The circuit also includes at least one non-collapsing DC power supply component to prevent the DC power supply from collapsing when the at least one power switch is on and conducting during at least a portion of a cycle. One or more of the DC power supply and power switch circuit may be at a midpoint of the phase windings.
US09893666B2 Method and system for controlling angular rotor speeds of sensorless induction motors
A method controls an angular speed of an induction motor by measuring a stator current and a stator voltage of the induction motor to determine an estimated stator current, an estimated rotor flux amplitude, and an estimated rotor speed. A first virtual control signal is based on a reference rotor speed and the estimated rotor speed. A second virtual control signal is based on the first virtual control signal and an estimated electromagnetic torque. A third virtual control signal is based on a reference rotor flux reference and the estimated rotor flux amplitude. A fourth virtual control signal is based on the third virtual control signal and an estimate of the third virtual control signal. Then, control input voltages are applied to the induction motor based on the second virtual control signal and the fourth virtual control signal.
US09893660B2 Electric motor and motor control
Various embodiments of an electric motor and electronic control for an electric motor are disclosed. An exemplary electric motor comprises a single-phase brushless permanent magnet electric motor. In exemplary embodiments, the electronic motor control is configured to commutate an electric motor at a frequency other than line frequency, perform pulse width modulation, and drive the electric motor with a drive waveform that approximates the counter-electromotive force of the motor.
US09893658B2 Method for operating a brushless electric motor
A method for starting a multiphase, sensorless commutated, brushless electric motor. The method has three operating phases. A start-up phase in which the motor is operated from a standstill with specified commutation times. An acceleration phase in which the motor is accelerated up to a nominal speed, wherein the commutation times are determined on the basis of the zero crossings of the BEMF voltage of the non-energized stator phase windings. And a stationary operating phase in which the nominal speed is kept constant. The transition from the start-up phase into the acceleration phase takes place when, during the start-up phase, a predetermined number of successive zero crossings of the BEMF voltage in the expected order in the expected motor phases have been identified. The transition from the acceleration phase into the stationary phase takes place once the nominal speed has been reached.
US09893655B2 Piezoelectric power generation apparatus
A piezoelectric power generation apparatus that includes a first vibrating portion having a fixed end and a free end, a first weight portion bonded to the free end of the first vibrating portion, a second vibrating portion having a fixed end bonded to the first weight portion and a free end, and including a vibrating plate and a piezoelectric element provided on the vibrating plate. A second weight portion is bonded to the free end of the second weight portion. In a state where the piezoelectric power generation apparatus is arranged on a vibration surface and is still, a position of the free end of the first vibrating portion and a position of the fixed end of the second vibrating portion in an axial direction perpendicular to the vibration surface are different from each other.
US09893654B2 Energy harvesting mechanism
Embodiments of the invention provide an energy harvesting mechanism comprising a central conductive element and a plurality of transductive elements. Each transductive element is positioned to be in contact with a corresponding peripheral length segment of the central conductive element. Also each transductive element is deformable in a characteristic radial direction to convert its deformation into a corresponding electrical signal. The plurality of transductive elements are arranged so that any one of the plurality of transductive elements is capable of being deformed in the characteristic radial direction to trigger the corresponding electrical signal. Embodiments of the mechanism can be used for harvesting energy from a variety of bio-kinetic events such as a heartbeat, respiration, muscle contraction or other movement. Such embodiments can be used for powering a variety of implanted medical devices such as pacemakers, defibrillators and various monitoring devices.
US09893653B2 Power generation device
A device able to generate electrical power through relative rotational motion of first (370, 380) and second (200, 230) principal components around an axis of rotation (220); wherein: the first and second principal components comprise an arrangement of piezoelectric elements (380) and permanent magnets (230, 370) such that the interaction between these magnets and piezoelectric elements, in use, makes it possible to generate electricity; and wherein: the second principal component (200, 230) comprises a center of mass offset from the axis of relative rotation (220) such that the response of the second principal component (200, 230) to either gravitational or inertial forces is a relative rotation of the second principal component (200, 230) in relation to the first principal component (370, 380); the first principal component (370, 380) being fixedly attached to the moving host structure (100).
US09893652B2 Electricity-generating element unit, electric generator, footwear, and flooring material
An electricity-generating element unit including a plurality of electricity-generating elements, each of the plurality of electricity-generating elements including a first electrode, an intermediate layer, and a second electrode disposed with the intermediate layer being between the first electrode and the second electrode, and a coupling unit coupling the plurality of electricity-generating elements to each other, wherein when an external force is applied to at least one of the plurality of electricity-generating elements to bring the first electrode and the second electrode of the at least one of the plurality of electricity-generating elements close to each other, a distance between the first electrode and the second electrode of the electricity-generating element or each of the electricity-generating elements to which an external force is not applied is increased by the coupling unit.
US09893647B2 Resonant inverter and switching power source unit
A resonance inverter includes a first coil provided between an input terminal and a switch element, a first capacitor provided between the drain and the source of the switch element, a second capacitor serially connected between the drain and the source of the switch element, and a second coil. A drain-source voltage of a switch element can be effectively lowered, by setting a serial resonance frequency based on the second coil and the second capacitor to a value higher than twice of a driving frequency, and lower than 2.75 times thereof.
US09893646B2 System for a low profile, low inductance power switching module
A method and system for a power module device is provided. The device includes a base, a circuit board including a plurality of gated switches formed of a semiconductor material, and an electrical bus member configured to connect to a voltage source having a first polarity. The bus member includes a length that is substantially greater than a width of the bus member and the width is substantially greater than a thickness of the bus member. The power module device also includes a second bus member configured to connect to a voltage source having a second polarity. The second bus member is positioned in a nested face-to-face configuration with respect to the first bus member. The power module device further includes a layer of electrical insulation positioned between the first bus member and the second bus member.
US09893645B2 Method for operating an active rectifier, circuit system, and computer program for controlling a switching between modes of operation of an active rectifier
A method for operating an active rectifier including a multitude of controllable semiconductor switching elements, in which a switch is carried out between a first control mode and a second control mode for controlling the semiconductor switching elements, and vice versa, the semiconductor switching elements being controlled with a first switching time in the first control mode and with a second switching time in the second control mode, the second switching time being greater than the first switching time.
US09893644B1 Electric power devices with automatically established input voltage connection configuration
Electric power devices and control methods are provided which automatically select a line voltage or phase voltage of an AC voltage supply. The electric power device includes a switchable circuit, a sensor and a switch control. The switchable circuit connects to the AC voltage supply, and includes multiple switchable elements. The sensor ascertains a voltage level of the AC voltage supply, and the switch control automatically establishes a configuration of the switchable circuit through control of the multiple switchable elements. The switch control couples the electric power device in a line-line (delta) configuration to the AC voltage supply when the voltage level is in a first voltage range, and a line-neutral (wye) configuration when the voltage level is in a second voltage range.
US09893639B1 Synchronous rectifier control circuit and method using volt-second balancing
A synchronous rectifier control circuit and the control method thereof for controlling a switching power supply which includes a transformer, a first switch transistor and a second switch transistor. According to one embodiment to the present invention, the control circuit comprises a conducting detection module, a voltage averaging module, a voltage-second balance module and a logic-controlled module. The conducting detection module is comprised of a first reference potential and a conduction signal. The voltage averaging module includes an averaged circuit and outputs a second reference potential. The voltage-second balance module includes a first reference current, a second reference current, a voltage-second balance switch, a voltage-second balance comparator and a timing capacitor, and outputs a reset signal. The logic-controlled module includes a logic circuit to control the second switch transistor to turn on or off.
US09893635B2 Isolated switching converter with optocoupler and secondary control circuit thereof
An isolated switching converter includes a transformer, a primary circuit, a rectifying circuit and an optocoupler with a photo-sensitive device and a light emitting device, wherein the light emitting device has a first terminal coupled to an output voltage of the switching converter. A method for controlling the switching converter includes: sensing the output voltage and generating a voltage feedback signal; generating an error amplifying signal based on a reference signal and the voltage feedback signal, and providing the error amplifying signal to a second terminal of the light emitting device; disconnecting the error amplifying signal from the second terminal of the light emitting device if the error amplifying signal becomes lower than a first threshold voltage; and reconnecting the error amplifying signal to the second terminal of the light emitting device when the voltage reference signal becomes lower than a second threshold voltage.
US09893634B2 Hybrid control technique for power converters
A power conversion circuit includes a high-side MOSFET and a low-side MOSFET. A conduction terminal of the high-side MOSFET is coupled to a conduction terminal of the low-side MOSFET at a half-bridge (HB) circuit node. The high-side MOSFET is switched off. Voltage potential transitions of the HB circuit node are counted while the high-side MOSFET and low-side MOSFET are off. Assertion of a control signal to the low-side MOSFET is postponed for two voltage potential transitions of the HB circuit node after the high-side MOSFET is switched off. The low-side MOSFET is switched off by de-asserting the control signal to the low-side MOSFET. Switching on the high-side MOSFET is postponed for two voltage potential transitions of the HB circuit node after switching off the low-side MOSFET.
US09893633B1 Modular multilevel DC-DC converter and associated method of use
In one embodiment, a current-fed modular multilevel dual active-bridge DC-DC converter suitable for medium voltage direct current (MVDC) grid or high voltage direct current (HVDC) grid integration is described. The DAB modular converter and the current-fed DAB converter are soft-switched modular multilevel dual-active-bridge (DAB) converters having DC fault ride-through capability. In an additional embodiment a voltage-fed isolated modular dual active-bridge DC-DC converter for medium voltage direct current (MVDC) or high voltage direct current (HVDC) grids or systems is described. In specific embodiments, the converters may be coupled to a battery energy storage system (BESS), wherein the BESS comprises split-battery units and the interface of the isolated DC-DC converter connects the split-battery units to the MVDC or HVDC system. The converters can be implemented in single-phase or poly-phase configurations and can be controlled to maintain a desired DC output current under both normal and DC grid fault condition.
US09893630B2 Reduction of audible noise in a power converter
A power converter controller includes a drive circuit that generates a drive signal to switch a power switch to control a transfer of energy to an output of the power converter in response to a current sense signal, a feedback signal, and a current limit signal. A current limit generator generates the current limit signal in response to a load coupled to the output. An audible noise detection circuit generates a frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within an audible noise frequency window. A state of the current limit signal fixed when the intended frequency of the drive signal is within the audible noise frequency window. A first latch generates a hold signal to control the current limit generator to hold the current limit signal in response to the frequency skip signal and the feedback signal.
US09893625B2 Direct current to direct current power supply apparatus
Disclosed herein is a DC/DC power supply apparatus, which includes a plurality of power boards, a control board and a main board. The plurality of power boards are coupled in parallel with one another, and each power board includes a carrier circuit board and a power device disposed on the carrier circuit board. The control board includes a feedback control circuit and a PWM generator circuit; the feedback control circuit is configured to receive one or more feedback signals from the power boards; the PWM generator circuit outputs a PWM control signal to the power boards based on the feedback signal. The main board is electrically coupled to the power boards and the control board.
US09893624B2 Power supply unit having heat dissipation structure
A power supply unit includes: a transformer; a primary component that constitutes a primary circuit connected to the transformer; a secondary component that constitutes a secondary circuit connected to the transformer; a choke coil; a base plate including the transformer, the primary component, the secondary component and the choke coil; a metal plate connected to the base plate; and a connecting member connecting the primary component and the transformer. The primary component and the transformer are laminated to constitute a first laminating body. A part of the metal plate is disposed closer to the transformer than the primary component, and the metal plate and the transformer are electrically connected by a ground line. A connection point between the ground line and the metal plate is located closer to the transformer than the primary component.
US09893622B2 Multi-level step-up converter topologies, control and soft start systems and methods
A multi-level, step-up converter circuit includes an inductor including one terminal in communication with an input voltage supply. N transistor pairs are connected in series, where N is an integer greater than one. First and second transistors of a first pair of the N transistor pairs are connected together at a node. The node is in communication with another terminal of the inductor. Third and fourth transistors of a second pair of the N transistor pairs are connected to the first and second transistors, respectively. (N−1) capacitors have terminals connected between the N transistor pairs, respectively. An output capacitor has a terminal in communication with at least one transistor of the N transistor pair.
US09893617B2 Electric power conversion system
An electronic control unit of an electric power conversion system is configured to, when voltages of first and second batteries are stepped up in parallel and a temperature of a common switching element exceeds a threshold temperature, execute on time change control such that following conditions i) and ii) are satisfied: i) a trailing edge of one of the first and second PWM signals and a leading edge of the other one of the first and the second PWM signals connect with each other; and ii) the sum of the on time of the first and second PWM signals in a single PWM control period falls within a range from the single PWM control period to an allowable period. The electronic control unit is configured to change an on time of at least one of the first and second PWM signal in the on time change control.
US09893615B2 Switching power supply
A switching power supply includes: a switching type power supply circuit that converts an input voltage to generate an output voltage; and a control IC that executes feedback control that, based on a differential voltage between a target voltage and the output voltage from the power supply circuit, controls a switching element of the power supply circuit and causes the output voltage from the power supply circuit to converge to the target voltage. The control IC sets the target voltage for each predetermined period based on a value obtained by adding a preset value to the output voltage at a time of startup of the power supply circuit. Provided with this operation is a switching power supply that can precisely reduce an overshoot of the output voltage at the time of startup.
US09893614B2 Device and method for controlling a voltage regulator and corresponding voltage regulator
A method includes generating a control signal for controlling a switch element, and determining at each switching cycle alternation of an ON interval with storage of energy in the inductor element starting from an input voltage, and an OFF interval with transfer of the energy stored in an inductor element into a storage element on which an output voltage is present. The method includes when the inductor current reaches the first threshold value before the end of a first interval, determining the end of the ON interval at the end of the first interval. The method includes following detection of the ON interval having a duration equal to the first interval, the detection being indicative of a possible short-circuit condition at output, determining the OFF interval having a second duration equal to a lengthened interval longer than the first duration.
US09893611B2 Method for controlling coil current of a magneto inductive, flow measuring device
A method for controlling coil current of a magneto inductive, flow measuring device with a first value representing an overvoltage UO and a second value representing a holding voltage UH, wherein the first value is greater than the second value, characterized by steps as follows: setting a first switching point IS for the electrical current level, up to which a coil should be supplied with the overvoltage UO; applying an overvoltage UO until the electrical current level rises to the switching point IS set for the electrical current level; switching from the overvoltage UO to the holding voltage UH, in order to hold the electrical current level at a constant electrical current end value IH. Also intended is a magneto inductive, flow measuring device.
US09893609B1 Method to operate a resonant converter at a characteristic frequency of the power stage
A method is provided of operating a resonant converter, the converter having a controller and power stage and providing an output voltage, by determining a characteristic frequency of the power stage. The characteristic frequency is defined as a natural oscillation frequency of the power stage observed right after the power stage control signals from the controller are disabled. The converter is operated at the characteristic frequency during ramp-up or ramp-down of the converter output voltage and/or during overload or input overvoltage conditions.
US09893605B2 Method and device for intrinsically safe redundant current supply of field devices
A method and a device provide intrinsically safe redundant current supply of field devices with a common current-limiting resistor in the mesh of the field device, wherein the field device is connected via a connection line to field-device connection terminals of the current supply device consisting of at least two current supply units. The output voltage and/or the output current of each current supply unit is reduced as a function of the voltage across the field-device connection terminals.
US09893604B2 Circuit with low DC bias storage capacitors for high density power conversion
A circuit for converting DC to AC power or AC to DC power comprises a storage capacitor, boost and buck inductors and switching elements. The switches are controlled to steer current to and from the storage capacitor to cancel DC input ripple or to provide near unity power factor AC input. The capacitor is alternately charged to high positive or negative voltages with an average DC bias near zero. The circuit is configured to deliver high-efficiency power in applications including industrial equipment, home appliances, mobility devices and electric vehicle applications.
US09893603B2 Power converter
There is provided a power converter which can suppress a surge voltage and reduce noise flowing from an input of a power changer.The power converter includes an inverter circuit 140, a capacitor 514 for smoothing DC power, a capacitor 515 for removing noise, and conductors 564p and 564n. The conductors 564p and 564n are connected to the capacitors 514 and 515 when power side terminals 562p and 562n are connected to an inverter circuit 140, and power source side terminals 561p and 561n are connected to a battery 136. In the conductors 564p and 564n, a parasitic inductance L1 between capacitor terminals 563p and 563n and capacitor terminals 560p and 560n is larger than a parasitic inductance L2 between capacitor terminals 563p and 563n and the power side terminals 562p and 562n.
US09893600B2 Rotating electrical machine and method of mounting element wire temperature measurement sensors on rotating electrical machine
Insulating objects arranged in parallel between adjacent element wire conductors of a plurality of the element wire conductors in a circumferential direction of the rotating electrical machine on each of both sides interposing a dislocating portion of the element wire conductor and linearly extending along the adjacent element wire conductors; a storage space formed between the linear insulating objects arranged in parallel at each of the both sides interposing the dislocating portion; and a temperature detection sensor configured to detect a temperature of the element wire conductors and stored in the storage spaces at each of the both sides interposing the dislocating portion across both sides interposing the dislocating portion are provided, wherein the hardness of the insulating objects is lower than the hardness of the element wire conductors, whereby the types of the rotating electrical machine to which the temperature detection sensor can be applied may be extensively increased.
US09893598B2 Magnet temperature estimation device for permanent magnet motor and magnet temperature estimation method for permanent magnet motor
A magnet temperature estimation device includes: a voltage detector (1) for detecting a voltage at a time when a winding is energized; a high-order component detector (2) for detecting a high-order component of the voltage; a reference database (3) for storing in advance, as a table, a correspondence relationship between the high-order component and two or more parameters, which include a magnet temperature and another one or more parameters, as parameters affecting the voltage from which the high-order component is detected; a parameter value detector (4) for detecting a value of the another one or more parameters; and a magnet temperature estimator (5) for estimating a magnet temperature corresponding to the high-order component detected by the high-order component detector based on the another one or more parameters detected by the parameter value detector and the table stored in the reference database.
US09893590B2 Inner-rotor brushless motor
A rotor portion includes an upper cylindrical portion and a lower cylindrical portion, each of which is configured to rotate together with a rotor. A stator portion includes a circuit board including a rotation detection portion located thereon. The lower cylindrical portion includes a lower balance correction portion. The upper cylindrical portion includes an upper balance correction portion. In addition, a detectable portion configured to be detected by the rotation detection portion is provided on the upper cylindrical portion.
US09893586B2 Driver apparatus provided with a motor and a control unit
A seal member of a driver apparatus contacts a case and a first frame end. The seal member has an opening in which a lead wire is inserted and an inside wall surface of the opening contacts the lead wire. Further, the seal member is made of a stretchable material, and is held in position only by a binding force between the case and the first frame end. The seal member is fixedly held by the first frame end and the case after an insertion of the lead wire in the opening and disposition on the fixing member opposing face. Therefore, an installation of the seal member is performed by an inserting the lead wire into the opening and a positioning the seal member on the case.
US09893585B2 Motor mount
A mount for an electric motor, the mount comprising a sleeve for receiving a motor, the sleeve including plurality of elements projecting from a surface of the sleeve, wherein the plurality of elements include a vertex.
US09893582B2 Motor stator
A stator includes a winding core and a plurality of winding mechanisms. A plurality of winding grooves are defined on an inner surface of the winding core. Each of the winding mechanisms includes a first conductive wire and a second conductive wire. The first conductive wire includes a first curve portion, a first pin, and a second pin. The second conductive wire includes a second curve portion, a third pin, and a forth pin. The first conductive wire and the second conductive wire can be alternately connected together one by one via a first pin, a second pin, a third pin, and a forth pin to form two coils.
US09893579B2 Rotors and stators for dynamoelectric machines
A dynamoelectric machine includes a rotor having a rotor core and permanent magnets, and a stator having teeth. The permanent magnets are arranged in magnet sets. Each magnet set includes one or more of the permanent magnets. The rotor core has a cylindrical periphery and slits. Each of the slits is positioned radially between one of the magnet sets and the cylindrical periphery. Each tooth includes a tooth surface facing the cylindrical periphery. The tooth surface includes an inner portion extending substantially parallel to the cylindrical periphery of the rotor core, and beveled portions positioned on opposing sides of the inner portion of the tooth surface. An air gap between each beveled portion of the tooth surface and the cylindrical periphery of the rotor core is greater than an air gap between the inner portion of the tooth surface and the cylindrical periphery of the rotor core.
US09893573B2 Rotor of motor and such motor
A rotor able to enhance the strength in the radial direction of the rotor member. A rotor includes a shaft and a tubular rotor member which is fixed to the outside of the shaft in the radial direction. The shaft has a first part which contacts an inner circumferential surface of the rotor member, a second part which is arranged separated from the first part in the axial direction and which contacts an inner circumferential surface of the rotor member, a third part which extends between the first part and the second part and which has an outer diameter smaller than the first part and the second part, and a projection which extends from the third part to the outside in the radial direction and which contacts the inner circumferential surface of the rotor member.
US09893571B2 Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
In a permanent magnet type electric rotating machine, a rotor is arranged in a Halbach array, a main magnet magnetized in the radial direction is formed of a rare-earth magnet and an auxiliary magnet magnetized in the circumferential direction is formed of a ferrite magnet, and a gap is provided between the main magnet and the auxiliary magnet; as a result, the quantity of utilized rare-earth magnets is reduced without the output torque of the electric rotating machine being decreased.
US09893565B2 Power receiver control circuit, control method of wireless power receiver, and electronic apparatus
A control circuit of a wireless power receiver where the wireless power receiver includes a reception coil, a rectification circuit that rectifies a current of the reception coil, and a smoothing capacitor connected to an output of the rectification circuit. The control circuit includes a frequency detecting part configured to determine a frequency of a signal received by the reception coil in a detection period after a lapse of predetermined first time from a predetermined start timing before a lapse of predetermined second time; a modulation detecting part configured to determine whether the signal received by the reception coil is subjected to FSK (Frequency Shift Keying); and a standard determining part configured to determine a standard that a wireless power transmitter complies with, depending on the frequency detected by the frequency detecting part and the presence or absence of FSK.
US09893561B2 Power supply conversion system and method of controlling the same
A power supply conversion system receives an external power source to supply power to a load. The power supply conversion system includes at least one main power apparatus, at least one auxiliary power apparatus, a main switch, an auxiliary switch, and a control unit. The control unit turns on the main switch to restore the external power source when the control unit detects that the external power source is normally restored, and jointly supply power to the load with the auxiliary power apparatus. Especially, the output voltage of the main power apparatus is greater than the output voltage of the auxiliary power apparatus. In addition, the control unit disconnects the auxiliary power apparatus supplying power to the load when the control unit detects that the main power apparatus completely supplies power to the load.
US09893560B2 AC-DC power supply device and switching mode power supply device
Provided is an alternating current (AC) and direct current (DC) power supply device in which normal power and power of a solar cell is used to supply not only AC power but also DC power, particularly, power of a solar cell is first supplied as DC power or is charged in a battery, and after battery charging, residual power is converted to AC power via an inverter so as to replace normal AC power or to transmit AC power to the outside. Accordingly, an SMPS power supply method in which AC and DC power are supplied at the same time may be provided, and moreover, power of a solar cell may be effectively used.
US09893558B2 Wireless charging device and method
Disclosed are a wireless charging apparatus and method, wherein the device includes: a receiving coil, connected to a dynamic matching circuit, and the dynamic matching circuit includes a control circuit and at least one kind of matching circuit; the control circuit is connected to the at least one kind of matching circuit; the control circuit is configured to: transmit a control signal for controlling ON and OFF of the at least one kind of matching circuit. The apparatus and method solve the problem of using different wireless charging standards to perform wireless charging and realize a flexible wireless charging mechanism.
US09893556B2 Power receiving circuit, control method for wireless power receiving apparatus, and electronic device
A power receiving control circuit is provided that receives AC coil current IRX from a reception coil and that supplies DC output voltage VOUT. A rectifier circuit rectifies the coil current IRX. A linear regulator receives a rectified voltage VRECT across a smoothing capacitor, and generates the output voltage VOUT stabilized to a predetermined target level. A controller has predetermined control characteristics configured as a relation between the value of a charging current ICHG and the target value of the rectified voltage VRECT. The controller detects the value of the charging current ICHG, and transmits information which indicates electric power to be transmitted from a wireless power supply apparatus, with reference to the control characteristics. The controller is configured to be capable of changing the control characteristics.
US09893555B1 Wireless charging of tools using a toolbox transmitter
Configurations and methods of wireless power transmission for cordless power tools are disclosed. Wireless power transmission for charging one or more cordless power tools may include a toolbox with an embedded transmitter capable of emitting RF waves for the generation of pockets of energy; a battery attached or embedded in the toolbox to supply power to the transmitter; a cable that may connect toolbox's battery to a suitable external power source for charging; and one or more cordless power tools which may include rechargeable batteries and receivers that may utilize pockets of energy for wireless charging or powering. When the battery in the toolbox is charged to suitable levels, the toolbox can be disconnected from the external power source and carried to an area or location where one or more cordless power tools may receive wireless charging.
US09893553B2 Method and system for simultaneously wirelessly charging portable rechargeable devices based on wireless inductive power transfer with seamless free positioning capability
Embodiments of the present invention specifically relate to a system for seamlessly and simultaneously wirelessly charging portable chargeable devices with free positioning capability and a method therefor. The system comprises a charging subsystem. The charging subsystem comprises an electromagnetic shield for minimization of interference, and a transmitter coil array. The transmitter coil array comprises a first plurality of transmitter coils juxtaposed to each other and coupled to the electromagnetic shield, and a second plurality of transmitter coils, wherein each of the second plurality of transmitter coils is overlappingly coupled to at least a pair of the first plurality of transmitter coils in juxtaposition and positioned thereunder, and at least a controller for scanning the transmitter coils and selectively activating and deactivating the transmitter coils based on the detection of receiver coils positioned at any position relative to the transmitter coils, and a portable chargeable device comprising a receiver coil, wherein the system facilitates minimization of interference between the transmitter coils in juxtaposition.
US09893552B2 Charging circuits, charging systems, and wireless power reception devices including the same
A charging circuit may include a battery unit in which a rechargeable battery is mounted; a charging unit configured to provide a charging current to the rechargeable battery in the battery unit, based on a direct current (DC) voltage converted from an alternating current (AC) voltage, and configured to charge the rechargeable battery; and/or a controller configured to control the charging unit such that the charging unit provides the rechargeable battery with a first charging current following a first current profile in a first charging mode as the charging current at least in a first period of the first charging mode, based on the charging current, a battery voltage of the rechargeable battery, and a temperature of the rechargeable battery, wherein the first current profile is smaller than an available maximum current in the first period.
US09893548B2 Battery charger and method utilizing alternating DC charging current
A battery charger is disclosed for use with various batteries, such as automotive- and marine-type batteries. In accordance with an aspect of the invention, the charging current is alternated between non-zero DC charging current levels. By alternating the charging current between non-zero DC charging levels, the battery can be charged to a higher capacity (i.e., ampere hours) faster, thus reducing the charging time and at the same time allow the rating of the battery charger to be increased. In accordance with another important aspect of the invention, the technique for alternating the charging current can be implemented in both linear- and switched-mode battery chargers.
US09893544B2 Method and apparatus for intelligent battery control
A power control and delivery system for improving and prolonging the performance of batteries through a total power source comprised of a battery, a power controller and a power buffer.
US09893543B2 Portable power charger
A portable charger is provided for charging one or more electronic devices simultaneously from a rechargeable internal battery. To accommodate multiple electronic devices, a portable charger unit is combined with multiple connectors for connecting to more than one electronic device, as necessary. For example, the charger unit includes two or more connector cables removably attached to the charger unit and stored within the charger housing for connection to electronic devices when needed. An adapter unit is provided for connection to the charger unit for recharging the internal battery of the charger unit.
US09893536B2 Electronic device
An electronic device includes a magnetic element, and a first circuit module. The magnetic element includes a magnetic core set and a winding assembled in the magnetic core set. The first circuit module is coupled to the first winding of the magnetic element. A vertical projection area of the first circuit module has an overlap portion with a vertical projection area of the winding of the magnetic core set on a first plane, and the first plane is a horizontal plane at which the winding is located.
US09893535B2 Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
The present disclosure describes a methodology for tracking position and orientation of one or more electronic devices, which may receive charge through wireless sound power transmission based on pocket-forming. This methodology may include one transmitter and at least one or more receivers, being the transmitter the source of energy and the receiver the device that is desired to charge or power. The transmitter may identify and locate the device to which the receiver is connected for subsequently charge and/or charge it. In order to increase charging and/or powering of electronic devices, a plurality of sensors may provide information determining the optimal position and/or orientation aimed to receive charge and/or power at the maximum available efficiency.
US09893533B2 Server apparatus, electrical power control apparatus, and electrical power control system
An EMS server (14) calculates an estimated value of an integrated power consumption at an expiration of a reference time, based on a current value of power consumption of at least one load device located in a consumer's facility and a remaining time in the reference time. The EMS server (14) controls the load device in accordance with the estimated value of the integrated power consumption and a response time. The response time refers to a time required to complete a change in power consumption of the load device in response to a change in a setting of the load device.
US09893532B2 System and method for a mesh power system
A power mesh system and method comprising at least three polyphase power devices of a plurality of polyphase power devices, each having a phase connection for each phase, where each polyphase power device has each phase connection coupled to at least one phase connection of another polyphase power device to form a two dimensional array of power devices.
US09893530B2 Power control device, power control method, and power control system
A power control device, power control method, and power control system capable of appropriate power control so that power consumption does not exceed contract power with an electric power company even in the event of a power failure are provided. A power control device installed in a consumer's facility to manage a power state of a load apparatus or a dispersed power source in the consumer's facility, includes: a communicator configured to acquire sensor data relating to the load apparatus or the dispersed power source; a backup power source that is charged with a commercial power source, and supplies power during a power failure; and a controller configured to issue a control instruction to the dispersed power source, when the backup power source supplies power.
US09893526B2 Networked power management and demand response
Systems of networking power management systems are disclosed, wherein the systems receive control parameters from a control terminal and bring about demand response, curtailment, and other load management actions. One control terminal may be used to control many zones in different ways, and the load management actions may be automated to improve efficiency and predictability of the results of demand response actions. Some of the systems may be mobile and connectable to different sites in the network to respond to changing needs in the utility distribution grid. Large demand response requirements may be distributed among multiple sites or systems in order to encourage and enable participation in demand response programs by customers that would not traditionally be able to do so because of not being able to produce sufficient demand response results individually.
US09893524B2 Coordinated control method of generator and SVC for improving power throughput and controller thereof
The present invention provides coordinated control methods of generator and SVC for improving power plant active power throughput and controller thereof. The method comprises: measuring the required input parameters for the generator and SVC control; judging the system topology and the control mode of SVC to determine the operation mode; and calculating the control reference based on the operation mode to control the generator and/or SVC. The proposed methods and coordinated controllers enable the SVC to share the required reactive power output of the power plant, convert the generator into “unity-power-factor-generator”, and therefore extend the active power output capability of the power plant.
US09893523B2 Systems, methods and apparatus for improved regulation of energy delivery systems
Embodiments provide systems, methods and apparatus for controlling an energy delivery system including providing an energy management system (EMS) having an automatic generation control (AGC) system including a load frequency control (LFC) module and an economic dispatch (ED) module; determining a regulation requirement based upon a predefined set of nested system control zones and a current area control error (ACE); determining regulation allocation based on a pre-defined set of gain factors associated with the nested system control zones; and implementing corrections to the operation of the energy delivery system based upon solution results of the determined regulation allocation. Numerous other aspects are provided.
US09893522B2 Paralleling of active filters with independent controls
A parallel filter arrangement with at least two filters supplying current in line side sensing configuration and a number of sensors for measuring current. The sensors are used to determine the amount of current being supplied by the filters and the amount of current being supplied by a source. The filters adjust their supplied current in order to reduce or eliminate the amount of reactive or harmonic current being supplied by a source.
US09893520B2 Switching device
A switching device for switching bipolar DC currents in a high-voltage system includes at least two electromechanical switching units and a semiconductor switching arrangement. The electromechanical switching units have a first switching status and a second switching status. In the first switching status, the DC current can be passed via at least one of the electromechanical switching units without in this case flowing via the semiconductor switching arrangement. In the second switching status of the electromechanical switching units, the DC current can be passed via the semiconductor switching arrangement and can be switched off.
US09893519B1 Substrate providing electrical communication between power sources
A substrate is physically attached to the terminals of multiple different power sources. The substrate includes multiple electrical conductors. Each of the electrical conductors is immobilized along its length relative to the substrate. The electrical conductors include interconnect lines and sensing lines. The interconnect lines provide electrical communication between the power sources. At least one of the sensing lines carries an electrical signal indicating a voltage across one or more of the power sources. Electronics that are immobilized on the substrate employ the electrical signal to determine the voltage across the one or more power sources.
US09893515B2 Power switchgear having surge suppression apparatus
A power switchgear includes: a vacuum switch tube in a ground tank; a movable side conductor which passes through the ground tank to connect to one side of the vacuum switch tube, and extends to the upper side of the tank; a fixed side conductor which passes through the ground tank and connects to another side of the vacuum switch tube, and extends to the upper side of the tank. A conical insulator is placed on an opening of the ground tank, and a tip end is inserted in the ground tank; an insulation cylinder is placed at a rear end of the conical insulator to cover the inside of a concave portion of the conical insulator, and protrudes outside the ground tank; and a surge suppression apparatus inside the insulation cylinder has a terminal in the conical insulator and connected to a main circuit of the vacuum switch tube.
US09893512B2 Protection circuit for electronic system
Damages to the rectifying MOSFET in the secondary side of voltage converters are reduced or eliminated by inserting intermediary steps between detecting a dropping in the converter output voltage VCC and activating the under voltage lock out (UVLO) circuitry. During the intermediary steps, the timing for switching off the MOSFET is advanced to prevent the current flow in the MOSFET from reversing its direction.
US09893509B2 Semiconductor switch and power conversion apparatus
According to one embodiment, a switch includes a first element with a first withstand voltage, a second element whose withstand voltage is lower than the first withstand voltage, a diode which is connected between a positive electrode of the first element and a positive electrode of the second element in such a manner that a direction from the positive electrode of the second element toward the positive electrode of the first element is a forward direction and whose withstand voltage is equal to the first withstand voltage, a negative electrode of the first element and a negative electrode of the second element being connected, and a circuit configured to apply a positive voltage to the positive terminal output a pulse lower than the first withstand voltage when the first element goes off.
US09893506B2 Damping arrangement for an oscillatably mounted electrical energy transmission device
A damping configuration for an oscillatably mounted, electrical energy transmission device includes a supporting frame which is connected to stationary abutments through a plurality of damping elements. A group of first and second damping elements which have damping rates dimensioned so as to differ from one another and which act in parallel, connect the supporting frame to the abutments. Favorable damping of both weaker and stronger movements, for example caused by an earthquake, is ensured due to a combination of damping elements having differently dimensioned damping rates.
US09893495B2 Spark plug with improved seal
An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a spark plug is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 90.0 weight (wt. %), and electrically conductive metal particles in an amount of 10.0 to 50.0 wt. %, based on the total weight of the glass seal.
US09893494B2 Laser system including optical amplification subsystem providing an amplified laser output
A laser system including a seed laser and an optical amplification subsystem, receiving an output of the seed laser and providing an amplified laser output, the optical amplification subsystem including a first plurality of amplifier assemblies, each of the first plurality of amplifier assemblies including a second plurality of optical amplifiers, and phase control circuitry including phase modulating functionality associated with each of the first plurality of amplifier assemblies.
US09893491B2 Microelectromechanical system for tuning lasers
A micromechanically produced optical device includes: a carrier for carrying the micromechanically produced device; a diffraction grating for diffracting light; a plate for carrying the diffraction grating; and deflectors for deflecting the plate in relation to the carrier, the deflectors comprising bearings for movably bearing the plate and a driver for moving the plate; the deflectors being configured for rotational deflection of the plate and for translational deflection of the plate.
US09893490B2 Laser power-supply device that controls a plurality of light-emitting elements
A laser power-supply device including a power-supply unit including a voltage input unit into which an AC voltage is inputted, a rectifier circuit, and a plurality of sub-switching regulator units, and a light-emitting unit, in which the plurality of sub-switching regulator units is connected in parallel to output of the rectifier circuit, the light-emitting unit includes a plurality of sub-light-emitting units, each of the sub-light-emitting units includes one light-emitting element row, a current is supplied to the one light-emitting element row from each of the plurality of sub-switching regulator units, and each of the sub-switching regulator units includes a switching circuit, a smoothing circuit, a current detection circuit that detects an output current, and a control circuit that controls the switching circuit on the basis of a current command value and the detected output current.
US09893488B2 Edge-emitting etched-facet lasers
A laser chip having a substrate, an epitaxial structure on the substrate, the epitaxial structure including an active region and the active region generating light, a waveguide formed in the epitaxial structure extending in a first direction, the waveguide having a front etched facet and a back etched facet that define an edge-emitting laser, and a first recessed region formed in the epitaxial structure, the first recessed region being arranged at a distance from the waveguide and having an opening adjacent to the back etched facet, the first recessed region facilitating testing of an adjacent laser chip prior to singulation of the laser chip.
US09893487B2 Device and method for tuning a ring resonator using self-heating stabilization
A device and method for tuning a ring resonator using self-heating stabilization is provided. A light source is controlled to produce an optical signal, input to an optical ring resonator, at a power where self-heating shifts a resonance wavelength of the optical ring resonator by at least 10 picometers, the self-heating comprising absorption in the optical ring resonator of optical power from a received optical signal. Prior to using the optical ring resonator at least one of modulate and filter the optical signal at the optical ring resonator, a heater of the optical ring resonator is controlled to an operating temperature at which the resonance wavelength of the optical ring resonator is greater than a respective wavelength of the optical signal.
US09893486B2 Injection-seeded whispering gallery mode optical amplifier devices and networks
An injection-seeded whispering gallery mode optical amplifier. The amplifier includes a micro or nanoscale whispering gallery mode resonator configured to amplify a whispering gallery mode therein via a gain medium separated from the whispering gallery mode resonator but within the evanescent field of the whispering gallery mode resonator. A pump stimulates the whispering gallery mode. A plasmonic surface couples power into the whispering gallery mode resonator.
US09893481B2 Communications jack having a flexible substrate with a cantilevered finger with a crosstalk compensation circuit
Communications jacks include at least first through third jackwire contacts and a flexible substrate that has a first finger and a second finger. The first jackwire contact and the third jackwire contact are each mounted on the first finger and the second jackwire contact is mounted on the second finger.
US09893480B2 Connector
A connector reduced in width and easily mated with a mating connector is provided. An insulative housing of a connector has a substantially rectangular mating face. Further, the metal shell has a base portion, a curved portion, and a supporting portion. The base portion upstands from a peripheral edge of the mating face extends along the peripheral edge and encloses the mating face circumferentially in a substantially rectangular shape. Further, the curved portion is continuous to an upper end of the base portion and curved inward in a semicircular shape for guiding the mating connector. Further, the supporting portion has a shape hanging from the curved portion toward the mating face along an inner wall face of the base portion for supporting the mating connector, so that the insulative housing does not have an upstanding wall extending along a side face of a longitudinally extending portion of the metal shell and the metal shell supports a widthwise inner face of the mating connector.
US09893477B2 Housing and assembly
A housing for an electrical connector has a connector for reversibly receiving flexible arms of a clamping element in a locking manner. Further, an assembly has the housing and a clamping element having at least two flexible arms, between which a receiving space is defined, in which the connector of the housing are reversibly held in a locking manner.
US09893474B1 Active cable heat sink
A cable, system, and method for cooling a semiconductor chip on an active cable. The active cable includes a heat sink that is thermally coupled to the semiconductor chip and movable from a retracted position to an extended position. The heat sink is in the retracted position when the active cable is not installed in a card connector in a computer case. After the active cable is installed in the card connector, the heat sink is urged to the extended position in which the heat sink is exposed to air flow circulation within the computer case.
US09893473B2 Electrical connector having separate grounding pieces
An electrical connector includes: an insulative housing having a base and a tongue; an upper and lower rows of contacts mounted in the insulative housing and exposed to the tongue; a shielding shell enclosing the insulative housing; and a pair of grounding pieces separated from each other and mounted in the insulative housing between the upper and lower rows of contacts, each grounding piece having a leg in contact with the shielding shell.
US09893471B1 High speed connector assembly, receptacle connector and plug connector
A high speed connector assembly is disclosed in this invention, including a receptacle connector and a plug connector. Two first L-shaped contact pieces of each pair of differential signal receptacle terminals are configured to be splayed apart, and two second L-shaped contact pieces of each pair of differential signal plug terminals are configured to be splayed apart too. When the receptacle connector and the plug connector are engaged with each other, a second extending section of the differential signal plug terminal is pressed onto a first side edge of the differential signal receptacle terminal, and a first extending section of the differential signal receptacle terminal is pressed onto a second side edge of the differential signal plug terminal, thereby forming a stable electrical contact therebetween.
US09893467B2 Connector position assurance device, a connector apparatus having male and female connector assemblies with terminal position assurance devices and the connector position assurance device, a male connector assembly, a female connector assembly, and a method for assembling the connector apparatus
A connector position assurance (CPA) device for assuring and for informing a user of the engagement of a female connector assembly and a male connector assembly in a connector apparatus, and the connector apparatus having the female connector assembly and the male connector assembly engaged together, when in full-lock position, by the CPA. The female and male connector assemblies having a female terminal position assurance (TPA) device and a male terminal position assurance (TPA) device. During transport, the female TPA is engaged, in a pre-set position or a pre-lock position, to the female connector assembly, while the male TPA is engaged, in a pre-set position or a pre-lock position, to the male connector assembly. Also during transport, a connector position assurance (CPA) device is, at a pre-set position or a pre-lock position, with the female connector assembly (FIG. 13A). At least a set of terminals is provided into each of the male connector assembly and the female connector assembly when each of their respective male TPA and female TPA is at a pre-set position or a pre-lock position. The set of terminals provided for the male connector assembly is secured thereto when the male TPA thereof is placed at a full-lock position. Similarly, the set of terminals provided for the female connector assembly is secured thereto when the female TPA thereof is placed at a full-lock position. Thereafter, the male connector assembly and female connector assembly are engaged together, and the engagement thereof is assured when the CPA device is pushed downward and placed at a full-lock position (FIG. 13B) and when a leg of the CPA blocks the inward movement of a flexible member of the female connector assembly.
US09893465B2 Sliding latch release for latched cables
A sliding latch release mechanism for a latched cable connector. The sliding latch release mechanism includes a fixed portion which is configured to fit securely around a latched cable connector, the latched cable connector having a latch release mechanism. The sliding latch release further includes a slideable portion which is housed within the fixed portion and is configured to move within a slot on the fixed portion. When slid back and forth, the slideable portion of the latch release mechanism engages the latch of the latched cable connector and releases the latch so the latched cable may be unplugged.
US09893460B2 Underwater electrical contact mating system
A system includes a first mating component formed from a self-passivating transition metal to supply power. The self-passivating transition metal has a property of forming a non-conductive passivation layer when immersed in water. A second mating component formed from a self-passivating transition metal provides a return path for the power and forms the non-conductive passivation layer when immersed in the water.
US09893454B2 Connector, method of manufacturing connector, and wire harness
A connector includes terminals connected to metal conductors of insulated wires each formed by covering the metal conductor with an insulation, a resin case member including a housing space for housing the terminals and an end opening that opens at one end, a resin lid member fitted to the end opening of the case member, and a molded resin portion formed by molding so as to cover at least the end opening of the case member fitted with the lid member. The case member includes first grooves that have a semicircular cross section and are formed on an inner surface facing the lid member, and the lid member includes second grooves that have a semicircular cross section and form, together with the first grooves, wire insertion holes for inserting the insulated wires.
US09893453B2 Electrical connector
The present invention relates to an electrical connector in particular an electrical connector having at least two terminals that are connected wherein the electrical connector permit movement of each terminal relative to each other. The electrical connector has a first body part having a first terminal; the first terminal is connected to a second terminal formed in a second body part, the first and second body parts are connected together and can move with respect one to another thereby permitting variable angles to be created between an axis defined by the first terminal and an axis defined by the second terminal.
US09893443B2 Switch element having a housing part with switch element circuit and an adapter part with a plurality of plug contacts fastened therein
A switch element is provided for directly inserting into a circuit board, wherein the switch element comprises a switch element circuit and a plurality of plug contacts, wherein the plug contacts comprise a connection portion, which is connected to the switch element circuit, and a fastening portion, wherein the fastening portion is adapted such that it is directly insertable into the circuit board, and wherein the fastening portion comprises a safety element which is adapted such that an unintentionally detaching of the plug connection is prevented.
US09893442B2 Actuator
The present invention relates to an actuator that has a specific structure, and is molded from a resin composition, in which the resin composition contains a liquid crystal polyester having a specific repeating unit and a filling material, an amount of the repeating unit including a 2,6-naphthylene group is 40 mol % or more with respect to a total number of moles of all repeating units configuring the liquid crystal polyester, and an amount of the filling material is less than 55 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal polyester and the filling material.
US09893436B2 Clamp and clamp assembly
A connector configured to mechanically and electrically couple a first frame to a second frame includes a body, a first clamping member, a second clamping member, and a plurality of projections extending from the body and configured to contact at least one of the first frame and the second frame. The body includes a first end and a second end and defines a longitudinal axis extending between the first end and the second end. The body further includes a feature for engaging a fastener. The first clamping member is positioned adjacent the first end of the body and is configured to engage the first frame. The second clamping member is positioned adjacent the second end of the body and is configured to engage the second frame.
US09893433B2 Array antenna
The present disclosure provides an array antenna. The array antenna includes a cavity power divider that receives an input signal and performs power division to output a first power-divided signal. The array antenna also includes a final-stage power dividing, coupling, and radiating unit that includes a dielectric substrate and a first and a second metal surface layer. A coupling slot array is formed on the second metal surface layer to receive the first power-divided signal. A radiating slot array corresponding to the coupling slot array is formed on the first metal surface layer; Several plated through-hole units are provided on the dielectric substrate, where the plated through-hole units go through the first and second metal surface layers vertically, and a range corresponding to each plated through-hole unit encloses a coupling slot and a radiating slot corresponding to the coupling slot.
US09893432B2 Anisotropic metamaterials for electromagnetic compatibility
An electromagnetic device includes: a first layer having a first material with a first dielectric constant, the first layer having a plurality of channels or holes filled with a second material with a second dielectric constant that is different from the first dielectric constant; and, a second layer having a plurality of antennas disposed on the first layer. Adjacent ones of the plurality of channels of the first layer have an average spacing therebetween of less than one quarter of an operating wavelength of at least one of the plurality of antennas.
US09893430B2 Short coincident phased slot-fed dual polarized aperture
A coincident phased dual-polarized antenna array configured to emit electromagnetic radiation includes: a plurality of electromagnetic radiators arranged in a grid, the plurality of electromagnetic radiators defining a plurality of notches; a ground plane spaced from the electromagnetic radiators; a conductive layer disposed between the electromagnetic radiators and the ground plane, the conductive layer having a plurality of slots laterally offset from the notches and being spaced apart from and electrically insulated from the electromagnetic radiators; and a plurality of feeds, each of the feeds spanning a corresponding slot of the slots and electrically connected to a portion of the conductive layer at one side of the corresponding slot.
US09893428B2 Direct transition from a waveguide to a buried chip
An assembly for confining electromagnetic radiation in a waveguide. The assembly comprises a waveguide, comprising walls surrounding a cavity and an aperture in the walls that opens to the cavity, and a substrate assembly disposed in the aperture. The substrate assembly comprises a substrate comprising an antenna, wherein the antenna is located within the cavity and is configured for transmission of radiation within the cavity. The substrate assembly comprises an integrated circuit (IC) electrically connected to the substrate, where the IC comprises semi-conductor components and a ground plane on one side of the IC. The ground plane is located between the IC semi-conductor components and the antenna. The ground plane is located across the aperture to reduce the area of the aperture and to reflect some of the radiation directed to the aperture back into the cavity.
US09893425B2 Antenna structure and wireless communication device using the same
An antenna structure includes a baseplate, a first radiator plate, a second radiator plate, and a third radiator plate. The baseplate has a first surface and a second surface opposite to the first surface. The first radiator plate is disposed on the first surface. The second radiator plate is disposed on the first surface. The third radiator plate is disposed on the second surface. A slot is defined between the first radiator plate and the second radiator plate, and the second radiator plate is coupled to the first radiator plate and the third radiator plate.
US09893415B2 Two-wheeled motor vehicle
Since a front antenna 33 performs road-to-vehicle communication and vehicle-to-vehicle communication with oncoming vehicles, a nondirectional antenna enables effective communication in communication distances. Vehicle-to-vehicle communication with rearward vehicles by a rear antenna 37 needs long communication distances compared with road-to-vehicle communication and vehicle-to-vehicle communication with oncoming vehicles. The rear antenna 37 can also perform communication effectively with rear vehicles since what is selected is a directional one that can provide longer communication distances than a nondirectional one and that has directionality rearward of the vehicle. The front antenna 33 is disposed forward of a seat 7, and the rear antenna 37 is disposed rearward of the seat 7, which can inhibit an attenuation of electromagnetic waves due to the rider and the like. Consequently, while being capable of performing road-to-vehicle communication effectively, vehicle-to-vehicle communication with rearward vehicles can also be performed effectively.
US09893414B2 Antenna assembly for aircraft
An antenna assembly for aircraft including: a vertical tail of the aircraft including a front spar, a leading edge skin covering a leading portion of the front spar and a rib extended between the front spar and the leading edge skin; an antenna radiating element extending a length of the vertical tail and positioned between the leading edge skin and the front spar; a first metallic element included with or attached to the front spar; a second metallic element, wherein the second metallical element is electrically coupled to the antenna radiating element and to the first metallic element; an antenna coupler in electrical electrically connected to the antenna radiating element and the first metallic element, and wherein a closed looped electrical circuit is formed by the antenna radiating element, the first metallic element, the second metallic element and the antenna coupler.
US09893413B2 Integrated, externally-mounted ADS-B device
An integrated, externally-mounted Automated Dependent Surveillance-Broadcast (ADS-B) device comprising in one embodiment a 1030 MHz transmitter, a 1030 MHz antenna, a 1090 MHz receiver, a 1090 MHz antenna, a GNSS receiver, at least one GNSS antenna, a 978 MHz transmitter, and a 978 MHz antenna, wherein these components are integrated into a single enclosure, and wherein the GNSS antenna is placed at least partially into a projection extending out from the main enclosure body, such that the GNSS antenna has improved visibility to GNSS signals originating from altitudes above the current altitude of aircraft when the ADS-B device is mounted on the bottom of an aircraft.
US09893412B2 Antenna attachment
The present disclosure relates to an antenna attachment. In one example implementation, an antenna attachment includes an attachment body and at least one wire mounted on the attachment body and electric-field coupleable with an antenna.
US09893407B2 Directional coupler
A directional coupler includes: a main line connecting a first port and a second port; first to third subline sections each of which is formed of a line configured to be electromagnetically coupled to the main line; a first matching section provided between the first subline section and the second subline section; a second matching section provided between the second subline section and the third saline section; and a stack for integrating these components. The stack includes a plurality of dielectric layers and a plurality of conductor layers stacked on each other. Each of the first and second matching sections includes two inductors each formed using one or more of the conductor layers, and a capacitor formed using two or more of the conductor layers.
US09893406B2 Method of forming a waveguide interface by providing a mold to form a support block of the interface
A waveguide interface comprising a support block configured to support a printed circuit board assembly. An interface is coupled to an end portion of the support block and extends from the support block. The interface includes a slot positioned to receive at least a portion of the printed circuit board assembly and one or more holes positioned to receive attachment devices to secure the interface to a waveguide component. The support block and interface are molded as a monolithic device. A method of forming the waveguide interface, a waveguide assembly including the waveguide interface, and a method of making the waveguide assembly including the waveguide interface are also disclosed.
US09893396B2 Method of operating and conditioning electrochemical cells comprising electrodeposited fuel
A process for conditioning an electrochemical cell system comprising at least two electrochemical cells comprises selecting from the fuel electrodes of the electrochemical cells groups comprising: a charged group and a reset group. The process also comprises holding the fuel electrodes within the charged group at a predetermined state of charge associated with a set concentration of metal fuel ions in solution in the ionically conductive medium. The process further comprises resetting the fuel electrodes within the reset group. An electrochemical cell system includes a plurality of fuel electrodes and one or more controllers configured to regulate the concentration of reducible metal fuel ions in solution with an ionically conductive medium by maintaining a predetermined state of charge of at least one of the fuel electrodes, and initiate a charging, discharging, or resetting process on at least one other fuel electrode. Other features and embodiments are also disclosed.
US09893395B2 Battery cooling structure
The invention relates to a battery cooling structure for cooling a battery mounted in a vehicle. This battery cooling structure includes a battery pack (20) within which the battery is housed in an internal space; an air supplying device (26) that is configured to send cooling air to the battery pack (20); and an air exhausting device (30) is configured to discharge exhaust air from the battery pack (20). The battery pack (20) is arranged under a rear seat (10) of the vehicle. An exhaust vent (54) of the air exhausting device 30) is provided on a floor surface in a rearward space behind the rear seat (10) in the vehicle, and discharges the exhaust air from the battery pack (20) upward into the rearward space from the exhaust vent (54) provided in the floor surface.
US09893393B2 Method for removing gas generated in lithium secondary battery
The present disclosure provides a method for removing gases generated in a lithium secondary battery using a cathode active material of the following formula (I) Li(LixMy−y′M′y′)O2−zAz  (I) wherein, x, y, y′, and z satisfy 0
US09893389B2 Power storage system and power storage method
A power storage system of the invention, includes: a power generator; a first storage battery; a second storage battery having smaller capacitance than that of the first storage battery; a first switcher that connects or disconnects the first storage battery to or from a power supply line and a load device; a second switcher that connects or disconnects the second storage battery to or from the power supply line and the load device; a first switching unit that compares a voltage supplied to the load device with first and second predetermined threshold voltages and controls the first switcher according to a result of the comparison; and a second switching unit that compares the voltage supplied to the load device with third and fourth predetermined threshold voltages and controls the second switcher according to a result of the comparison.
US09893380B2 Polymeric ionic liquid and process for producing a polymer membrane including the same
A polymeric ionic liquid has a formula (I), where A1, A2, B, k, Q, and Z are as defined in the specification. An intermediate polymer for making the polymeric ionic liquid, a process for producing the polymeric ionic liquid, a process for producing a polymer membrane including the polymeric ionic liquid, a process for preparing a gel polymer electrolyte including the polymer membrane, and a binder including the polymeric ionic liquid are also disclosed.
US09893375B2 Module system for microbial fuel cell
Disclosed is a module system for a microbial fuel cell used in the field of a microbial fuel cell, in which a plurality of unit cells electrically connected to each other in series cannot share an anode part solution. In the module system for the microbial fuel cell, the unit cells are electrically connected to each other in series, so that power is produced in a commercial scale. An anode part is given to each individual cell, so that voltage drop does not occur. The unit cells share an anode part solution together, so that the module system for the microbial fuel cell is simply designed. The module system for the microbial fuel cell is applicable when effectively producing power in the commercial scale.
US09893373B2 Reinforced electrolyte membrane
An electrolyte membrane having a proton conducting polymer reinforced with a nanofiber mat made from a nanofiber comprising a fiber material selected from polymers and polymer blends; wherein the fiber material has a fiber material proton conductivity; wherein the proton conducting polymer has a proton conducting polymer conductivity; and wherein the fiber material proton conductivity is less than the proton conducting polymer conductivity, and methods of making. In some embodiments, the nanofiber further comprises a proton conducting polymer.
US09893366B2 Metal fine particle association and method for producing the same
There is provided a metal fine particle association suitably applied to an electrode catalyst to achieve even higher output leading to reduction in amount of the catalyst used, and a process for producing the same, that is, a metal fine particle association including a plurality of metal fine particles that have a mean particle diameter of 1 nm to 10 nm and are associated to form a single assembly, an association mixture including the metal fine particle association and a conductive support; a premix for forming an association, including metal fine particles, a metal fine particle dispersant made of a hyperbranched polymer, and a conductive support; and a method for producing the association mixture.
US09893362B2 Rechargeable lithium battery and negative electrode for same
In an aspect, a rechargeable lithium battery that includes a positive electrode including a composite positive active material; a negative electrode including a carbon-based negative active material; an electrolyte including an additive, and a lithium salt and an organic solvent, wherein a passivation film may be on a surface of the negative electrode of the rechargeable lithium battery.
US09893352B2 Composition for reducing moisture in a battery electrolyte
In at least one embodiment, a method of scavenging hydrogen in a lithium-ion battery is provided. The method may comprise including an atomic intermetallic material in at least one of a positive electrode or a negative electrode of a lithium-ion battery and reacting hydrogen present inside the lithium-ion battery with the atomic intermetallic material to form a metal hydride. The method may include preparing a positive electrode slurry and a negative electrode slurry, each slurry including an active material and a binder, mixing an atomic intermetallic material including a proton absorbed state into at least one of the slurries, and casting the slurries to form a positive electrode and a negative electrode. The method may alternately include applying an atomic intermetallic material including a proton absorbed state to a surface of at least one of a lithium-ion battery positive electrode or negative electrode.
US09893351B2 Battery, negative electrode active material, and electric tool
A battery is provided including a positive electrode; a negative electrode including a first negative electrode active material; and an electrolytic solution, wherein the first negative electrode active material includes a core portion having a core portion surface, wherein the core portion has a median diameter of 0.3 μm to 20 μm, and a covering portion that covers at least part of the core portion surface, wherein the covering portion comprises at least Si, O and at least of one element M1 selected from Li, carbon (C), Mg, Al, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Mo, Ag, Sn, Ba, W, Ta, Na, and K.
US09893347B2 Alloy powder for electrode, negative electrode for alkaline storage battery using the same, and alkaline storage battery
Provided is an alloy powder for an electrode which enables an alkaline storage battery to have both excellent discharge characteristics and excellent life characteristics. The alloy powder includes a hydrogen storage alloy including an element L, Mg, Ni, Al, and an element Ma. The element L is at least one selected from the group consisting of group 3 elements and group 4 elements of the periodic table (excluding Y). The element Ma is at least two selected from the group consisting of Ge, Y, and Sn. A molar proportion x of Mg in a total of the element L and Mg is 0.008≦x≦0.54. A molar proportion y of Ni, a molar proportion α of Al, and a molar proportion β of the element Ma, per the foregoing total is 1.6≦y≦4, 0.008≦α≦0.32, and 0.01≦β≦0.12, respectively.
US09893343B2 Battery pack and electric device
The present invention reduces or shuts off output electric power of a battery pack, which is connected to an electric device, depending on an abnormality. According to the present invention, a battery pack is detachably connected to an electric-device main body having a switch, and includes a first electric-power control circuit that outputs a first signal to the electric-device main body when the switch is operated, the first signal for allowing supply of electric power to the electric-device main body, a second switching element provided on an electric-power supply path that supplies electric power to the electric-device main body, and a second electric-power control circuit that outputs a second signal to the second switching element if an abnormality occurs in the battery pack, the second signal for reducing or shutting off the electric power supplied to the electric-device main body.
US09893342B2 Electricity storage module
An electricity storage module in which a plurality of battery cells are electrically connected via conductive members, wherein: each of the conductive members has a pair of electrode connecting parts that are welded to respective electrode terminals of a pair of adjacent battery cells, a base part that is connected to the pair of electrode connecting parts via a pair of elastically deformable parts, and a voltage detecting terminal that is connected to the base part and detects a terminal voltage of a battery cell.
US09893334B2 Frame device for accommodating storage cells of an energy storage module
The invention relates to a frame device (18) for accommodating storage cells (12) of an energy storage module (10), in particular a battery module, comprising—two plate-like closure elements (20) which form two ends (22, 24) of the frame device (18) that are opposite one another along an axis (14), —connection elements (30) which are arranged on mutually opposite sides (26, 28) of the frame device (18) and which extend from one end (22) to the other end (24) of the frame device (18) and mechanically connect the two closure elements (20) over a distance. For connection to the two closure elements (20), provision is made for each of the connection elements (30) to be provided at each of the ends thereof with a pin (42) which is oriented transversely to the axis (14) and which respectively engages in a cutout (40) in one of the closure elements (20) and is releasably fixed there by means of a respective latch-type securing element (32). The invention further relates to a corresponding energy storage module (10).
US09893330B2 Battery box body for light-fixture
The invention discloses a battery box body for a light-fixture which comprises a battery box, wherein the battery box is provided with a battery compartment, a circuit board compartment as well as a battery cover and a circuit board cover which hermetically cover the battery compartment and the circuit board compartment in a matching manner, respectively. A recess capable of avoiding and accommodating a light-fixture is arranged in the outer wall of the battery box in an inwardly concave manner. The battery box structure can be matched and combined with a strip-like light-fixture in use, and the recess on the outer wall of the battery box structure can correspondingly accommodate the light-fixture, so that the battery box and the light-fixture are matched with each other and hung on the wall.
US09893328B2 Thermally insulating apparatus for accommodating at least one component of an SOFC fuel cell system, and method for producing an apparatus of this kind
An apparatus for accommodating at least one component of a SOFC fuel cell system includes a thermally insulating inner box and an outer box that surrounds the inner box. The inner box includes a base, a cover, and side panels. The outer box bears against the base, the cover, and the side panels of the inner box and presses them together, and wherein the at least one component can be arranged in the interior of the inner box. The base, the cover, and the side panels are at least partly over-dimensioned so that the inner box can be assembled with a press-fit.
US09893327B2 Electric storage apparatus
An electric storage apparatus includes a plurality of electric storage elements placed side by side along a predetermined direction and a restraint plate placed between two of the electric storage elements adjacent to each other in the predetermined direction. The electric storage element has a power-generating element performing charge and discharge and a case housing the power-generating element. The restraint plate has protruding portions which give a restraint force to the electric storage element and form a space between the restraint plate and the electric storage element. The power-generating element has a positive electrode plate, a negative electrode plate, and a separator placed between the positive electrode plate and the negative electrode plate. The power-generating element includes a reaction area where a chemical reaction associated with the charge and discharge occurs. The plurality of protruding portions have a first protruding portion in contact with a first area in the case and a second protruding portion in contact with a second area in the case. The first area in the case is opposite to the reaction area, and the second area in the case is opposite to the area of the power-generating element except the reaction area.
US09893326B2 Battery and battery pack
A battery is provided that includes a laminate film having a metal layer and a thermal adhesive resin layer, a battery element which is covered with the laminate film, and leads which are connected to the battery element. The leads are sandwiched between opposing thermal adhesive resin layers, and extend outside the laminate film. The thermal adhesive resin layer has thermal adhesive resin and fine resin fibers.
US09893325B2 Semiconductor device having a structure that prevents defects due to precision, bending and the like of a mask without increasing manufacturing steps
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
US09893322B2 Organic layer deposition apparatus and method of manufacturing organic light emitting display apparatus using the same
An organic layer deposition apparatus including: a conveying unit including a first conveying unit conveying in a first direction a moving unit to which a substrate is removably adhered, and a second conveying unit conveying in a direction opposite to the first direction the moving unit from which the substrate is separated, in which the moving unit may be cyclically conveyed by the first and second conveying units; and a deposition unit including a deposition assembly being separate from the substrate while the first conveying unit conveys the substrate adhered to the moving unit and having a material deposited onto the substrate, and a housing having the deposition assembly provided therein and an internal space allowing the moving unit to pass therethrough, in which the movable unit may include a main body unit, an electrostatic chuck provided on the main body unit and having the substrate adhered thereto, a contactless power supply (CPS) module provided facing with the electrostatic chuck each other on the main body unit, and a shield unit having at least a portion thereof provided on the main body unit with the CPS module thereon and preventing heat transfer.
US09893321B2 Display device and method of manufacturing a display device
A display device includes a first substrate provided with a display region including a plurality of pixels arranged in a matrix, each of the plurality of pixels having a plurality of sub-pixels, and a second substrate provided with color filters and a light-shielding film, the color filters including transmission regions selectively transmitting lights of specific colors for the respective sub-pixels, the light-shielding film blocking light. The plurality of sub-pixels include a first sub-pixel provided with the transmission region that transmits light of a first color, and a second sub-pixel provided with the transmission region that transmits light of a second color having a luminosity factor lower than that of the light of the first color. A difference in area between a light-emitting region and the transmission region in the second sub-pixel is smaller than a difference in area between a light-emitting region and the transmission region in the first sub-pixel.
US09893320B2 Method for manufacturing light extraction substrate for organic light emitting element, light extraction substrate for organic light emitting element, and organic light emitting element including same
The present invention relates to a method for manufacturing a light extraction substrate for an organic light emitting element, a light extraction substrate for an organic light emitting element, and an organic light emitting element that includes the same and, more specifically, to a method for manufacturing a light extraction substrate for an organic light emitting element, a light extraction substrate for an organic light emitting element, and an organic light emitting element that includes the same, which can enhance the light extraction efficiency of an organic light emitting element and, in particular, can reduce the process cost. To this end, the present invention provides the method for manufacturing a light extraction substrate for an organic light emitting element, the light extraction substrate for an organic light emitting element, and the organic light emitting element that includes the same, the method comprising: a mixture preparation step for preparing a mixture by mixing a plurality of thermoplastic polymers in a metal oxide nano-dispersion solution; a mixture coating step for coating the mixture on a base substrate; and a mixture firing step for firing the coated mixture, wherein during the mixture firing step, the plurality of thermoplastic polymers are gasified, and when the mixture firing step is completed, the metal oxide nano-dispersion solution is made as a matrix layer, and closed pores are formed in the positions within the matrix layer that were occupied by the thermoplastic polymers before the gasification.
US09893316B2 Display device and manufacturing method thereof
A display device, which includes a display region in which a plurality of pixels are arranged, includes a first organic insulating film, a first groove, which exists in a frame shape surrounding the display region to separate the first organic insulating film, a first inorganic partition portion, which is arranged in the first groove, and is made of an inorganic insulating material that exists in a frame shape surrounding the display region, a second organic insulating film formed above the first organic insulating film and the first inorganic partition portion, and a second groove, which exists in a frame shape surrounding the display region to separate the second organic insulating film, and is located inside the first groove in plan view.
US09893314B2 Display device
A display device includes a display panel, and a protection film on the display panel and including a base film, and a plurality of protrusions on the base film.
US09893313B2 Organic luminescence display device and method of manufacturing the same
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
US09893312B2 Display device and organic luminescent display device
Provided is a display device including: a structure including a display area and a peripheral area surrounding the display area; and an inorganic encapsulation thin film disposed on the display and peripheral areas. The peripheral area includes at least one inorganic surface portion having a closed shape continuously.
US09893308B2 Quantum dot lighting devices
A quantum dot lighting device includes a quantum-dot-lighting layer and two main structural layers being arranged at two sides of the quantum-dot-lighting layer along a vertical direction. The quantum-dot-lighting layer includes a red lighting unit, a green lighting unit, and a red lighting unit. The red lighting unit includes red quantum dots, the green lighting unit includes green quantum dots, and the blue lighting unit includes blue quantum dots. A number of the blue quantum dots is larger than the number of the green quantum dots, and the number of the green quantum dots is larger than the number of the red quantum dots. With the configuration, the material of the quantum dots may be reduced, and the pureness of the white light beams may be enhanced.
US09893307B2 Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
A composition for encapsulation of an organic light emitting diode comprising a photocurable monomer, a silicon-containing monomer, and an initiator, wherein the silicon-containing monomer is represented by Formula 1, and an organic light emitting diode display are disclosed.
US09893306B2 Organic electroluminescent materials and devices
Compounds comprising phosphorescent metal complexes comprising cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands, or isoelectronic or benzannulated analogs thereof, are described. Organic light emitting diode devices comprising these compounds are also described.
US09893305B2 Indenotriphenylene-based iridium complexes for organic electroluminescence device
The present invention discloses an indenotriphenylene-based iridium complexes is represented by the following formula (1), the organic EL device employing the derivative as light emitting dopant of emitting layer can display good performance like as lower driving voltage and power consumption, increasing efficiency and half-life time. wherein A ring represents an imidazole, a pyridine, a quinoline and an isoquinoline, X1-X2 represents a bidentate ligand, and m, n and R1 to R4 are the same definition as described in the present invention.
US09893304B2 Organic metal complexes and organic electroluminescent devices comprising the same
An organic metal complex and an organic electroluminescent device including the same are provided. The organic metal complex is represented by the formula of wherein Ar includes 1-naphthyl, 2-naphthyl or benzothienyl, and L includes acetylacetone, N,N-diisopropyl-benzamidinate or N,N-diisopropyl-diisopropyl-guanidinate. The organic electroluminescent device includes a pair of electrodes and an electroluminescent element disposed between the pair of electrodes, wherein the electroluminescent element includes the organic metal complex.
US09893302B2 Heterocyclic fluorescent dyes and method of production thereof
The invention relates to novel compounds of formula (III) that can be used as heterocyclic dyes of unique structure and properties. These compounds can be obtained in a three-step synthesis from simple substrates. The compounds according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the compounds according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
US09893301B2 Heterocyclic compounds and organic light-emitting devices including the same
Heterocyclic compounds, synthetic methods for preparing the same, and organic light-emitting display devices comprising the same are described. The subject heterocyclic compounds may comprise an aromatic ring or a heteroaromatic ring fused with a carbazole, dibenzothiophene, or dibenzofurane derivative, the compounds featuring rigid backbone structures with high glass transition temperatures and high melting points. The subject heterocyclic compounds may exhibit high electrical stability, improved charge transport ability, high heat resistance and improved light-emitting properties when used in organic light-emitting devices. Organic light-emitting display devices prepared according to the present invention exhibit lower driving voltages, increased luminescent efficiencies and longer lifetimes.
US09893300B1 Phenanthroimidazole compound and organic light-emitting diode including the same
A phenanthroimidazole compound represented by chemical formula 1 and an organic light-emitting diode including the same are provided. In chemical formula 1, R1, R2, and m are the same as described in the specification.
US09893298B2 Organic light emitting display device
An organic light emitting display device is disclosed. The organic light emitting display device comprises an emitting layer over an anode, the light emitting part having an emitting layer and an electron transporting layer, and a cathode on the light emitting part, wherein each of the emitting layer and the electron transporting layer includes a compound with the same core to facilitate electron transport from the electron transporting layer to the emitting layer.
US09893284B2 Method of manufacturing substrate of organic light-emitting display device
A method of forming an organic material pattern film, the method including: forming partition walls on a first region of a first layer, the partition walls including a photosensitive compound including a resorcinarene, the resorcinarene including a perfluorocarbon group; forming a second layer including an organic material on a second region of the first layer, the second region being defined by the partition walls; removing the partition walls.
US09893281B2 Semiconductor device and method of fabricating the same
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a selection element, a lower electrode pattern provided on the selection element to include a horizontal portion and a vertical portion; and a phase-changeable pattern on the lower electrode pattern. The vertical portion may extend from the horizontal portion toward the phase-changeable pattern and have a top surface, whose area is smaller than that of a bottom surface of the phase-changeable pattern.
US09893277B2 Memory arrays and methods of forming memory cells
Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.
US09893272B2 Magnetic memory device comprising oxide patterns
A method of fabricating a magnetic memory device is provided. The method may include sequentially forming a first magnetic layer, a tunnel barrier layer, and a second magnetic layer on a substrate, forming a mask pattern on the second magnetic layer to expose a portion of the second magnetic layer, forming a capping insulating layer on a sidewall of the mask pattern and the portion of the second magnetic layer, injecting an oxygen ion into the portion of the second magnetic layer through the capping insulating layer to form an oxide layer, anisotropically etching the capping insulating layer to form a capping spacer, and patterning the oxide layer, the tunnel barrier layer, and the first magnetic layer using the mask pattern and the capping spacer.
US09893271B2 Semiconductor memory device
A semiconductor memory device includes a selection transistor on a semiconductor substrate, a lower contact plug connected to a drain region of the selection transistor, and a magnetic tunnel junction pattern on the lower contact plug, the magnetic tunnel junction pattern including a bottom electrode in contact with the lower contact plug, the bottom electrode being an amorphous tantalum nitride layer, a top electrode on the bottom electrode, first and second magnetic layers between the top and bottom electrodes, and a tunnel barrier layer between the first and second magnetic layers.
US09893267B2 Piezoelectric material, piezoelectric device, and electronic apparatus
A piezoelectric material that has good insulating properties and piezoelectricity and is free of lead and potassium and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains copper and a perovskite-type metal oxide represented by general formula (1): (1−x){(NayBa1−z)(NbzTi1−z) O3}-xBiFeO3 (where 0
US09893266B2 Piezoelectric film element, and piezoelectric film device including piezoelectric film including alkali niobate-based perovskite structure
A piezoelectric film element includes a substrate, and a piezoelectric film including an alkali niobate-based perovskite structure expressed in a composition formula (K1-xNax)NbO3 (0.4≦x≦0.7) formed on the substrate, the piezoelectric film including an etching cross section including a tapered inclined portion which is enlarged toward an outside. The inclined portion includes a slope angle made by a slope connecting an upper surface edge and a bottom surface edge of the piezoelectric film and a bottom surface of the piezoelectric film, and the slope angle is not greater than 70°.
US09893265B2 Crystal resonation device and production method therefor
A crystal resonation device that includes a base plate, a cap, a joining material, and a crystal resonator. The cap is provided on the base plate. The cap forms a sealed space with the base plate. The joining material joins the base plate and the cap. The joining material contains a cured material of thermosetting resin. The crystal resonator is provided on the base plate in the sealed space. The joining material is located in an outer side portion of a wall of the cap joined to the joining material.
US09893264B2 Method for forming a suspended lithium-based membrane semiconductor structure
In one aspect, a microelectronic device comprises: a suspended lithium-based thin film; and one or more electrodes disposed on the suspended lithium-based thin film, wherein the one or more electrodes comprises one or more fingers, and a width of at least one outer finger of the one or more fingers is smaller than a width of at least one inner finger of the one or more fingers.
US09893261B1 Structurally embedded and inhospitable environment systems and devices having autonomous electrical power sources
A method for producing an electrically-powered device and/or component that is embeddable in a solid structural component is provided. The electrically powered device includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure that is configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy as primary for the electrically-powered device and/or component once an integrated structure including the electrically-powered device is deployed in an environment that restricts future access to the electrical power source for servicing, recharge, replacement, replenishment or the like. The structure of the autonomous electrical power source component converts minimal thermal energy to a usable electrical power potential over a sustained period of time without external disturbance to the power source.
US09893259B2 Light emitting package
A light emitting device may include a substrate; a body which is disposed on the substrate and has a first hole having a predetermined size and a light emitting chip which is disposed within a cavity formed by the substrate and the first hole of the body. A cap may be disposed on the body and may have a second hole having a predetermined size. A transparent window may be disposed in the second hole. A lower portion of the cap is divided into a first surface and a second surface more projecting downwardly than the first surface, and at least a portion of the first surface is attached and fixed to the body.
US09893257B2 Electrode structure of light emitting device
A light-emitting device comprises a first semiconductor layer; an active layer on the first semiconductor layer; a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises an adhesion layer on the second semiconductor layer, a conductive layer on the adhesion layer, and a bonding layer on the conductive layer, and wherein the electrode structure comprises a center region and an edge region, a thickness of each layer of the edge region of the electrode structure is smaller than that of the center region.
US09893255B2 Molded package and light emitting device
A molded package includes a recess, leads, and a molded resin part. The leads include a first lead and a second lead. A part of the recess is defined by a side wall formed from the molded resin part. At least one of the leads includes an upper-surface portion exposed from a bottom surface of the recess. The at least one of the leads includes a groove formed on an upper surface thereof partially below the side wall. The first lead includes an additional groove provided on an upper surface thereof along a side of the first lead positioned opposite a side of the second lead.
US09893254B1 Structure of high temperature resistant reflecting layer of light-emitting diode
A structure is presented as a laminar structure having a first electrode, light-emitting diode epitaxial layer, silver reflecting layer, current barrier layer, metallic buffer layer, bonding layer, substrate and second electrode in turn, the silver reflecting layer covering the light-emitting diode epitaxial layer and having a bare region distributed as a pattern, the bare region being filled with a high temperature enduring reflecting material, the current barrier layer being patterned to be distributed over the silver reflecting layer in correspondence with the bare region, the metallic buffer layer separating the current barrier layer while covering the silver reflecting layer, whereby high temperature generated by the current barrier layer is sustained by the reflecting material to prevent the silver reflecting layer from cracking when being contacted with the high temperature of the current barrier layer and then ensure luminous efficiency of the light-emitting diode. Thus, the usage requirement is fulfilled.
US09893253B2 LED with scattering features in substrate
In one embodiment, the transparent growth substrate of an LED die is formed to have light scattering areas, such as voids formed by a laser. In another embodiment, the growth substrate is removed and replaced by another substrate that is formed with light scattering areas. In one embodiment, the light scattering areas are formed over the light absorbing areas of the LED die, to reduce the amount of incident light on those absorbing areas, and over the sides of the substrate to reduce light guiding. The replacement substrate may be formed to include reflective particles in selected areas. A 3D structure may be formed by stacking substrate layers containing the reflective areas. The substrate may be a transparent substrate or a phosphor tile that is affixed to the top of the LED.
US09893252B2 White LED, backlight module and liquid crystal display device
A white LED, which includes a substrate, at least one monochromatic LED chip disposed on the substrate, a reflector cup disposed on the substrate and surrounding the monochromatic LED chip, an encapsulating colloid filled in the reflector cup to seal the monochromatic LED chip, and a first quantum dot structure and a second quantum dot structure sealed in the encapsulating colloid, and light generated by the monochromatic LED chip, light generated by exciting the first quantum dot structure and light generated by exciting the second quantum dot structure are mixed to form a white light. A backlight module having the white LED and a liquid crystal display device having the backlight module is also disclosed.
US09893248B2 Substrate for changing color of light emitting diode and method for producing same
The present invention relates to a substrate for changing the color of a light emitting diode and a method for producing same and, more particularly, to a substrate for changing the color of a light emitting diode and a method for producing same, wherein the substrate may be hermetically sealed so that quantum dots (QD) contained inside may be completely protected from the outside and emission efficiency of the light emitting diode may be enhanced.
US09893245B2 Color-converting substrate for light-emitting diode and method for producing same
The present invention relates to a color-converting substrate of a light-emitting diode and a method for producing same, and more specifically to a color-converting substrate of a light-emitting diode capable of completely protecting the quantum dots (QD) supported in the interior from the exterior as hermetic sealing is possible, and a method for producing the color-converting substrate. To that end, provided are a color-conversion substrate of a light-emitting diode and a method for producing the color-conversion substrate, the color-conversion substrate of a light-emitting diode comprising: a first substrate and a second substrate arranged facing each other on a light-emitting diode; a sheet, having a hole, arranged in between the first and second substrates; QDs filling the hole; and sealing material disposed in between the first substrate and the lower surface of the sheet and in between the second substrate the upper surface of the sheet, wherein the sealing material is disposed along the edge of the hole, and the sheet is made of a substance allowing laser sealing of the sealing material, first substrate and second substrate.
US09893242B2 Light emitting device
A light emitting device is provided that can restrain deterioration of a mount substrate made of resin, the light emitting device including: a support member that is made of resin; a pair of wirings that are arranged on the support member; a light emitting element that is arranged to cross the pair of wirings and that has a pair of electrodes on one side running in parallel to the pair of wirings so as to be electrically connected; and a vaporproof member in a film shape that seamlessly covers an upper face of the support member, at least, in a region where the light emitting element is arranged between the pair of wirings in a plan view, wherein the vaporproof member has a higher vaporproof property than that of the support member.
US09893238B2 Light emitting device and method of manufacturing light emitting device
A light emitting device includes a semiconductor light emitting element including a semiconductor stacked-layer body and an electrode disposed on a first surface of the semiconductor stacked-layer body; a resin member disposed on a first surface side of the semiconductor stacked-layer body; and a metal layer disposed in the resin member and electrically connected to the electrode. A recess is defined in an upper surface of the resin member. The metal layer is projected from the upper surface of the resin member, and is disposed to surround at least a portion of the recess.
US09893237B2 Light emitting element
A light emitting element includes a semiconductor layer; an upper electrode disposed on an upper surface of the semiconductor layer; and a lower electrode disposed on a lower surface of the semiconductor later. In a plan view, the upper electrode includes a first extending portion extending in an approximately rectangular shape along an outer periphery of the semiconductor layer, a first pad portion connected to a first side among four sides of the first extending portion, a second pad portion connected to a second side that is opposite to the first side, among the four sides of the first extending portion, and a second extending portion and a third extending portion, each disposed in a region surrounded by the first extending portion, the second extending portion and the third extending portion each connecting the first pad portion and the second pad portion.
US09893236B2 Non-polar (Al,B,In,Ga)N quantum wells
A method of fabricating non-polar a-plane GaN/(Al,B,In,Ga)N multiple quantum wells (MQWs). The a-plane MQWs are grown on the appropriate GaN/sapphire template layers via metalorganic chemical vapor deposition (MOCVD) with well widths ranging from 20 Å to 70 Å. The room temperature photoluminescence (PL) emission energy from the a-plane MQWs followed a square well trend modeled using self-consistent Poisson-Schrodinger (SCPS) calculations. Optimal PL emission intensity is obtained at a quantum well width of 52 Å for the a-plane MQWs.
US09893229B2 Method for manufacturing a photovoltaic cell with selective doping
A method for creating a photovoltaic cell, includes forming a first doped region in a semiconductor substrate having a first concentration of doping elements; forming, by ion implantation, alignment units, the largest size of which is smaller than one millimeter, and a second doped region, adjacent to the first region with a second concentration of doping elements; heat-treating the substrate to activate the doping elements and to form an oxide layer at the surface of the substrate, the second concentration and the heat treatment conditions being selected such that the oxide layer has a thickness above the alignment units that is larger, by at least 10 nm, than the thickness of the oxide layer above an area of the substrate adjacent to the alignment units; depositing an antireflection layer onto the oxide layer; and depositing an electrode onto the antireflection coating, through a screen, opposite the second region.
US09893223B2 Solar electricity generation system
A solar electricity generator including an array of photovoltaic power generating elements, and a single continuous smooth solar reflecting surface, the surface being arranged to reflect light from the sun onto the array of photovoltaic power generating elements, wherein the flux per area at a point of minimum flux per area on the array is approximately 75% of the flux per area at a point of maximum flux per area, the intercept factor of the array is at least 70%, and the optical fill factor of the array is at least 60%.
US09893222B2 Solar cell having a plurality of sub-cells coupled by a metallization structure
Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between. The solar cell also includes a monolithic metallization structure. A portion of the monolithic metallization structure couples ones of the plurality of sub-cells. The groove between adjacent ones of the singulated and physically separated semiconductor substrate portions exposes a portion of the monolithic metallization structure.
US09893220B2 CIGS nanoparticle ink formulation having a high crack-free limit
A method for formulating a CIGS nanoparticle-based ink, which can be processed to form a thin film with a crack-free limit (CFL) of 500 nm or greater, comprises: dissolving or dispersing Cu(In,Ga)S2 and Cu(In,Ga)Se2 nanoparticles; mixing the nanoparticle solutions/dispersions and adding oleic acid to form an ink; depositing the ink on a substrate; annealing to remove the organic components of the ink formulation; forming a film with a CFL ≧500 nm; and, repeating the deposition and annealing process to form a CIGS film having a thickness ≧1 μm. The film so produced may be incorporated into a thin film photovoltaic device.
US09893219B2 Graphene photodetector and graphene optical modulator
According to one embodiment, a graphene photodetector includes a substrate, a first insulating film, first and second high-refractive-index regions, first and second conductive semiconductor regions, a second insulating film, a graphene film, a third insulating film, third and fourth high-refractive-index regions, a fourth insulating film, first and second electrodes, and third and fourth electrodes. The first, second, third and fourth high-refractive-index regions and portions sandwiched by the first, second, third and fourth high-refractive-index regions constituting an integrated optical waveguide.
US09893216B1 Polarized light based solar cell
A solar cell is provided wherein a circular polarizer is positioned proximate a transparent conductor layer which itself is separated from a loop of conductive metal by an electrically insulative layer. Upon exposure to non-polarized light, a portion of the incident light is polarized and transmitted to the transparent conductor layer. Under the influence of this polarized light, free electrons in the conductor layer are induced to move in a circular motion, thereby generating magnetic fields. These magnetic fields drive the flow of current within the conductive metal loop.
US09893215B2 Method for manufacturing a solar cell with a surface-passivating dielectric double layer, and corresponding solar cell
A solar cell with a dielectric double layer and also a method for the manufacture thereof are described. A first dielectric layer (3), which contains aluminum oxide or consists of aluminum oxide, and a second, hydrogen-containing dielectric layer (5) are produced by means of atomic layer deposition, allowing very good passivation of the surface of solar cells to be achieved.
US09893214B2 Bus bar for solar cell component
A bus bar for solar cell component is provided. The bus bar includes a first copper ribbon, a second copper ribbon, a third copper ribbon and a fourth copper ribbon connected end-to-end. A first diode electrically bridges the first and the second copper ribbon; a second diode electrically bridges the second and the third copper ribbon; and a third diode electrically bridges the third and the fourth copper ribbon. A first electrical energy output terminal is formed at an end of the first copper ribbon corresponding to the second copper ribbon, and a second electrical energy output terminal is formed at an end of the fourth copper ribbon corresponding to the third copper ribbon.
US09893213B2 Method of forming a wire bond sensor package
A packaged chip assembly with a semiconductor substrate, a semiconductor device integrally formed on or in the substrate's top surface, and first bond pads at the substrate's top surface electrically coupled to the semiconductor device. A second substrate includes a first aperture and one or more second apertures extending therethrough, second and third bond pads at the second substrate's top and bottom surfaces, respectively, and conductors electrically coupled to the second and third bond pads. The semiconductor substrate's top surface is secured to the second substrate's bottom surface such that the semiconductor device is aligned with the first aperture, and each of the first bond pads is aligned with one of the second apertures. A plurality of wires are each electrically connected between one of the first bond pads and one of the second bond pads and each passing through one of the one or more second apertures.
US09893211B2 Semiconductor device manufacturing method
Provided is a semiconductor device manufacturing method. The device has a substrate including one and another surfaces. A first semiconductor region of a first conductivity type is formed in the substrate. A second conductivity type, second semiconductor region is provided in a first surface layer, that includes the one surface, of the substrate. A first electrode is in contact with the second semiconductor region to form a junction therebetween. A first conductivity type, third semiconductor region is provided in a second surface layer, that includes the another surface, of the substrate. The third semiconductor region has a higher impurity concentration than the first semiconductor region. A fourth semiconductor region of the second conductivity type is provided in the first semiconductor region at a location deeper than the third semiconductor region from the another surface. A second electrode is in contact with the third semiconductor region.
US09893209B2 Cascoded high voltage junction field effect transistor
A cascoded junction field transistor (JFET) device comprises a first stage high voltage JFET cascoded to a second stage low voltage JFET wherein one of the first and second stages JFET is connected to a drain electrode of another JFET stage.
US09893207B1 Programmable read only memory (ROM) integrated in tight pitch vertical transistor structures
A memory including a common floating gate structure in simultaneous electrical communication with a first fin structure of a first conductivity type vertically orientated semiconductor device and a second fin structure of a second conductivity type vertically orientated semiconductor device. A back bias electrode is present between the first and second fin structures embedded in a dielectric material positioned in a central portion of the common floating gate structure. The back bias electrode is present overlying an isolation region that is separating a first region of the substrate including the first conductivity type vertically orientated semiconductor device from a second region of the substrate including the second conductivity type vertically orientated semiconductor device.
US09893205B2 Thin film transistor, array substrate and liquid crystal display panel
A thin film transistor, an array substrate and a liquid crystal display panel are provided. The thin film transistor has an active layer which is formed from nitrogen-doped oxide semiconductor layers and a non-nitrogen doped oxide semiconductor layer. By disposing the non-nitrogen doped oxide semiconductor layer in the active layer of the nitrogen-doped thin film transistor, the mobility of the thin film transistor is kept constant for improving the reliability of the thin film transistor.
US09893199B2 Preparation method of reduced and N-doped graphene oxide and the reduced and N-doped graphene oxide thereby
The present invention provides a preparation method of the reduced and N-doped graphene oxide comprising the steps of preparing the mixed solution containing graphene oxide (GO) and tetramethylammonium hydroxide (TMAH) (step 1) and heating the mixed solution prepared in step 1 (step 2). The preparation method of the reduced and N-doped graphene oxide of the present invention can provide the fully reduced and N-doped graphene oxide even at a low temperature by using tetramethylammonium hydroxide, the tetra ammonium salt, as a nitrogen dopant. According to this method, N-doping level can be regulated by controlling the mixing ratio of graphene oxide and tetramethylammonium hydroxide. Further, this method does not need any additional additive to prepare the reduced and N-doped graphene oxide, so that it is a pro-environmental method that facilitates the mass-production simply with solution process.
US09893195B2 Method of manufacturing semiconductor device
A highly reliable transistor which includes an oxide semiconductor and has high field-effect mobility and in which a variation in threshold voltage is small is provided. By using the transistor, a high-performance semiconductor device, which has been difficult to realize, is provided. The transistor includes an oxide semiconductor film which contains two or more kinds, preferably three or more kinds of elements selected from indium, tin, zinc, and aluminum. The oxide semiconductor film is formed in a state where a substrate is heated. Further, oxygen is supplied to the oxide semiconductor film with an adjacent insulating film and/or by ion implantation in a manufacturing process of the transistor, so that oxygen deficiency which generates a carrier is reduced as much as possible. In addition, the oxide semiconductor film is highly purified in the manufacturing process of the transistor, so that the concentration of hydrogen is made extremely low.
US09893194B2 Method for manufacturing semiconductor device
A method for adjusting threshold of a semiconductor device is provided. In a plurality of semiconductor devices each including a semiconductor, a source or drain electrode electrically in contact with the semiconductor, a gate electrode, and a charge trap layer between a gate electrode and the semiconductor, a state where the potential of the gate electrode is set higher than the potential of the source or drain electrode while the semiconductor devices are heated at 150° C. or higher and 300° C. or lower is kept for one second or longer to trap electrons in the charge trap layer, so that the threshold is increased and Icut is reduced. Here, the potential difference between the gate electrode and the source or drain electrode is set so that it is different between the semiconductor devices, and the thresholds of the semiconductor devices are adjusted to be appropriate to each purpose.
US09893190B2 Fin FET and method of fabricating same
A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
US09893184B2 Fin-type field effect transistor device and method of fabricating the same
In accordance with some embodiments of the present disclosure, a fin-FET device includes a substrate, a stack structure, a source and drain region, a sidewall insulator and a metal connector. The stack structure including a gate stack is disposed on the substrate. The source and drain region is disposed beside the stack structure. The sidewall insulator is disposed on the source and drain region. The sidewall insulator includes a bottom portion and an upper portion. An interface is formed between the bottom portion and the upper portion and the bottom portion is located between the upper portion and the source and drain region. The metal connector stacks on the source and drain region and the sidewall insulator is located between the metal connector and the stack structure.
US09893179B2 Method for producing semiconductor device and semiconductor device
A method for producing a semiconductor device includes a first step of forming a first insulating film around a fin-shaped semiconductor layer on a semiconductor substrate; a second step of forming a pillar-shaped semiconductor layer, a first dummy gate, and a first hard mask; a third step of forming a second hard mask, forming a second dummy gate, and forming a first dummy contact; a fourth step of forming a sidewall and forming a metal-semiconductor compound in an upper portion of a second diffusion layer; a fifth step of forming a gate electrode, a gate line, and a first contact; and a sixth step of forming a second contact, a third contact made of a second metal, and a fourth contact made of the second metal.
US09893176B2 Silicon-carbide trench gate MOSFETs
In a general aspect, an apparatus can include a silicon carbide (SiC) trench gate MOSFET with improved operation due, at least in part, to a reduced gate capacitance. In the SiC trench gate MOSFET, a thick gate oxide can be formed on a bottom surface of the gate trench and a built-in channel, having a vertical portion and a lateral portion, can be formed to electrically connect a vertical inversion-layer channel, such as in a channel stopper layer, to a vertical JFET channel region and a drift region.
US09893175B2 Integrated circuit with a power transistor and a driver circuit integrated in a common semiconductor body
An integrated circuit includes a power transistor and a drive circuit. The drive circuit includes at least one drive transistor. The power transistor and the at least one drive transistor are integrated in a common semiconductor body. The power transistor includes at least one transistor cell with a source region, a body region, a drift region, a drain region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. The at least one drive transistor includes active device regions integrated in a well-like structure comprising dielectric sidewall layers.
US09893169B1 Fabrication of a vertical fin field effect transistor having a consistent channel width
A method of forming a vertical fin field effect transistor having a consistent channel width, including forming one or more vertical fin(s) on the substrate, wherein the one or more vertical fin(s) have a tapered profile, oxidizing the one or more vertical fin(s) to form an oxide by consuming at least a portion of the vertical fin material, and removing the oxide from the one or more vertical fin(s), wherein the one or more vertical fin(s) include a tapered upper portion, a tapered lower portion and a straight channel portion there between.
US09893166B2 Dummy gate formation using spacer pull down hardmask
Forming a dummy gate on a semiconductor device is disclosed. A first sacrificial layer is formed on a fin, and a second sacrificial layer is formed on the first sacrificial layer. A first hardmask layer is formed on the second sacrificial layer, and a second hardmask layer is formed on the first hardmask layer and patterned. The first hardmask layer is laterally recessed in a lateral direction under the second hardmask layer. The first and second sacrificial layers are etched to a corresponding width of the first hardmask layer. A spacer layer is formed on the fin, the first sacrificial layer, second sacrificial layer, the first hardmask layer and the second hardmask layer. The spacer layer is etched until it remains on a sidewall of the first sacrificial layer, the second sacrificial layer and the first hardmask layer, wherein the first and second sacrificial layers form the dummy gate.
US09893165B2 Method for manufacturing array substrate and manufacturing device
Embodiments of the present invention disclose a manufacturing method for an array substrate and corresponding manufacturing device, which belong to the technical field of metal oxide semiconductor. The method comprises: forming an active layer, a gate insulating layer and a gate metal layer successively on a substrate; forming a gate pattern with a gate photoresist pattern on the substrate having the gate metal layer; altering a temperature of the gate photoresist pattern, so as to enable the width of the gate photoresist sub-pattern in the gate photoresist pattern to be changed; forming lightly doped drains (LDDs) at two sides of a preset area of the active layer sub-pattern in the active layer of the substrate having the changed gate photoresist pattern, the preset area being a projection area of the gate sub-pattern on the active layer sub-pattern, the length of each of the LDDs being (a−b)/2, wherein a is the width of the gate photoresist sub-pattern in the changed gate photoresist pattern, b is the width of the gate sub-pattern; stripping the changed gate photoresist pattern. The embodiment of the present invention mitigates or alleviates the problem of relatively low control flexibility and relatively poor feasibility to the LDD length, which improves the control flexibility and feasibility to the LDD length, and can be used for manufacturing an array substrate.
US09893164B2 Bipolar transistor device fabrication methods
A method of fabricating a bipolar transistor device includes performing a first plurality of implantation procedures to implant dopant of a first conductivity type to form emitter and collector regions laterally spaced from one another in a semiconductor substrate, and performing a second plurality of implantation procedures to implant dopant of a second conductivity type in the semiconductor substrate to form a composite base region. The composite base region includes a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
US09893160B2 Methods of forming gate dielectric material
A method of fabricating a semiconductor device includes contacting water with a silicon oxide layer. The method further includes diffusing an ozone-containing gas through water to treat the silicon oxide layer. The method further includes forming a dielectric layer over the treated silicon oxide layer.
US09893159B2 Transistor, integrated circuit and method of fabricating the same
A transistor, an integrated circuit and a method of fabricating the integrated circuit are provided. In various embodiments, the transistor includes a source electrode, at least one semiconductor channel, a gate electrode, a drain electrode, and a drain pad. The source electrode is disposed in a substrate. The semiconductor channel extends substantially perpendicular to the source electrode. The gate electrode surrounds the semiconductor channel. The drain electrode is disposed on top of the semiconductor channel. The drain pad is disposed on the drain electrode, wherein the drain pad comprises a single implanted silicide layer or a multiple conductive layers with the implanted silicide layer.
US09893158B2 Semiconductor device comprising a gradually increasing field dielectric layer and method of manufacturing a semiconductor device
A semiconductor device is provided that includes a transistor in a semiconductor body having a main surface. The transistor includes a source region, a drain region, a body region, a drift zone, and a gate electrode at the body region. The body region and the drift zone are disposed along a first direction between the source region and the drain region. The first direction is parallel to the main surface. The semiconductor device further includes a field plate disposed in field plate trenches extending along the first direction in the drift zone, and a field dielectric layer between the field plate and the drift zone. A thickness of the field dielectric layer gradually increases along the first direction from a portion adjacent to the source region to a portion adjacent to the drain region.
US09893152B2 Semi-insulating silicon carbide monocrystal and method of growing the same
A semi-insulating silicon carbide monocrystal and a method of growing the same are disclosed. The semi-insulating silicon carbide monocrystal comprises intrinsic impurities, deep energy level dopants and intrinsic point defects. The intrinsic impurities are introduced unintentionally during manufacture of the silicon carbide monocrystal, and the deep energy level dopants and the intrinsic point defects are doped or introduced intentionally to compensate for the intrinsic impurities. The intrinsic impurities include shallow energy level donor impurities and shallow energy level acceptor impurities. A sum of a concentration of the deep energy level dopants and a concentration of the intrinsic point defects is greater than a difference between a concentration of the shallow energy level donor impurities and a concentration of the shallow energy level acceptor impurities, and the concentration of the intrinsic point defects is less than the concentration of the deep energy level dopants. The semi-insulating SiC monocrystal has resistivity greater than 1×105 Ω·cm at room temperature, and its electrical performances and crystal quality satisfy requirements for manufacture of microwave devices. The deep energy level dopants and the intrinsic point defects jointly serve to compensate the intrinsic impurities, so as to obtain a high quality semi-insulating single crystal.
US09893151B2 Method and apparatus providing improved thermal conductivity of strain relaxed buffer
A structure includes a substrate and a strain relaxed buffer (SRB) that has a bottom surface disposed on the substrate and an opposite top surface. The SRB is formed to have a plurality of pairs of layers, where a given pair of layers is composed of a layer of Si1-xGex and a layer of Si. The structure further includes a plurality of transistor devices formed above the top surface of the SRB and at least one contact disposed vertically through the top surface of the SRB and partially through a thickness of the SRB. The at least one contact is thermally coupled to at least one of the plurality of the Si layers for conducting heat out of the SRB via the at least one of the plurality of Si layers. A method to form the structure is also disclosed.
US09893150B2 Structure and method for semiconductor device
A semiconductor device and a method of forming the same are disclosed. The semiconductor device includes a substrate, and a source region and a drain region formed in the substrate. The semiconductor device further includes an impurity diffusion stop layer formed in a recess of the substrate between the source region and the drain region, wherein the impurity diffusion stop layer covers bottom and sidewalls of the recess. The semiconductor device further includes a channel layer formed over the impurity diffusion stop layer and in the recess, and a gate stack formed over the channel layer.
US09893147B2 Fully substrate-isolated FinFET transistor
Channel-to-substrate leakage in a FinFET device is prevented by inserting an insulating layer between the semiconducting channel and the substrate during fabrication of the device. Similarly, source/drain-to-substrate leakage in a FinFET device is prevented by isolating the source/drain regions from the substrate by inserting an insulating layer between the source/drain regions and the substrate. Forming such an insulating layer isolates the conduction path from the substrate both physically and electrically, thus preventing current leakage. In an array of semiconducting fins made up of a multi-layer stack, the bottom material is removed thus yielding a fin array that is suspended above the silicon surface. A resulting gap underneath the remaining top fin material is then filled with oxide to better support the fins and to isolate the array of fins from the substrate.
US09893139B2 Display apparatus
A display apparatus includes a substrate. A display unit is disposed on the substrate and includes a display region and a non-display region. At least one light-emitting device is disposed in the display region. First and second power supply lines, configured to supply driving power to the at least one light-emitting device, and a pad unit, are disposed in the non-display region. The first power supply line includes a first fan-out wire portion electrically connected to the pad unit, and a first extension portion electrically connected to the first fan-out wire portion. The second power supply line includes a second fan-out wire portion electrically connected to the pad unit, and a second extension portion electrically connected to the second fan-out wire portion. The first extension portion has a width W1 and the second extension portion has a width W2. The width W1 is greater than the width W2.
US09893138B2 Display panel
A display panel includes a substrate, a plurality of first electrode series, a plurality of first electrode series and a plurality of conducting wires. The substrate is divided into a first display area and a second display area. The first display area and the second display area are respectively divided into light emitting zones and interval zones. The first electrode series are disposed in the first display area and the second display area. The second electrode series are disposed in the first display area and the second display area. Each first electrode series extends along a first direction. Each second electrode series extends along a second direction. The connection portion of each first electrode series extends into the interval zone of the first display area. The conducting wires are respectively coupled to the second electrode series in the first display area.
US09893137B2 Organic light emitting display panel and method of manufacturing the same
An organic light emitting display panel includes a first base substrate, a thin film transistor disposed on the first base substrate, a first electrode electrically connected to the thin film transistor, a pixel defining layer defining an opening that exposes a portion of the first electrode, a second electrode disposed on the first electrode, a light emitting structure disposed between the first electrode and the second electrode, a second base substrate disposed on the second electrode, and a first mirror layer disposed on the second base substrate and defining an opening that overlaps the light emitting structure. At least one of the pixel defining layer and the mirror layer has an uneven surface.
US09893136B2 Organic light emitting display device
An organic light emitting display device includes a substrate on which is included pixel columns extending in a column direction and adjacent to each other in a row direction, data lines extending in the column direction and adjacent to each other and between the pixel columns in the row direction, a power source line extending in the column direction, a scan line extending in the row direction, a switching transistor connected to the scan line and one of the data lines, a driving transistor connected to the switching transistor, an OLED connected to the driving transistor, and a storage capacitor including a first storage capacitor plate and a second storage capacitor plate overlapping the first storage capacitor plate in a thickness direction, connected to the power source line, and having a portion extending in the column direction between and not overlapping the data lines in the thickness direction.
US09893135B2 Organic light emitting diode display
An organic light emitting diode display includes: a substrate; a first thin film transistor including a first active region on the substrate; a second thin film transistor connected to the first thin film transistor and including a second active region spaced from the first active region; and a silicon layer on the substrate and including a plurality of polysilicon lines spaced from each other and extending in a first direction and a plurality of amorphous silicon lines between the adjacent polysilicon lines and extending in the first direction, wherein the first active region and the second active region are in different polysilicon lines of the plurality of polysilicon lines.
US09893130B2 Display device, electronic apparatus, and method of fabricating the display device
It is an object of the invention to provide a technique to manufacture a display device with high image quality and high reliability at low cost with high yield. The invention has spacers over a pixel electrode layer in a pixel region and over an insulating layer functioning as a partition which covers the periphery of the pixel electrode layer. When forming a light emitting material over a pixel electrode layer, a mask for selective formation is supported by the spacers, thereby preventing the mask from contacting the pixel electrode layer due to a twist and deflection thereof. Accordingly, such damage as a crack by the mask does not occur in the pixel electrode layer. Thus, the pixel electrode layer does not have a defect in shapes, thereby a display device which performs a high resolution display with high reliability can be manufactured.
US09893129B2 Method for fabricating COA array substrate, array substrate and display device
A method for fabricating a COA array substrate, an array substrate and a display device are provided. The fabrication method comprises the following steps: forming a protection layer (12) on the TFT substrate (11); coating a photoresist layer (21) on the protection layer (12), the photoresist layer (12) functioning as a planarized layer (14), wherein the TFT substrate (11) comprises a substrate (111) and a TFT (112); forming a color filter receiving hole (32) in the photoresist layer (21) through a photolithography process; fabricating the color filter layer (31) in the color filter receiving hole (32). The above fabrication method can reduce the complexity and cost of conventional method for fabricating the array substrate.
US09893126B2 Organic light emitting display device
An organic light emitting display device capable of having an electrostatic capacitive type touch panel function without substantially increasing the thickness of the display device and/or including a touch panel with an improved interface between a touch panel module of the touch panel and a touch panel drive integrated circuit (IC) of the touch panel.
US09893124B2 Organic light-emitting display
An organic light-emitting display including a substrate having a first pixel area to emit a light of a first color and a second pixel area to emit a light of a second color, a first anode disposed on the first pixel area and a second anode disposed on the second pixel area, a first emitting layer disposed on the first anode and a second emitting layer disposed on the second anode, the first emitting layer including a fluorescent light-emitting material and the second emitting layer including a first phosphorescent light-emitting material, a first buffer layer disposed on the first emitting layer and a second buffer layer disposed on the second emitting layer, the first buffer layer and the second buffer layer being formed of different materials, and a first cathode disposed on the first buffer layer and a second cathode disposed on the second buffer layer.
US09893122B2 Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof
Some embodiments relate to an integrated circuit device including an array of memory cells disposed over a semiconductor substrate. An array of first metal lines are disposed at a first height over the substrate and are connected to the memory cells of the array. Each of the first metal lines has a first cross-sectional area. An array of second metal lines are disposed at a second height over the substrate and are connected to the memory cells of the array. Each of the second metal lines has a second cross-sectional area which is greater than the first cross-sectional area.
US09893121B2 Magnetic memory and method of manufacturing magnetic memory
According to one embodiment, a magnetic memory includes a first metal layer including a first metal, a second metal layer on the first metal layer, the second metal layer including a second metal which is more easily oxidized than the first metal, the second metal layer having a first sidewall portion which contacts the first metal layer, and the second metal layer having a second sidewall portion above the first sidewall portion, the second sidewall portion which steps back from the first sidewall portion, a magnetoresistive element on the second metal layer, a third metal layer on the magnetoresistive element, and a first material which contacts a sidewall portion of the magnetoresistive element and the second sidewall portion of the second metal layer, the first material including an oxide of the second metal.
US09893120B2 Semiconductor structure and method of forming the same
The present disclosure provides a semiconductor structure and a method for manufacturing the same. The semiconductor structure includes a bottom electrode via (BEVA), a recap layer on the BEVA, and a magnetic tunneling junction (MTJ) layer over the recap layer. The BEVA includes a lining layer over a bottom and a sidewall of a trench of the BEVA, and electroplated copper over the lining layer, filling the trench of the BEVA. The recap layer overlaps a top surface of the lining layer and a top surface of the electroplated copper.
US09893117B2 Pixel structure
A pixel structure comprises an epitaxial layer (1) of a first conductivity type. A photo-sensitive element comprises a first region (4) of a second conductivity type and a second region (3) of the first conductivity type positioned between the epitaxial layer (1) and the first region (4). A charge storage node (ø2) is arranged to store charges acquired by the photo-sensitive element, or to form part of a charge storage element. A third region (2) of the second conductivity type is positioned between the charge storage node and the epitaxial layer. The pixel structure further comprises a charge-to-voltage conversion element (13) for converting charges from the charge storage node to a voltage signal and an output circuit (21, 22) for selectively outputting the voltage signal from the pixel structure.
US09893112B2 Wide spectrum optical sensor
An optical sensor including a semiconductor substrate; a first light absorption region formed in the semiconductor substrate, the first light absorption region configured to absorb photons at a first wavelength range and to generate photo-carriers from the absorbed photons; a second light absorption region formed on the first light absorption region, the second light absorption region configured to absorb photons at a second wavelength range and to generate photo-carriers from the absorbed photons; and a sensor control signal coupled to the second light absorption region, the sensor control signal configured to provide at least a first control level and a second control level.
US09893111B2 Full-PDAF (phase detection autofocus) CMOS image sensor structures
The present disclosure relates to an image sensor having autofocus function and associated methods. In some embodiments, the image sensor has first and second image sensing pixels arranged one next to another in a row. Each of the first and second image sensing pixels respectively have a left PD (phase detection) pixel including a left photodiode operably coupled to a left transfer gate, and a right PD pixel including a right photodiode operably coupled to a right transfer gate. The right transfer gate of the second image sensing pixel is a mirror image of the left transfer gate of the first image sensing pixel along a boundary line between the first and second image sensing pixels. The left transfer gate of the second image sensing pixel is a mirror image of the right transfer gate of the first image sensing pixel along the boundary line.
US09893110B2 Method of manufacturing solid-state image sensor, solid-state image sensor, and camera
A method of manufacturing a solid-state image sensor is provided. The method comprises preparing a structure which is covered by a protective film, depositing a first material by using a first color filter material on the protective film, forming a first color filter from the first material, depositing a second material by using a second color filter material after the forming the first color filter and forming a second color filter from the second material. An upper surface of the protective film has a concave portion. A part of the first material enters the concave portion in the depositing the first material, the first material is patterned so as to form a member in the concave portion from the first material in the forming the first color filter and the second material covers the member in the depositing the second material.
US09893106B2 Solid-state imaging device and electronic apparatus
A solid-state imaging device includes a semiconductor layer on which a plurality of pixels are arranged along a light-receiving surface being a main surface of the semiconductor layer, photoelectric conversion units provided for the respective pixels in the semiconductor layer, and a trench element isolation area formed by providing an insulating layer in a trench pattern formed on a light-receiving surface side of the semiconductor layer, the trench element isolation area being provided at a position displaced from a pixel boundary between the pixels.
US09893105B2 Image pickup element, method of manufacturing image pickup element, and electronic apparatus
An image pickup element includes: a semiconductor substrate including a photoelectric conversion section for each pixel; a pixel separation groove provided in the semiconductor substrate; and a fixed charge film provided on a light-receiving surface side of the semiconductor substrate, wherein the fixed charge film includes a first insulating film and a second insulating film, the first insulating film being provided contiguously from the light-receiving surface to a wall surface and a bottom surface of the pixel separation groove, and the second insulating film being provided on a part of the first insulating film, the part corresponding to at least the light-receiving surface.
US09893102B2 Ambient light illumination for non-imaging contact sensors
A sensor is provided for capturing images of skin topology having an upper surface providing a platen, and a one or two-dimensional array of light sensing pixel elements for receiving light representative of the topology of skin when upon the upper surface and illuminated by at least redirected ambient light received within the sensor through the upper surface. One or more layers or coatings of reflective or scattering materials are provided in the sensor for redirecting ambient light by one or more of reflection, scattering, or propagation towards the platen to illuminate the skin. The pixel elements are sensitive to one or more selected wavelengths or wavelength ranges of the ambient light present. Optional light source(s) may be provided for use when ambient light present is inadequate for proper sensor operation.
US09893098B2 Array substrate and fabrication method thereof, and display device
Embodiments of the present disclosure provide an array substrate and a fabrication method thereof, and a display device. The fabrication method of the array substrate includes: forming a gate metal layer, a gate insulating layer, an active layer and a source-drain metal layer on a base substrate. The forming the gate insulating layer, the active layer and the source-drain metal layer on the base substrate comprises: forming a gate insulating film, an active layer film and a source-drain metal film on the base substrate; forming the gate insulating layer, the active layer and the source-drain metal layer by a single patterning process. The number of the exposing process is reduced, the production cycle is shortened and the fabrication cost is reduced.
US09893095B2 Liquid crystal display device having reduced display defects and improved aperture ratio and manufacturing method therefor
A liquid crystal display according to an embodiment of the present invention includes: a first substrate; a pixel electrode formed on the first substrate; a first insulating layer formed on at least part of the pixel electrode; a sustain electrode line formed on the first insulating layer and over at least a portion of the pixel electrode so as to form a capacitance; a second insulating layer formed on the sustain electrode line; and a data line formed on the second insulating layer, the data line and sustain electrode line positioned so that the sustain electrode line is positioned between the data line and the pixel electrode.
US09893093B2 Display device
A display device includes a substrate including a pixel area and a peripheral area located outside the pixel area; pixels located in the pixel area; power supply lines configured to provide an operating power to the pixels; and a plurality of data fanout wires configured to provide data signals to the pixels, wherein, in at least a portion of the peripheral area, the power supply lines and the plurality of data fanout wires are arranged on a same layer.
US09893090B2 Array substrate and fabrication method thereof, and display device
An array substrate and a fabrication method thereof, and a display device are provided. The array substrate comprises a gate line and a data line intersecting with each other. The data line and the gate line are formed in a same layer on a substrate, the data line is disconnected in a region of the gate line. A connection pattern is formed in the region of the gate line, the connection pattern is insulated from the gate line, and ends of the data line located on both sides of the gate line are electrically connected by the connection pattern.
US09893089B2 Semiconductor device and manufacturing method thereof
As a display device has higher definition, the number of pixels is increased and thus, the number of gate lines and signal lines is increased. When the number of gate lines and signal lines is increased, it is difficult to mount IC chips including driver circuits for driving the gate lines and the signal lines by bonding or the like, whereby manufacturing cost is increased. A pixel portion and a driver circuit for driving the pixel portion are provided on the same substrate, and at least part of the driver circuit comprises a thin film transistor including an oxide semiconductor sandwiched between gate electrodes. A channel protective layer is provided between the oxide semiconductor and a gate electrode provided over the oxide semiconductor. The pixel portion and the driver circuit are provided on the same substrate, which leads to reduction of manufacturing cost.
US09893088B2 Thin film transistor device, method for manufacturing same and display device
A thin film transistor device including: a substrate; a gate electrode; an electrode pair composed of a source electrode and a drain electrode; a channel layer; and a passivation layer. The channel layer is made of an oxide semiconductor. The passivation layer includes a first layer, a second layer, and a third layer layered one on top of another in this order with the first layer closest to the substrate. The first layer is made of one of silicon oxide, silicon nitride, and silicon oxynitride, the second layer is made of an Al compound, and the third layer is made of one of silicon oxide, silicon nitride, and silicon oxynitride.
US09893087B2 Thin film transistor substrate, display apparatus including thin film transistor substrate, method of manufacturing thin film transistor substrate, and method of manufacturing display apparatus
A thin film transistor TFT substrate includes a substrate, a first conductive pattern that extends on the substrate in a first direction, a second conductive pattern located on the same layer as the first conductive pattern and nearest to a first side of the first conductive pattern in a second direction that is perpendicular to the first direction, and a dummy pattern located on the same layer as the first conductive pattern and located adjacent a second other side of the first conductive pattern which is opposite to the first side of the first conductive pattern.
US09893078B2 Semiconductor memory device
A semiconductor memory device includes a conducting layer and an insulating layer that are disposed above a semiconductor substrate, a plurality of pillars that extend in a direction which crosses a surface of the semiconductor substrate, and a plate that is disposed between the plurality of pillars and extends in the same direction as the pillars. A surface of the plate, which faces the pillars, has convex portions and non-convex portions.
US09893074B2 Semiconductor device
A semiconductor device including a substrate, channels, a gate stack, and a pad separating region. The substrate has a pad region adjacent to a cell region. The channels extend in a direction crossing an upper surface of the substrate in the cell region. The gate stack includes a plurality of gate electrode layers spaced apart from each other on the substrate and enclosing the channels in the cell region. The pad separating region separates the gate stack into two or more regions in the pad region. The gate electrode layers have different lengths in the pad region.
US09893072B2 DRAM with nanofin transistors
One aspect of the present subject matter relates to a memory. A memory embodiment includes a nanofin transistor having a first source/drain region, a second source/drain region above the first source/drain region, and a vertically-oriented channel region between the first and second source/drain regions. The nanofin transistor also has a surrounding gate insulator around the nanofin structure and a surrounding gate surrounding the channel region and separated from the nanofin channel by the surrounding gate insulator. The memory includes a data-bit line connected to the first source/drain region, at least one word line connected to the surrounding gate of the nanofin transistor, and a stacked capacitor above the nanofin transistor and connected between the second source/drain region and a reference potential. Other aspects are provided herein.
US09893070B2 Semiconductor device and fabrication method therefor
A method of fabricating a semiconductor device. The method includes forming a dummy structure over a substrate, forming conductive features on opposite sides of the dummy gate structure, removing the dummy structure and a portion of the substrate beneath the dummy gate structure to form a trench, and filling the trench with a dielectric material.
US09893068B2 Method for manufacturing a semiconductor device
To effectively prevent short circuit between capacitors adjacent to each other. A semiconductor device has a substrate, an interlayer insulating film, a plurality of capacitors, and an isolation insulating film. The interlayer insulating film is located over the substrate. The capacitors are located in a plurality of recesses, respectively. The recesses each have an opening in the surface of the interlayer insulating film. The isolation insulating film lies in the interlayer insulating film. The isolation insulating films are located between recesses adjacent to each other in plan view. Further, the isolation insulating film is made of a material different from that of the interlayer insulating film.
US09893062B2 Semiconductor device and a method for fabricating the same
In a method of manufacturing a semiconductor device, first and second gate structures are formed. The first (second) gate structure includes a first (second) gate electrode layer and first (second) sidewall spacers disposed on both side faces of the first (second) gate electrode layer. The first and second gate electrode layers are recessed and the first and second sidewall spacers are recessed, thereby forming a first space and a second space over the recessed first and second gate electrode layers and first and second sidewall spacers, respectively. First and second protective layers are formed in the first and second spaces, respectively. First and second etch-stop layers are formed on the first and second protective layers, respectively. A first depth of the first space above the first side wall spacers is different from a second depth of the first space above the first gate electrode layer.
US09893059B2 ROM chip manufacturing structures
An integrated circuit (IC) chip embodiment includes first and second ROM cells arranged in a same row of a ROM array. The first and second ROM cells include first portions of first and second gate structures, respectively. The IC chip further includes a strap cell disposed between the first and second ROM cells. The strap cell includes second portions of the first and second gate structures. The first gate structure is physically separated from the second gate structure.
US09893052B2 FinFET-based ESD devices and methods for forming the same
A semiconductor device includes semiconductor fins on semiconductor strips on a substrate. The semiconductor fins are parallel to each other. A gate stack is over the semiconductor fins, and a drain epitaxy semiconductor region is disposed laterally from a side of the gate stack and on the semiconductor strips. A first dielectric layer is over the substrate, and the first dielectric layer has a first metal layer. A second dielectric layer is over the first dielectric layer, and the second dielectric layer has a second metal layer. Vias extend from the second metal layer and through the first dielectric layer, and the vias are electrically coupled to the drain epitaxy semiconductor region.
US09893049B2 Electrostatic discharge protection device
The invention provides an electrostatic discharge (ESD) protection device. The ESD protection device includes a semiconductor substrate having an active region, a first well region having a first conductive type formed in the active region, a first doped region having the first conductive type formed in the first well region, a first metal contact disposed on the first doped region, and a second metal contact disposed on the active region, connecting to the first well region, wherein no doped region is formed between the second metal contact and the first well region.
US09893045B2 Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect
A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
US09893044B2 Wafer-level underfill and over-molding
A mold includes a top portion, and an edge ring having a ring-shape. The edge ring is underlying and connected to edges of the top portion. The edge ring includes air vents. The edge ring further encircles the inner space under the top portion of the mold. A plurality of injection ports is connected to the inner space of the mold. The plurality of injection ports is substantially aligned to a straight line crossing a center of the top portion of the mold. The plurality of injection ports has different sizes.
US09893041B2 Method of forming an array of a multi-device unit cell
Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
US09893040B2 Flip-chip structure of group III semiconductor light emitting device
This application refers to a flip-chip structure of Group III semiconductor light emitting device. The flip-chip structure includes: a substrate, a buffer layer, nitride semiconductor layer, an active layer, a P type nitride semiconductor layer, a transparent conductive layer, a first insulation layer, a P type contact metal, a N type contact metal, a second insulation layer, a flip-chip P type electrode and a flip-chip N type electrode. The substrate, the buffer layer, the N type nitride semiconductor layer, the active layer, the P type nitride semiconductor layer which grow sequentially from bottom to top form a linear convex mesa. In this application, structure of the first insulation layer which is formed by aBraggs reflective layer, a metal layer and the multilayer oxide insulation layer, acts as a reflector structure and an insulation layer to replace the flip-chip reflector structure design and the first insulation layer, so that a metal protective layer can be omitted.
US09893034B2 Integrated circuit packages with detachable interconnect structures
An integrated circuit package may include a first integrated circuit die having a first bump structure, a second integrated circuit die having a second bump structure, and a detachable interconnect structure having first and second conductive structures that is positioned between the first and second integrated circuit dies. In order to establish electrical communication between the first and second integrated circuit dies, the first conductive structure of the detachable interconnect structure is connected to the first bump structure of the first integrated circuit die, and the second conductive structure of the detachable interconnect structure is connected to the second bump structure of the second integrated circuit die. The detachable interconnect structure may also be used to facilitate wafer-level testing prior to packaging the first and second integrated circuit dies to form the integrated circuit package.
US09893032B2 Fog bonding device and method thereof
A bonding device and bonding method for bonding an FPC film on a display panel through an anisotropic conductor attached to the display panel, the device including a panel supporting unit configured to support the display panel; a heating and pressurizing unit disposed on an upper area of the panel supporting unit and configured to pressurize and heat a compression area of the FPC film placed on an upper part of the anisotropic conductor towards the display panel, a film supporting unit disposed adjacent the panel supporting unit and configured to support the FPC film, and a film pre-heating unit provided in the film supporting unit and configured to pre-heat the FPC film.
US09893028B2 Bond structures and the methods of forming the same
A method includes forming a first conductive feature and a second conductive feature, forming a metal pad over and electrically connected to the first conductive feature, and forming a passivation layer covering edge portions of the metal pad, with a center portion of a top surface of the metal pad exposed through an opening in the metal pad. A first dielectric layer is formed to cover the metal pad and the passivation layer. A bond pad is formed over the first dielectric layer, and the bond pad is electrically coupled to the second conductive feature. A second dielectric layer is deposited to encircle the bond pad. A planarization is performed to level a top surface of the second dielectric layer with the bond pad. At a time after the planarization is performed, an entirety of the top surface of the metal pad is in contact with dielectric materials.
US09893022B2 Self-destructive circuits under radiation
Circuits which self-destruct under radiation are provided. In one aspect, a method for creating a radiation-sensitive circuit is provided. The method includes the step of: connecting an integrated circuit to a power supply and to a ground in parallel with at least one dosimeter device, wherein the dosimeter device is configured to change from being an insulator to being a conductor under radiation. Radiation-sensitive circuits are also provided.
US09893021B2 Packaging devices and methods for semiconductor devices
Packaging devices and methods for semiconductor devices are disclosed. In some embodiments, a packaging device for a semiconductor device includes a packaging substrate including a semiconductor device mounting region. The packaging device includes a stress isolation structure (SIS) disposed on the packaging substrate proximate a portion of a perimeter of the semiconductor device mounting region.
US09893019B2 Semiconductor structure, integrated circuit device, and method of forming semiconductor structure
A semiconductor structure, integrated circuit device, and method of forming semiconductor structure are provided. In various embodiments, the semiconductor structure includes a substrate containing a high topography region and a low topography region, an outer protection wall on an outer peripheral portion of the high topography region next to the low topography region, and an anti-reflective coating over the outer protection wall, the high topography region, and the low topography region.
US09893018B2 Alignment mark for semiconductor device
Semiconductor devices and methods for manufacturing a semiconductor device include a first semiconductor substrate in which a first scribe line region and a first chip region are defined, a first alignment mark inside the first semiconductor substrate and in the first scribe line region so as to be spaced apart from an upper side of the first semiconductor substrate, a second semiconductor substrate on the first semiconductor substrate and in which a second scribe line region and a second chip region are defined, and a second alignment mark inside the second semiconductor substrate and in the second scribe line region so as to be spaced apart from an upper side of the second semiconductor substrate, wherein the second semiconductor substrate is on the first semiconductor substrate so that positions of the first alignment mark and the second alignment mark correspond to each other.
US09893011B2 Back-end electrically programmable fuse
A BEOL e-fuse is disclosed which reliably blows in the via and can be formed even in the tightest pitch BEOL layers. The BEOL e-fuse can be formed utilizing a line first dual damascene process to create a sub-lithographic via to be the programmable link of the e-fuse. The sub-lithographic via can be patterned using standard lithography and the cross section of the via can be tuned to match the target programming current.
US09893009B2 Duplicate layering and routing
In some embodiments, a semiconductor arrangement comprises a stacked interconnect structure comprising a first interconnect structure and a second interconnect structure. The stacked interconnect structure has a relatively larger aspect ratio than the first interconnect structure or the second interconnect structure, which reduces resistivity and improves performance. In some embodiments, a duplicate interconnect path is inserted into a design layout for a semiconductor arrangement. The duplicated interconnect path provides an additional path between a first net and a second net connected by an interconnect path. Connecting the first net and the second net by the interconnect path and the duplicated interconnect path reduces resistivity and improves performance. In some embodiments, a semiconductor arrangement comprises cell pin operatively coupled to a duplicate cell pin. The cell pin and the duplicate cell pin are operatively coupled to a logic structure to reduce resistivity and improve performance.
US09893007B2 Packaged semiconductor devices with multi-use input contacts and related methods
A semiconductor device includes a first contact receiving a first voltage, a second contact receiving a second voltage, one or more comparing elements comparing the first and second voltages, and one or more setting elements setting one or more parameters of the device in response to a comparison of the first and second voltages. When the first voltage is greater than the second voltage the setting element selects the first voltage as a high voltage, the second voltage as a low voltage, and sets a mode signal to a first value. When the second voltage is greater than the first voltage the setting element selects the first voltage as the low voltage, the second voltage as the high voltage, and sets the mode signal to a second value. The first and second values alter a condition of an electronic component coupled with the device between a first and second state.
US09893004B2 Semiconductor interposer integration
Integrated circuits are described which directly connect a semiconductor interposer to a motherboard or printed circuit board by way of large pitch connections. A stack of semiconductor interposers may be connected directly to one another by a variety of means and connected to a printed circuit board through only a ball grid array of solder bumps. The stack of semiconductor interposers may include one or more semiconductor interposers which are shifted laterally to enable directly electrical connections to intermediate semiconductor interposers. The top semiconductor interposer may have no electrical connections on the top to increase security by making electrical “taps” much more difficult. An electrically insulating layer may be incorporated between adjacent semiconductor interposers and cavities or air gaps may also be included within one or more semiconductor interposers.
US09893002B2 Terminal structure and wiring substrate
A terminal structure of a wiring substrate includes a wiring layer, a protective insulation layer including an opening that partially exposes an upper surface of the wiring layer, and a connection terminal formed on the wiring layer. The connection terminal includes a base portion formed in the opening and a connection portion formed on the base portion. The connection portion projects from an upper surface of the protective insulation layer. A gap is formed between a side surface of the base portion and a wall surface of the opening.
US09892999B2 Producing wafer level packaging using leadframe strip and related device
A method for producing wafer level packaging using an embedded leadframe strip and the resulting device are provided. Embodiments include placing dies into a mold with an active side of each die facing a surface of the mold; placing a leadframe strip on the mold, wherein the leadframe strip includes etched and half etched portions positioned between each die; placing a mold cover over the mold and dies; and adding mold compound in spaces between the dies and mold cover.
US09892992B2 Swaged heat sink and heat sink integrated power module
A swaged heat includes a fin base having an outer periphery, and formed with a first fin insert groove and a second fin insert groove interposing a swage portion of a bi-forked shape in between, a first fin fixed to the first fin insert groove of the fin base using the swage portion, a second fin fixed to the second fin insert groove of the fin base using the swage portion, a panel having an opening portion, and placed on the outer periphery of the fin base. The thickness of the outer periphery is smaller than that of the fin base.
US09892991B2 Connectable package extender for semiconductor device package
A semiconductor packaging system includes a semiconductor device package having a semiconductor chip with two or more terminals and a protective structure encapsulating and electrically insulating the semiconductor chip. Two or more electrical conductors that are each electrically connected to one of the terminals extend to an outer surface of the protective structure. A first surface feature is on an exterior surface of the semiconductor device package. The system further includes a connectable package extender having a second surface feature configured to interlock with the first surface feature when the first surface feature is mated with the second surface feature so as to secure the package extender to the semiconductor device package. An extension portion adjoins and extends away from the exterior surface of the semiconductor device package when the package extender is secured to the semiconductor device package.
US09892987B2 Thermally enhanced semiconductor package with thermal additive and process for making the same
The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the substrate, a first mold compound component, and a thermally enhanced mold compound component. The first mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally enhanced mold compound component includes a lower portion filling a lower region of the cavity and residing over the upper surface of the thinned flip chip die, and an upper portion filling an upper region of the cavity and residing over the lower portion. A first average thermal conductivity of the lower portion is at least 1.2 times greater than a second average thermal conductivity of the upper portion.
US09892984B2 Embedded electronic packaging and associated methods
An electronic package includes a semiconductor die, conductive pillars extending outwardly from the semiconductor die, and a liquid crystal polymer (LCP) body surrounding the semiconductor die and having openings therein receiving respective ones of the conductive pillars. A first interconnect layer is on the LCP body and contacts the openings. Conductive bodies are in the openings to connect the conductive pillars to the first interconnect layer.
US09892980B2 Fan-out panel level package and method of fabricating the same
A method of fabricating a package includes providing a mold substrate supporting dies in cavities of a fan-out substrate, detecting positions of the dies with respect to the fan-out substrate, and forming interconnection lines. At least one of the interconnection lines includes a first portion extending from the fan-out substrate to a target position on the cavity disposed between the fan-out substrate and one of the dies the one of the dies disposed at a detected position different from the target position, and a second portion extending from the one die to the fan-out substrate.
US09892975B2 Adjacent strained <100> NFET fins and <110> PFET fins
The present invention relates generally to semiconductor devices, and more particularly, to a structure and method of forming strained <100> n-channel field effect transistor (NFET) fins and adjacent strained <110> p-channel field effect transistor (PFET) fins on the same substrate. A <110> crystalline oxide layer may be either bonded or epitaxially grown on a substrate layer. A first SOI layer with a <100> crystallographic orientation and tensile strain may be bonded to the crystalline oxide layer. A second SOI layer with a <110> crystallographic orientation and compressive strain may be epitaxially grown on the crystalline oxide layer. The first SOI layer may be used to form the fins of a NFET device. The second SOI layer may be used to form the fins of a PFET device.
US09892974B2 Vertical power MOSFET and methods of forming the same
A device includes a semiconductor layer of a first conductivity type, and a first and a second body region over the semiconductor layer, wherein the first and the second body regions are of a second conductivity type opposite the first conductivity type. A doped semiconductor region of the first conductivity type is disposed between and contacting the first and the second body regions. A gate dielectric layer is disposed over the first and the second body regions and the doped semiconductor region. A first and a second gate electrode are disposed over the gate dielectric layer, and overlapping the first and the second body regions, respectively. The first and the second gate electrodes are physically separated from each other by a space, and are electrically interconnected. The space between the first and the second gate electrodes overlaps the doped semiconductor region. The device further includes a MOS containing device.
US09892970B2 Integrated circuit structure having deep trench capacitor and through-silicon via and method of forming same
One aspect of the disclosure relates to a method of forming an integrated circuit structure. The method may include: providing a substrate having a front side and a back side, the substrate including: a deep trench (DT) capacitor within the substrate extending toward the back side of substrate, and a through silicon via (TSV) adjacent to the DT capacitor within the substrate extending toward the back side of the substrate, the TSV including a metal substantially surrounded by a liner layer and an insulating layer substantially surrounding the liner layer; etching the back side of the substrate to expose the TSV on the back side of the substrate; and forming a first dielectric layer covering the exposed TSV on the back side of the substrate and extending away from the front side of the substrate.
US09892965B2 Cu wiring manufacturing method and Cu wiring manufacturing system
In a Cu wiring manufacturing method for manufacturing Cu wiring that fills a recess formed in a predetermined pattern on a surface of an interlayer insulating film of a substrate, a MnOx film that becomes a self-formed barrier film by reaction with the interlayer insulating film is formed at least on a surface of the recess by ALD. A CuOx film that becomes a liner film is formed on a surface of the MnOx film by CVD or ALD. An annealing process is performed on the substrate on which the CuOx film is formed and the CuOx film is reduced to a Cu film by oxidation-reduction reaction between the MnOx film and the CuOx film. A Cu-based film is formed on the Cu film obtained by reducing the CuOx film by PVD to fill the Cu-based film in the recess.
US09892959B2 Method for patterning mesoporous inorganic oxide film, and electric device including mesoporous inorganic oxide film patterned by the same
Provided are a method for patterning a mesoporous inorganic oxide film, the method including a step of forming a mesoporous inorganic oxide film using a composition containing inorganic oxide particles; and a step of forming a pattern on the mesoporous inorganic oxide film using an elastic stamp for pattern formation, and then calcining the mesoporous inorganic oxide, and an electronic device including a mesoporous inorganic oxide film that has been patterned by the patterning method.
US09892954B2 Wafer processing system using multi-zone chuck
A wafer processing system includes at least one metrology chamber, a process chamber, and a controller. The at least one metrology chamber is configured to measure a thickness of a first layer on a back side of a wafer. The process chamber is configured to perform a treatment on a front side of the wafer. The front side is opposite the back side. The process chamber includes therein a multi-zone chuck. The multi-zone chuck is configured to support the back side of the wafer. The multi-zone chuck has a plurality of zones with controllable clamping forces for securing the wafer to the multi-zone chuck. The controller is coupled to the metrology chamber and the multi-zone chuck. The controller is configured to control the clamping forces in the corresponding zones in accordance with measured values of the thickness of the first layer in the corresponding zones.
US09892952B2 Wafer level flat no-lead semiconductor packages and methods of manufacture
Methods of manufacturing semiconductor packages. Implementations may include: providing a substrate with a first side, a second side, and a thickness; forming a plurality of pads on the first side of the substrate; and applying die attach material to the plurality of pads. The method may include bonding a wafer including a plurality of semiconductor die to the substrate at one or more die pads included in each die. The method may also include singulating the plurality of semiconductor die, overmolding the plurality of semiconductor die and the first side of the substrate with an overmold material, and removing the substrate to expose the plurality of pads and to form a plurality of semiconductor packages coupled together through the overmold material. The method also may include singulating the plurality of semiconductor packages to separate them.
US09892950B2 Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member
A ceramic member 30 according to the present invention includes a ceramic base 32, which contains a solid solution Mg(Al)O(N) in which Al and N components are dissolved in magnesium oxide as the main phase, and an electrode 34 disposed on a portion of the ceramic base 32 and containing at least one of nitrides, carbides, carbonitrides, and metals as an electrode component. The ceramic base 32 may have an XRD peak of a (111), (200), or (220) plane of Mg(Al)O(N) measured using a CuKα ray at 2θ=36.9 to 39, 42.9 to 44.8, or 62.3 to 65.2 degrees, respectively, between a magnesium oxide cubic crystal peak and an aluminum nitride cubic crystal peak.
US09892947B2 Sensor system for semiconductor manufacturing apparatus
A chamber monitoring system may include a parallel architecture in which a single sensor control system is coupled to a number of different processing chamber control board sensor lines. In an illustrative embodiment, a single rotation sensor such as a tachometer may reside in a central control unit remote from the processing chambers such that rotation data may be processed by a single system and thereafter routed according to a variety of different network communication protocols to the main system controller, a factory interface, or both. In this and other embodiments, pull-up networks in the central control unit and the chamber control boards are matched so as to reduce electrical signal anomalies such as crowbar effects. The central control unit may be programmed via a main system controller to operate according to user defined parameters, which in turn may enable the system to differentiate between certain operating states.
US09892945B2 Composite seal
The composite seal includes a metal member arranged on a first substrate side and an elastic member arranged on a second device side and capable of elastic deformation. The composite seal having a structure capable of suppressing degradation even with ultraviolet radiation is thus provided.
US09892944B2 Diodes offering asymmetric stability during fluidic assembly
Embodiments are related to systems and methods for fluidic assembly, and more particularly to systems and methods for assuring deposition of elements in relation to a substrate.
US09892939B2 Substrate treating apparatus and chemical recycling method
Provided is a substrate treating apparatus. The substrate treating apparatus according to embodiments of the present invention may include a cleaning chamber cleaning foreign objects on a substrate, and a recycling unit recycling by recovering a mixed solution including a first chemical and a second chemical used in cleaning of the substrate, wherein the recycling unit includes a separation unit separating the mixed solution recovered from the cleaning chamber, a recovery line connecting the separation unit and the cleaning chamber and allowing the mixed solution to flow into the separation unit, a decompression line having one end connected to the separation unit and exhausting the mixed solution evaporated from the separation unit, and a decompression unit installed in the decompression line and reducing pressure in the separation unit.
US09892936B2 Packaged semiconductor device having leadframe features preventing delamination
A semiconductor device has a leadframe with a first (401a) and a parallel second surface, and an assembly pad (410) bordered by two opposing sides, which include a plurality of through-holes (420) from the first to the second pad surface. Another pad side includes one or more elongated windows (421) between the pad surfaces. The second pad surface includes a plurality of grooves. The leadframe further has a plurality of leads (430) with opposite elongated sides castellated by indents (431). Layers (440) of bondable metals are restricted to localized areas surrounding bond spots. A semiconductor chip (450) is attached to the pad and wire-bonded (460) to the bond spots. A package (470) encapsulates the chip, wires, pad, and lead portions, and secures the leadframe into the package by filling the through-holes, windows, grooves, and indents.
US09892934B2 Method for removing halogen and method for manufacturing semiconductor device
A method of removing a halogen includes performing a heating treatment on a halogen-containing film at a pressure higher than 1 atm and a temperature higher than 100 degrees C. in order to suppress a deterioration of the halogen-containing film while keeping an organic solvent, which is in a liquid phase and exhibits a polarity, in contact with a surface of the halogen-containing film.
US09892932B2 Chemistries for TSV/MEMS/power device etching
Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1 ≦x<7, 1≦y≦13, and 1≦z≦13. The replacement chemistries may reduce RIE lag associated with deep silicon aperture etching.
US09892929B2 Semiconductor manufacturing method and semiconductor device
A semiconductor manufacturing method includes forming a first film on an upper surface of a substrate. The semiconductor manufacturing method includes forming concave portions extending from an upper surface of the first film to below the upper surface of the substrate. The method includes forming a second film from bottom surfaces of the concave portions to a first position in the concave portions between the upper surface of the first film and the upper surface of the substrate. The method includes forming a third film in the concave portions to cover side walls of the concave portions and an upper surface of the second film. The method includes grinding the third film to expose the second film. The method includes removing the second film. The method includes forming a fourth film from the bottom surfaces of the concave portions to at least a lower surface of the third film.
US09892923B2 Method for tuning the effective work function of a metal
The disclosed technology generally relates to integrated circuit devices and methods of forming the same, and more particularly to metal electrodes whose effective work function can be tuned. In one aspect, a method of forming a metal electrode of a semiconductor structure includes providing a semiconductor substrate having at least a region covered with a dielectric. The semiconductor substrate is introduced into a chamber configured for atomic layer deposition (ALD). A metal for the metal electrode is deposited at least on the dielectric by performing an ALD cycle. Performing the ALD cycle includes pulsing a Ti-containing precursor gas followed by pulsing a Ta-containing precursor gas, and further includes pulsing NH3 gas.
US09892920B1 Low stress bonding of silicon or germanium parts
A method includes providing a first part, a second part and a bonding material between the first part and the second part. The first part and the second part are made of a first material selected from a group consisting of silicon and germanium. The bonding material includes a second material that is different than the first material. The method includes arranging the first part, the bonding material, and the second part in a furnace; and creating a bonded part by heating the first part, the second part and the bonding material to a predetermined temperature for a predetermined period followed by a predetermined solidification period. The predetermined temperature is greater than 1.5 times a eutectic temperature of an alloy including the first material and the second material and less than a melting temperature of the first material.
US09892919B2 Semiconductor device manufacturing method
A first nickel film is deposited inside a contact hole of an interlayer dielectric formed on an n+-type SiC substrate. Irradiation with a first laser is carried out, forming an Ohmic contact with a silicon carbide semiconductor. A second nickel film and a front surface electrode film are deposited on the first nickel film, forming a source electrode. The back surface of the n+-type SiC substrate is ground, and a third nickel film is formed on the ground back surface of the n+-type SiC substrate. Irradiation with a second laser is carried out, forming an Ohmic contact with the silicon carbide semiconductor. A fourth nickel film and a back surface electrode film are deposited on the third nickel film, forming a drain electrode. By so doing, it is possible to prevent electrical characteristic deterioration of a semiconductor device, and to prevent warping and cracking of a wafer.
US09892918B2 Method of forming pattern of semiconductor device
A method of forming a pattern of a semiconductor device includes forming a lower film on a substrate having a first surface and a second surface at different levels, forming an upper film of hydrophobic material on the lower film, forming a block copolymer film on the upper film, phase-separating the block copolymer film to form first patterns spaced apart from one another and a second pattern spanning the first patterns and interposed between a bottom surface of each of the first patterns and the upper film, removing the first patterns, and performing an etch process using the second pattern or a residual part of the second pattern as an etch mask.
US09892915B2 Hard mask composition, carbon nanotube layer structure, pattern forming method, and manufacturing method of semiconductor device
A manufacturing method of a semiconductor device includes forming a hard mask layer on a semiconductor substrate using a hard mask composition. Hard mask patterns are formed by patterning the hard mask layer. Semiconductor patterns are formed by etching the semiconductor substrate using the hard mask patterns. The hard mask composition includes a plurality of first carbon nanotubes (CNTs) having a first length, a plurality of second CNTs having a second length, which is at least 3 times the first length, and a dispersing agent in which the first CNTs and the second CNTs are dispersed. The total mass of the first CNTs is 1 to 2.5 times the total mass of the second CNTs.
US09892914B2 Orientation layer for directed self-assembly patterning process
Disclosed is a method of forming a semiconductor device using a self-assembly (DSA) patterning process. The method includes forming a patterned feature over a substrate; applying an orientation material that includes a first polymer and a second polymer over the substrate, wherein the first polymer has a first activation energy and the second polymer has a second activation energy; baking the substrate at first temperature thereby forming a first orientation layer that includes the first polymer; baking the substrate at second temperature thereby forming a second orientation layer that includes the second polymer; and performing a directed self-assembly (DSA) process over the first and the second orientation layers.
US09892912B2 Method of manufacturing stacked nanowire MOS transistor
Methods of manufacturing stacked nanowires MOS transistors are disclosed. In one aspect, the method includes forming a plurality of fins along a first direction on a substrate. The method also includes forming stack of nanowires constituted of a plurality of nanowires in each of the fins. The method also includes forming a gate stack along a second direction in the stack of nanowires, the gate stack surrounding the stack of nanowires. The method also includes forming source/drain regions at both sides of the gate stack, the nanowires between the respective source/drain regions constituting a channel region. A stack of nanowires may be formed by a plurality of etching back, laterally etching a trench and filling the trench. The laterally etching process includes isotropic dry etching having an internally tangent and lateral etching, and a wet etching which selectively etches along respective crystallographic directions.
US09892907B2 Atmospheric-pressure plasma processing apparatus for substrates
An Atmospheric-Pressure Plasma processing apparatus used for Atmospheric-Pressure Plasma processing of substrates, comprises a radio-frequency generator and two electrode plates disposed vertically and opposing each other. The two electrode plates have two surface opposing to each other, one of which is a flat surface, and the other is a stepped surface, such that a gap is provided between the two electrode plates and said gap comprising a narrower gap part at an upper side and a wider gap part at a lower side. The radio-frequency generator is connected to the two electrode plates, and applies radio-frequency signals to the two electrode plates so as to generate plasma within the gap.
US09892904B2 Light-emitting device
There is provided a light-emitting device capable of suppressing a decrease in a light emission amount. A light-emitting device including a container member including a ceramic package provided with a depressed portion serving as a discharge space, and a light transmitting member which is attached to the ceramic package via a joining layer formed of a joining material so as to close the depressed portion; an inert gas encapsulated inside the discharge space; and a couple of discharge electrodes which are disposed in the depressed portion of the ceramic package so as to be spaced from each other, the joining material including glass exhibiting a white color, and oxide ceramic powder.
US09892902B2 Ion radiation device and surface analyzer using said device
Used as an ion beam guiding unit for introducing primary ions to the surface of the sample is an ion optical system of reflectron TOFMS for achieving time focusing including an orthogonal acceleration unit for accelerating the ions in the orthogonal direction, a flight space of a non-electric field, and an ion reflector for forming a reflecting electric field. A dual stage type is used as the ion reflector to superimpose the correction potential showing a predetermined non-linear potential distribution on the potential having a linear gradient of a uniform electric field at the side deeper than the second order focusing position that fulfills the Mamyrin solution, thereby correcting the temporal spread of ion packets emitted from the orthogonal acceleration unit until the deviation of third or higher order in energy, achieving high time focusing.
US09892895B2 Method for analyzing small molecule components of a complex mixture in a multi-sample process, and associated apparatus and computer program product
A method, apparatus, and computer-readable storage medium for analyzing sample data from a component separation/mass spectrometer system. A profile plot is formed for each sample, each having retention time and intensity axes, the intensity being represented as a function of retention time for a selected sample ion mass. An intensity peak arrangement, including at least one identifying peak, each having a peak range and characteristic intensity, is identified for a selected ion in the profile plot for each sample. An orthogonal plot, corresponding to the profile plot, for each sample is formed, extending along the retention time axis perpendicularly to the intensity axis. The characteristic intensity of each of the at least one identifying peak is represented on the retention time axis of the orthogonal plot with gradated indicia.
US09892884B2 Exposure apparatus and method of manufacturing semiconductor device
An exposure apparatus comprising, a stage configured to receive a substrate, a mark array disposed on the stage and comprising a first mark and a second mark separated from each other by a first distance, a first beam irradiator configured to irradiate a first beam to the first mark, a second beam irradiator being separated from the first beam by a pitch greater than the first distance and configured to irradiate a second beam to the second mark, a detector disposed over the mark array and configured to receive a third beam reflected by the first mark and a fourth beam reflected by the second mark, and a controller configured to control the position of the stage using an output of the detector.
US09892879B2 Encapsulated micro-electromechanical system switch and method of manufacturing the same
Encapsulated MEMS switches are disclosed along with methods of manufacturing the same. A non-polymer based sacrificial layer is used to form the actuation member of the MEMS switch while a polymer based sacrificial layer is used to form the enclosure that encapsulates the MEMS switch. The first non-polymer based sacrificial layer allows for highly reliable MEMS switches to be manufactured while also protecting the MEMS switch from carbon contamination. The polymer based sacrificial layer allows for the manufacture of more spatially efficient encapsulated MEMS switches.
US09892878B2 Safety switching apparatus for switching-on or switching-off a technical installation
A safety switching apparatus for switching-on or switching-off a technical installation has a first input for receiving a first clock signal via a feed line, said first clock signal having a first clock frequency. A failsafe control/evaluation unit processes the first clock signal in a failsafe manner in order to generate an output signal for switching-on or switching-off the technical installation in response to the first clock signal. A clock reference provides a second clock signal having a second clock frequency. A current-increasing circuit having a switching element is arranged for selectively increasing an input current into the first input. The switching element is coupled to the clock reference and selectively activates or deactivates the current-increasing circuit in response to the second clock frequency.
US09892867B2 Electricity storage module
A electricity storage module is provided with a stack formed by stacking a plurality of electricity storage elements having positive and negative lead terminals that protrude outward from end portions thereof and insulating holder members made of an insulating material for holding the electricity storage elements. A connecting portion formed by connecting different polarized lead terminals of adjacent electric cells is disposed in a position shifted from other connecting portions than that connecting portion as seen from the stacking direction of the stack, and the insulating holder members are provided with windows that correspond to the connecting portions.
US09892866B2 Carbonaceous nanoparticles, methods of making same and uses thereof
Methods and compositions of carbonaceous nanoparticle fabrication and their use for electrode materials in supercapacitors are provided. The method includes a first step of reacting a first carbon source with a second carbon source in the presence of a nitrogen source in a DC arc furnace to form a composite nanoparticle. The second carbon source includes a dopant. The composite nanoparticle includes a crystalline carbon phase having an amorphous phase comprising dopant or carbide. The method includes a second step of removing the amorphous second layer to form the carbonaceous nanoparticle.
US09892865B2 Super hybrid capacitor
A double-layer capacitor (DLC) (10), including an electrolyte (20) having an electrochemically active species (28) dissolved therein. The electrochemically active species consists of a material that undergoes oxidation at one electrode and undergoes reduction at another electrode during charge and discharge processes of the DLC. The DLC also includes first and second electrodes (12, 14), consisting of a porous material (18, 26) in contact with the electrolyte. There is a porous separator (16) in the electrolyte separating the first electrode from the second electrode.
US09892863B2 Chip-scale embedded carbon nanotube electrochemical double layer supercapacitor
The disclosure provides for electrochemical supercapacitors with high energy densities, based on paired groups of carbon nanotube mounted to conductive substrates. In one variation, the electrochemical supercapacitors are double layer capacitors, or electrochemical double layer capacitors, containing opposing groups of carbon nanotubes on opposing substrates. In another variation, the capacitor is an interdigitated capacitor of alternating electrode containing carbon nanotubes, mounted on a common substrate. Processes and devices are also described.
US09892862B2 Solid electrolytic capacitor containing a pre-coat layer
A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder, dielectric located over and/or within the anode body, an adhesion coating overlying the dielectric, and a solid electrolyte overlying the adhesion coating is provided. The powder has a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, the present inventors have discovered that the conductive polymer can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a discontinuous precoat layer in the adhesion coating that overlies the dielectric. The precoat layer contains a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
US09892860B2 Capacitor with coined lead frame
A solid electrolytic capacitor including a capacitor element having a front surface, a rear surface, an upper surface, a lower surface, a sintered anode body; an anode lead; an anode termination; and a cathode termination is described. The anode termination has a planar portion and an upstanding portion, where the planar portion of the anode termination has a first section and a second section, where the first section has a first thickness and the second section has a second thickness. Further, the second thickness is less than the first thickness, and the first section is disposed between the upstanding portion and the second section. In addition, the second section is disposed beneath the lower surface of the capacitor element. Moreover, the anode lead and capacitor element are generally parallel with the planar portion. Such an arrangement can result in a capacitor exhibiting improved mechanical and electrical stability.
US09892859B2 Method of producing conductive polymer particle dispersion, and method of producing electrolytic capacitor using conductive polymer particle dispersion
A dispersion liquid including one of thiophene and derivatives thereof, a polyanion, and a solvent is prepared. The dispersion liquid is mixed with a first oxidizing agent producing iron ions so as to oxidatively polymerize the one of thiophene and derivatives thereof. At the completion of the polymerization, the conductive polymer microparticle dispersion contains trivalent iron ions with a concentration of 3 to 30 parts by weight, inclusive, with respect to 100 parts by weight of the conductive polymer microparticle.
US09892852B2 Inductor manufacturing method
A method of manufacturing an inductor, includes: forming a coil pattern on a substrate by forming a conductive pattern on the substrate then growing the conductive pattern by plating; removing, if a plating residue is adhering to the coil pattern, the plating residue from the coil pattern; and outputting a cleaning request alarm that requests a plating bath to be cleaned if a number of times the plating residue has been removed or an amount of plating residue that has been removed exceeds a first threshold.
US09892842B2 Inductor assembly support structure
A vehicle is provided with a transmission and an inductor assembly that is mounted within a chamber of the transmission. The inductor assembly includes a coil, a core and an insulator having first and second portions that are oriented toward each other. Each portion includes a base, a support extending from the base, and a spool extending transversely from the support to engage the other portion. Each spool includes an external surface for supporting the coil and a cavity extending therethrough for receiving the core.
US09892838B2 Electronic device with curved bottom and operating method thereof
An electronic device includes a housing forming an exterior of the electronic device and rockable using a curved bottom, a movable object movable in the housing, a transfer means for moving the movable object to at least one eccentric location, and a control means for controlling the transfer means. Various other implementations are also possible.
US09892837B2 Energy efficient actuator
Disclosed herein is an actuator wherein, when in use, a magnetic force holding assembly maintains the slider in substantial repulsion at the first position and substantial attraction at the second position.
US09892829B2 Fuel sender device for vehicle
A fuel sender device for a vehicle may include a resistance substrate having a conductor part, a contact plate having a contact point contacting the conductor part, and a float unit moving up and down according to a variation of an oil surface and angularly rotating the contact plate, wherein the fuel sender device includes a variable contact point that allows the contact plate to variably contact the conductor part while moving up and down and rotating according to the variation of the oil surface.
US09892828B2 Thick film resistor and production method for same
A thick film resistor excluding a toxic lead component from a conductive component and glass and having characteristics equivalent to or superior to conventional resistors in terms of, in a wide resistance range, resistance values, TCR characteristics, current noise characteristics, withstand voltage characteristics and the like. The thick film resistor is formed of a fired product of a resistive composition, wherein the thick film resistor contains ruthenium-based conductive particles containing ruthenium dioxide and a glass component essentially free of a lead component and has a resistance value in the range of 100Ω/□ to 10 MΩ/□ and a temperature coefficient of resistance within ±100 ppm/° C.
US09892827B2 Methods and systems for fabricating high quality superconducting tapes
An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
US09892819B2 Insulated wire, coil, and electronic/electrical equipment
An insulated wire, having a thermosetting resin covering (A), directly or by interposing an insulating layer (C), on a conductor having a rectangular cross-section, and a thermoplastic resin covering (B) on a periphery of the thermosetting resin covering (A), wherein the thermoplastic resin covering (B) has at least two layers of the thermoplastic resin layers, and the thermoplastic resin layers adjacent to each other are formed of thermoplastic resins different from each other, at least one layer of the thermoplastic resin layers is formed of polyether ether ketone or modified polyether ether ketone, and a total thickness of the thermoplastic resin layers is 60 to 120 μm, and a thickness of a thinnest thermoplastic resin layer is 5 to 20 μm; and a coil formed by winding processing the insulated wire and an electrical equipment having the coil.
US09892815B2 Electrical conductors, electrically conductive structures, and electronic devices including the same
An electrical conductor including a first conductive layer including a plurality of ruthenium oxide nanosheets, wherein the plurality of ruthenium oxide nanosheets include an electrical connection between contacting ruthenium oxide nanosheets and at least one of the plurality of ruthenium oxide nanosheets includes a plurality of metal clusters on a surface of the at least one ruthenium oxide nanosheet.
US09892814B2 Method for forming an electrically conductive oxide film, an electrically conductive oxide film, and uses for the same
A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).
US09892806B2 Space saver flanged joint for a nuclear reactor vessel
A nuclear steam supply system includes an elongated reactor vessel having an internal cavity with a central axis, a reactor core having nuclear fuel disposed within the internal cavity, and a steam generating vessel having at least one heat exchanger section, the steam generating vessel being fluidicly coupled to the reactor vessel. The reactor vessel includes a shell having an upper flange portion and a head having a head flange portion. The upper flange portion is coupled to the head flange portion, wherein the upper flange portion extends into the internal cavity, and the head flange portion extends outward from the internal cavity. Primary coolant flow between the steam generating vessel and reactor vessel occurs via a fluid coupling comprising direct welding between forged outer nozzles of each vessel and welded inner nozzles between each vessel inside the outer nozzles.
US09892804B2 Nuclear reactor control rod with SIC fiber reinforced structure
A nuclear reactor control rod with SiC fiber reinforced structure comprises wing sections and a central joint section. Each of the wing sections is a flat plate spreading axially and radially, and includes storage tubes and a wing surface structural member. The storage tubes are arranged in parallel in a flat plane and contain a neutron absorbing member containing the neutron absorbing material. The wing surface structural member is formed by molding of SiC/SiC composite material as to cover surfaces of the storage tubes and formed to have an outward shape of a flat plate. The central joint section and storage tubes are made of SiC/SiC composite material. The central joint section bundles the wing sections together at center. The storage tubes are bundled together with fibers made of SiC or a textile made of SiC.
US09892800B2 Multi-gate NOR flash thin-film transistor strings arranged in stacked horizontal active strips with vertical control gates
Multi-gate NOR flash thin-film transistor (TFT) string arrays (“multi-gate NOR string arrays”) are organized as stacks of horizontal active strips running parallel to the surface of a silicon substrate, with the TFTs in each stack being controlled by vertical local word-lines provided along one or both sidewalls of the stack of active strips. Each active strip includes at least a channel layer formed between two shared source or drain layers. Data storage in the TFTs of an active strip is provided by charge-storage elements provided between the active strip and the control gates provided by the adjacent local word-lines. Each active strip may provide TFTs that belong to one or two NOR strings, depending on whether one or both sides of the active strip are used.
US09892798B2 Data protection for unexpected power loss
A data storage device receives a write data command and data. The data is stored in a buffer of the data storage device. The data storage device issues a command complete status indication. After the command complete status indication is issued, the data are stored in a primary memory of the data storage device. The primary memory comprises a first type of non-volatile memory and the buffer comprises a second type of non-volatile memory that is different from the first type of non-volatile memory.
US09892797B2 Apparatuses and methods for charging a global access line prior to accessing a memory
Apparatuses and methods for charging a global access line prior to accessing a memory are described. An example apparatus may include a memory array of a memory. A plurality of global access lines may be associated with the memory array. The global access line may be charged to a ready-access voltage before any access command has been received by the memory. The global access line may be maintained at the ready-access voltage during memory access operations until the receipt of a post-access command. The post-access command may reset the global access line to an inactive voltage.
US09892796B2 Memory system using non-linear filtering scheme and read method thereof
A method for controlling a nonvolatile memory device includes requesting a plurality of first sampling values from the nonvolatile memory device, each of the first sampling values representing the number of memory cells having a threshold voltage between a first sampling read voltage and a second sampling read voltage. The first sampling values are processed through a non-linear filtering operation to estimate the number of memory cells having the threshold voltage between the first sampling read voltage and the second sampling read voltage.
US09892794B2 Method and apparatus with program suspend using test mode
A nonvolatile memory controller is disclosed that includes a read circuit configured to read memory cells of a nonvolatile memory device and a program and erase circuit configured to program and erase memory cells of the nonvolatile memory device. The nonvolatile memory controller includes a NAND shared algorithm circuit configured to communicate with the nonvolatile memory device so as to enter a test mode of the nonvolatile memory device and configured to modify the trim registers while the nonvolatile memory device is in the test mode such that the nonvolatile memory device performs one or more operations. The operations may include a suspendable program operation, a program suspend operation and an erase suspend operation.
US09892791B2 Fast scan to detect bit line discharge time
Systems and methods for reducing sensing time for sensing data states stored within a plurality of memory cells are described. In some cases, the ramping of a word line connected to the plurality of memory cells may be delayed until a threshold current corresponding with a particular number of erased memory cells of the plurality of memory cells has been met or exceeded. The threshold current may be compared with a summation of a first set of detection currents corresponding with a first set of memory cells of the plurality of memory cells that have been sensed to be in a conducting state while the word line is set to a voltage level for sensing erased memory cells. The threshold current may be set based on a chip temperature and/or a particular number of bit errors that occurred during a prior sensing operation.
US09892790B2 Method of programming a continuous-channel flash memory device
A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type in the substrate with a second region of the second conductivity type in the substrate, spaced apart from the first region. A continuous first channel region is defined between the first region and the second region. A plurality of floating gates are spaced apart from one another with each positioned over a separate portion of the channel region. A plurality of control gates are provided with each associated with and adjacent to a floating gate. Each control gate has two portions: a first portion over a portion of the channel region and a second portion over the associated floating gate and capacitively coupled thereto.
US09892781B2 Cell structure for dual-port static random access memory
A dual port static random access memory cell includes a write port portion and a read port portion. The write port further includes a WPU1 and a WPU2; a WPD1 and a WPD2; and a WPG1 and a WPG2. The WPU1, WPU2, WPD1 and WPD2 are configured to form two cross-coupled inverters for data storage, wherein the WPG1 and WPG2 are connected to the two cross-coupled inverters for writing. The read port portion further includes a read pull down device (RPD) and a read pass gate device (RPG) connected to the two cross-coupled inverters for reading. Each of the WPU1 and WPU2 includes a single FinFET. Each of the WPD1, WPD2, WPG1, WPG2, RPD and RPG includes multiple FinFETs. The WPD1, WPD2, WPG1 and WPG2 include a same number of FinFETs. The RPD includes a number of FinFETs greater than a number of FinFETs in the RPG.
US09892780B1 Semiconductor memory device including output buffer
An apparatus includes a first terminal configured to communicate data with an outside of the apparatus, a second terminal configured to receive a first power source potential, a third terminal configured to receive a second power source potential lower than the first power source potential, a fourth terminal configured to be coupled to a calibration resistor, an output buffer including first to third nodes coupled to the first to third terminals respectively, and a replica circuit including fourth and fifth nodes coupled to the second and third terminals respectively, and sixth node coupled to the fourth terminal.
US09892778B1 Memory device, memory system including the same, operation method of the memory system
A memory system includes: a memory device suitable for performing a refresh operation in response to a refresh command, and for providing a refresh end signal where the refresh end signal is enabled before the refresh operation is completed; and a memory controller suitable for transferring the refresh command to the memory device and receiving the refresh end signal.
US09892775B2 Destructive reads from spin transfer torque memory under read-write conditions
Systems, apparatuses and methods may provide for detecting a read-write condition in which a read operation from a location in magnetoresistive memory such as spin transfer torque (STT) memory is to be followed by a write operation to the location. Additionally, a current level associated with the read operation may be increased, wherein the read operation is conducted from the location at the increased current level. In one example, the increased current level causes a reset of all bits in the location.
US09892773B2 Unit array of a memory device, memory device, and memory system including the same
A memory device includes a memory array including a plurality of sections, each including a plurality of memory cells and at least one reference cell. The memory device may also include a plurality of sense amplifier circuits respectively corresponding to the plurality of sections, and a plurality of switch circuits, each switch circuit connected between a respective section and sense amplifier circuit. Each switch circuit may be configured to select between communicatively connecting a first column of memory cells or a reference cell to a corresponding sense amplifier.
US09892772B2 Semiconductor system and method of performing write leveling operation thereof
This technology relates to a semiconductor system. The semiconductor system may include a first semiconductor device capable of outputting a clock signal, a data strobe signal, and data; and a second semiconductor device capable of generating a division enable signal and a data input clock signal in response to the clock signal when performing a write operation, generating an internal strobe signal by dividing the data strobe signal in response to the division enable signal, and aligning the data in response to the internal strobe signal, wherein the first semiconductor device receives the division enable signal from the second semiconductor device and trains the data strobe signal so that the data strobe signal is output in a predetermined section.
US09892768B2 Latching pseudo-dual-port memory multiplexer
A pseudo-dual-port (PDP) memory system includes a memory array, timing and control logic, and multiplexer-latch (MUX-latch). The MUX-latch comprises integrated address selection logic and latching logic, such that the combination multiplexes and latches an address in a single change in response to a state change in the read select or write select signals. The multiplexing and latching defines a single operation or state change in the MUX-latch. Since the multiplexing delay and the latching delay for a read operation are coincident with each other rather than being incurred one after the other, memory read operations are fast.
US09892767B2 Data gathering in memory
Examples of the present disclosure provide apparatuses and methods for storing a first element in memory cells coupled to a first sense line and a plurality of access line. The examples can include storing a second element in memory cells coupled to a second sense line and the plurality of access lines. The memory cells coupled to the first sense line can be separated from the memory cells coupled to the second sense line by at least memory cells coupled to a third sense line and the plurality of access lines. The examples can include storing the second element in the memory cells coupled to the third sense line.
US09892765B2 Circuit for injecting compensating charge in a bias line
According to one embodiment, a circuit is described including a circuit component configured to switch from a first state into a second state including a node whose potential changes by a predetermined voltage when the circuit component switches from the first state into the second state, a line coupled with the node wherein the switching of the circuit component from the first state into the second state draws or injects a predetermined charge from or into the line, a capacitor coupled to the line and a compensation circuit configured to generate a predetermined multiple of the predetermined voltage and to compensate the charge drawn from or injected into the line by driving the capacitor with the multiple of the predetermined voltage.
US09892762B1 Self retaining elastomeric seal
The invention relates to an improved seal that allows for a fastener-less/adhesive-less assembly retention method. In particular, the seal may comprise a plurality of integral retention prongs that allows permanent assembly with a plastic housing via friction. The seal is self-retaining, and thus, does not require a fastener or glue. The seal protects the interior of the enclosure from moisture and contaminants when exposed to a mobile environment. In addition, the seal provides sufficient resistance to deliver a proper sealing force and tactile feel to a user when closing the rugged enclosure, while maintaining its shape.
US09892760B1 Apparatus and methods for embedding metadata into video stream
Apparatus and methods for combining metadata with video into a video stream using a 32-bit aligned payload, that is computer storage efficient and human discernable. The metadata is stored in a track in a self-describing structure. Metadata track may be decoded using an identifier reference table that is substantially smaller than typical fourCC identifier tables. The combined metadata/video stream is compatible with a standard video stream convention and may be played using conventional media player applications that reads media files compliant with MP4/MOV container format. The proposed format may enable decoding of metadata during streaming, partitioning of combined video stream without loss of metadata. The proposed format and/or metadata protocol provides for temporal synchronization of metadata with video frames.
US09892755B1 Directing media content for playback
Technology is described for directing media content to a target device. A media content directing request may be received from a source device indicating that the source device intends to direct media content to the target device that is available for media content playback. A list of available target devices for media content playback may be provided to the source device. A playback message may be received from the source device that includes a selection of the target device from the list of available target devices. Communication of the playback message to the target device may be facilitated to initiate playback of media content from a media content playback server as directed by the source device.
US09892752B1 Selecting a maximum laser power for a calibration based on a previously measured function
An operational laser power for a heat-assisted, magnetic recording head is selected based on a function of a write quality metric versus laser power. The write quality metric of data written to a magnetic recording medium is monitored at the operational laser power. Responsive to the write quality metric satisfying a threshold, a power difference between the operational laser power and an offset laser power is determined. The offset laser power corresponds to a point of the function where the write quality metric is approximately equal to the threshold. A maximum laser power is set for a calibration operation. The maximum laser power is based on the sum of the operational laser power and the power difference.
US09892750B2 Dynamically optimizing read performance by adjusting servo-based head location
A computer-implemented method includes: determining a reading performance of a head positioned at a commanded lateral reading location based on one or more metrics; adjusting a lateral reading location of the head relative to a medium by moving the head in a lateral direction away from the commanded lateral reading location to an adjusted lateral reading location; determining a reading performance of the head after the adjusting; comparing the reading performance after the adjusting to the reading performance before the adjusting for determining whether the reading performance has improved; and selecting an optimal lateral reading location based on the comparing. The one or more metrics are selected from a group consisting of C1 error correction rate, and C2 error correction rate. Corresponding systems and computer program products are also disclosed.
US09892749B2 Write head offset for shingled magnetic recording (SMR) disk drives
Methods, systems, and apparatuses are described for provisioning storage devices. An example method includes determining a write status of an adjacent track that is adjacent to a target track of a shingled magnetic recording (SMR) disk drive. The method may further include determining an offset for a write head based on the write status of the adjacent track and positioning the write head according to the offset.
US09892742B2 Audio signal lattice vector quantizer
An apparatus comprising: a vector generator configured to generate at least one vector of parameters defining at least one audio signal; a lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; the lattice vector quantizer configured to select from a list of leader classes at least one potential code vector; the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector.
US09892741B2 Model based prediction in a critically sampled filterbank
The present document relates to audio source coding systems. In particular, the present document relates to audio source coding systems which make use of linear prediction in combination with a filterbank. A method for estimating a first sample (615) of a first subband signal in a first subband of an audio signal is described. The first subband signal of the audio signal is determined using an analysis filterbank (612) comprising a plurality of analysis filters which provide a plurality of subband signals in a plurality of subbands from the audio signal, respectively. The method comprises determining a model parameter (613) of a signal model; determining a prediction coefficient to be applied to a previous sample (614) of a first decoded subband signals derived from the first subband signal, based on the signal model, based on the model parameter (613) and based on the analysis filterbank (612); wherein a time slot of the previous sample (614) is prior to a time slot of the first sample (615); and determining an estimate of the first sample (615) by applying the prediction coefficient to the previous sample (614).
US09892739B2 Bandwidth extension audio decoding method and device for predicting spectral envelope
Embodiments of the present invention provide a signal decoding method and device. The method includes decoding a bit stream of a voice signal or an audio signal to acquire a decoded signal; predicting an excitation signal of an extension band according to the decoded signal, where the extension band is adjacent to a band of the decoded signal, and the band of the decoded signal is lower than the extension band; selecting a first band and a second band from the decoded signal, and predicting a spectral envelope of the extension band according to a spectral coefficient of the first band and a spectral coefficient of the second band; and determining a frequency-domain signal of the extension band according to the spectral envelope of the extension band and the excitation signal of the extension band.
US09892738B2 Method, apparatus, and system for processing audio data
A method for processing audio data includes obtaining a noise frame of an audio signal, and decomposing the current noise frame into a noise low-band signal and a noise high-band signal; and encoding and transmitting the noise low-band signal by using a first discontinuous transmission mechanism, and encoding and transmitting the noise high-band signal by using a second discontinuous transmission mechanism. According to the present disclosure, different processing manners are used for the high-band signal and the low-band signal, calculation loads and encoded bits may be saved under a premise of not lowering subjective quality of a codec, and bits that are saved may help to achieve an objective of reducing a transmission bandwidth or improving overall encoding quality.
US09892737B2 Efficient coding of audio scenes comprising audio objects
There is provided encoding and decoding methods for encoding and decoding of object based audio. An exemplary encoding method includes inter alia calculating M downmix signals by forming combinations of N audio objects, wherein M≦N, and calculating parameters which allow reconstruction of a set of audio objects formed on basis of the N audio objects from the M downmix signals. The calculation of the M downmix signals is made according to a criterion which is independent of any loudspeaker configuration.
US09892732B1 Location based voice recognition system
Systems and methods for providing location based voice recognition include receiving, through a first microphone, an audio signal from a first user that includes an audio command requesting a service that requires user authorization before access to at least a portion of the service is granted. The user authorization is based on voice recognition (e.g., voice authentication and/or voice identification) of the audio signal. The source location of the audio signal is determined and a user location of the first user is determined. If the source location of the audio signal correlates with the user location, voice recognition on the audio signal may be performed. The first user may be authorized to access the service based on the voice recognition performed on the audio signal.
US09892728B2 System and method for mobile automatic speech recognition
A system and method of updating automatic speech recognition parameters on a mobile device are disclosed. The method comprises storing user account-specific adaptation data associated with ASR on a computing device associated with a wireless network, generating new ASR adaptation parameters based on transmitted information from the mobile device when a communication channel between the computing device and the mobile device becomes available and transmitting the new ASR adaptation data to the mobile device when a communication channel between the computing device and the mobile device becomes available. The new ASR adaptation data on the mobile device more accurately recognizes user utterances.
US09892724B2 Facilitating text-to-speech conversion of a domain name or a network address containing a domain name
To facilitate text-to-speech conversion of a username, a first or last name of a user associated with the username may be retrieved, and a pronunciation of the username may be determined based at least in part on whether the name forms at least part of the username. To facilitate text-to-speech conversion of a domain name having a top level domain and at least one other level domain, a pronunciation for the top level domain may be determined based at least in part upon whether the top level domain is one of a predetermined set of top level domains. Each other level domain may be searched for one or more recognized words therewithin, and a pronunciation of the other level domain may be determined based at least in part on an outcome of the search. The username and domain name may form part of a network address such as an email address, URL or URI.
US09892722B1 Method to ensure a right-left balanced active noise cancellation headphone experience
A method and computer program product for dynamically balancing the active noise cancellation value at a first and second earphone interface of a headphone device. The method enables determination of a first active noise cancellation value of an anti-noise output signal at a first interface. The method determines a second active noise cancellation value of the anti-noise output signal at a second interface. A comparison is made between the first active noise cancellation value and the second active noise cancellation value. In response to the first active noise cancellation value and the second active noise cancellation value being outside of a predetermined margin of each other, at least one adjustable parameter associated with the anti-noise output signal is dynamically adjusted to balance active noise cancellation values at the first and second headphone nterface.
US09892719B2 Enclosure with windows for audio effects and guitar pedals
One embodiment of a rigid enclosure 101 with window or openings 102 so that an audio effect producing apparatus 130 approximately aligned to the openings is contained within and partially viewable to the operator. The enclosure is made of a rigid protective material and in an embodiment screens electromagnetic interference from the outside. The enclosure contains necessary hardware and additional openings to attach control electronics 114, knobs, switches 113, and pass-throughs for electrical signals such as power 112, input 110, and output 111 which can be located anywhere on the enclosure.
US09892717B2 Stringed instrument system
A tremolo device for static retention of a plurality of musical instrument strings in a stringed instrument. The tremolo device has a body with an upper surface, a neck portion, and a plurality of strings anchored at a first end of the neck and extending over at least a portion and secured to the tremolo device at the other end of the neck portion and the body and possesses an inertia block mechanism with substantially solid construction disposed to receive and securely retain a plurality of raw instrument strings without removal of a ball end from each string. The inertia block has an upper portion, a lower portion, and a plurality of internal, longitudinally displaced, cylindrically shaped, string retaining chambers designed to pass through an entirety of the block mechanism. The string retaining chambers have an upper and lower portion corresponding with the upper and lower portions of the block.
US09892714B2 Brightness control method, apparatus and program product
A method, apparatus and program product which enable a user selected display brightness to be linked to an application program selected for use in an electronic device such as a computer system, tablet, telephone, electronic book reader, game device, music playing device and the like. A user selected adjustment of display brightness for an application program and a then existing ambient lighting condition are stored in storage during use of the application program. In response to subsequent opening of an application program for which data has been stored, the stored data is accessed and display brightness relative to the ambient lighting condition present at the subsequent opening is given the previous, stored, user selected adjustment.
US09892713B2 Display device
In a display device provided with a frame memory developing an auxiliary line image as a display image and a means of reading out and displaying the image data developed in the aforementioned frame memory, the aforementioned auxiliary line image is constituted by background pixels and dashed auxiliary lines constituted by pixels which have luminance or color that is different from that of the background color and pixels with have nearly identical luminance or color to that of the background color; and by carrying out the display of the dashes so as to move, at fixed time intervals or arbitrary time intervals, the dash display areas of the aforementioned auxiliary lines on the trajectory of the figure described by the aforementioned auxiliary lines, the system is devised to display the auxiliary lines while controlling that an identical pixel of the display device is not displayed continually.
US09892712B2 Filtering hot plug detect signals
Techniques related to filtering hot plug signals are described herein. The techniques include receiving a first hot plug detect (HPD) signals and a second HPD signal from an external display device. A time period between receiving the first and second HPD signals is determined, and the first and second HPD signals are filtered based on the determined time period.
US09892709B2 Display device and driving method thereof
The inventive concept relates to a display device and a driving method thereof. A display device according to an exemplary embodiment of the inventive concept includes: a display panel including a plurality of pixels and a plurality of data lines; a data driver applying data voltages to the plurality of data lines; a signal controller controlling the data driver; and a graphic controller inputting an image signal that is dithered based on dithering patterns of one set to the signal controller, wherein the signal controller includes a dithering cycle detector configured to detect a dithering cycle which is a cycle in which the dithering patterns of one set are repeated, and a still image detector configured to determine whether a current frame is a frame displaying a still image or a frame displaying a motion picture image based on the dithering cycle and the image signal.
US09892702B2 Pixel circuit for extending charging time
A pixel includes a voltage dividing unit, a LC capacitor, a control unit, a first capacitor, a writing-in unit, and an adjusting unit. First terminal of the voltage dividing unit receives a first power voltage. The control terminal of the voltage dividing unit receives a first control signal. The LC capacitor is electrically coupled to the second terminal of voltage dividing unit. The control terminal of the control unit receives a second control signal. The writing-in unit provides a first pixel data signal to the first capacitor based on a third control signal. The adjusting unit receives a second power voltage. The adjusting unit divides voltage difference between the first and second power voltages based on the first pixel data signal stored in the first capacitor so as to control voltage stored in the LC capacitor, such that the LC corresponding to LC capacitor can be controlled.
US09892701B2 Display apparatus
A display apparatus including a display panel connected to a plurality of data lines, a data driver configured to generate a plurality of data voltages, and to apply the plurality of data voltages to the plurality of data lines, and a plurality of feedback lines disposed in a fan-out region between the display panel and the data driver, wherein the data driver is further configured to applies a first signal to each of the plurality of feedback lines, wherein delays by the fan-out region are obtained based on the first signal, the delays being associated with the plurality of data lines, and wherein the data driver is further configured to controls output times of the plurality of data voltages based on the delays.
US09892699B2 Driver with control unit accepting instruction information for giving instruction for display of frame region which surrounds image region
A driver includes a display memory that stores display data, and a control unit that writes the display data in the display memory. The control unit accepts image region information for designating an image region in which an image corresponding to the display data is to be displayed within a display region of a display panel, and instruction information for giving an instruction to display of a frame region which surrounds the image region in the display region, and performs frame write processing for writing given tone data at an address of the display memory corresponding to the frame region, based on the image region information.
US09892697B2 Display apparatus and method of driving a display panel
A display apparatus includes a display panel that includes a liquid crystal layer, a first pixel having the liquid crystal layer with a first thickness, a second pixel having a color filter and the liquid crystal layer with a second thickness. The display apparatus also includes a data generating unit configured to generate a first image signal corresponding to the first pixel and a second image signal corresponding to the second pixel in response to an input image signal, a data converting unit configured to convert a gradation value of the first image signal into a conversion gradation value of the first image signal according to refractive index anisotropy and the first thickness of the liquid crystal layer, and a driving unit configured to output to the first pixel a first data voltage corresponding to the compensation gradation value of the first image signal.
US09892691B1 Adaptive battery management
Systems and methods are provided for optimizing battery life in an electronic device. The device is configured to make periodic assessments of battery capacity by measuring the DC resistance value of the battery cell. The temperature of the battery cell and/or other characteristics of the device are used to determine a threshold DC resistance level. If the measured DC resistance value reaches a determined threshold level, the device can initiate a power-saving mode in which an operating parameter of the device is adjusted to decrease power consumption.
US09892686B2 AMOLED IR drop compensation system and method
The present invention provides an AMOLED IR drop compensation system and method. The AMOLED IR drop compensation system includes an AMOLED display panel that is divided into a plurality of zones, an image detection module, a data signal correction module, and an IR drop compensation module and may achieve zone-wise linear compensation for IR drop. The AMOLED IR drop compensation method includes dividing an AMOLED display panel in a direction of extension of a power line into a plurality of zones, applying an image detection module to detect a data signal of an image to be displayed and determine if the image to be displayed is a pure color image, applying a data correction module to convert the data signal of a pure color image to be displayed, and applying an IR drop compensation module to conduct zone-wise linear IR drop compensation for each of the plurality of zones by adjusting the variation of the data signal of each of the sub-pixels of each of the zones of the AMOLED display panel. The present invention can effectively compensate IR drop and overcome the problem of the image quality being not homogeneous caused by IR drop when an AMOLED display panel is displaying a pure color image.
US09892682B2 Electroluminescent display device for reducing color distortion of low gray values and method of operating same
A first gamma offset corresponding to a first gamma reference voltage is determined by performing a multi-time programmable (“MTP”) operation with respect to a first reference gray value, a second gamma offset corresponding to a second gamma reference voltage is determined by performing the MTP operation with respect to a second reference gray value greater than the first reference gray value, a base gamma offset is determined by performing the MTP operation with respect to a base reference gray value smaller than the first reference gray value. and low gray voltages corresponding to low gray values smaller than the first reference gray value are generated based on the base gamma offset, the first gamma offset and the second gamma offset.
US09892681B2 Pixel circuit, driving method thereof and display device
To provide a pixel circuit and the like capable of preventing contrast deterioration caused by leaked light emission at the time of reset actions. The pixel circuit includes: a light emitting element; a driving transistor which supplies an electric current to the light emitting element according to an applied voltage; a capacitor part which holds a voltage containing a threshold voltage and a data voltage of the driving transistor and applies the voltage to the driving transistor; and a switch part which makes the capacitor part hold the voltage containing the threshold voltage and the data voltage. The switch part includes a current detour transistor which makes the electric current supplied from the driving transistor detour to a reference voltage power supply line without going through the light emitting element.
US09892677B2 Organic light emitting diode display
An organic light emitting diode display is discussed. The organic light emitting diode display according to an embodiment a plurality of pixels configured to operate in an image mode for displaying images, and in an electricity generation mode for generating an electric current. Each pixel includes an organic light emitting diode and a pixel driving circuit. The pixel driving circuit electrically separates the corresponding light emitting diode from one or more adjacent organic light emitting diodes in the image mode, and electrically connects the corresponding light emitting diode to the one or more adjacent organic light emitting diodes in the electricity generation mode.
US09892675B2 Organic light-emitting diode display apparatus, display device, and method for testing the organic light-emitting diode display apparatus
The present disclosure provides an organic light-emitting diode (OLED) display apparatus, including a plurality of subpixels, each of which includes an anode, a cathode and a light-emitting layer. The OLED display apparatus further includes at least one photovoltaic conversion module arranged in correspondence with the subpixel, and configured to receive an optical signal from the light-emitting layer of the corresponding subpixel and convert the received optical signal into an electric signal. A testing terminal is extracted from the photovoltaic conversion module and configured to acquire the electric signal converted by the photovoltaic conversion module.
US09892673B2 Display substrate, display apparatus and driving method thereof
A display substrate, display device and driving method thereof. While providing an increased resolution, the display device also has an increased aperture ratio. The display substrate comprises a plurality of pixel units (10) arranged in a matrix. The R sub-pixel, G sub-pixel, and B sub-pixel in each of the plurality of pixel units (10) are connected to a first data line (31), wherein the first data line (31) is configured to provide an R signal to the R sub-pixel in a first time duration (t1), and a B signal to the B sub-pixel in a second time duration (t2). In each of the plurality of pixel units (10), the G sub-pixel is connected to a second data line (32) configured to provide a G signal to the G sub-pixel in the first time duration (t1) and second time duration (t2).
US09892670B2 Power management driver and display device having the same
A power management driver includes a boost converter, a plurality of regulators, a sequence controller, and an operation controller. The boost converter converts an input voltage to a source drive voltage for drive a source driver based on a drive enable signal. The regulators regulate the source drive voltage to generate a plurality of drive voltages. The regulators corresponding to a respective number of predetermined devices. The sequence controller controls the timing for providing the source drive voltage to the source driver. The operation controller adjusts active periods of first and second control signals to control the regulators and the sequence controller.
US09892669B2 Superresolution display using cascaded panels
System and method of displaying images in spatial/temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original image with a target spatial/temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The cascaded display layers may be progressive and laterally shifted with each other, resulting in an effective spatial resolution exceeding the native display resolutions of the display layers. Factorized images may be refreshed on respective display layers in synchronization or out of synchronization.
US09892668B2 Screen resize for reducing power consumption
Embodiments disclosed herein provide systems, methods, and software for dynamically managing power consumption of a device capable of operating on battery power, or other power. In particular, the size of the viewable area of the display may be dynamically controlled to reduce the number of activated pixels to reduce power consumption. The resizing of the viewable area of a screen may also reduce the number of applications running, thereby reducing power consumption. An indication of the amount of operation time, battery indicator, and/or energy left in the battery may be presented, based at least in part on the dynamic resize of the display.
US09892667B2 Display device and method for driving same
A display device includes: a display panel substrate which includes pixel circuits disposed in rows and columns; COF substrates connected to the display panel substrate; gate driver ICs for display driving, which are mounted on the display panel substrate or on the COF substrates, and each of which includes a shift register; printed circuit boards which are connected to the COF substrates, and each of which includes one or more lines which cascade the gate driver ICs; and a control unit configured to supply a predetermined signal to a cascade input terminal of a gate driver IC located most upstream of the cascade, and monitor a signal from a cascade output terminal of at least one gate driver IC located downstream of the gate driver IC located most upstream.
US09892666B1 Three-dimensional model generation
Within a particular environment, a projection that may include light or one or more patterns may be directed at one or more mirrors. The projection may be reflected by a first one of the mirrors onto the surroundings of the environment, which may include a floor, one or more walls, and/or objects in the environment having a surface. A second mirror may represent an entire view of the surroundings of the environment. As a result, by taking an image directed at the second mirror, a single image may be captured that represents a view of the entire environment without having to rotate the device that captures the image. The single image may then be utilized to generate a three-dimensional model of the environment.
US09892662B2 Adhesive label assembly
An assembly includes a base layer, a top layer spaced from the base layer, a top layer adhesive disposed on an interior surface of the top layer, a liner sandwiched between the top and base layers, and a liner adhesive disposed on a second surface of the liner. The top layer, the liner, and a portion of the base layer collectively define a primary label removable from a remaining portion of the base layer. The primary label has a body section defined by a portion of the top layer and a portion of the liner and a tab section defined by a remaining portion of the top layer, a remaining portion of the liner, and the portion of the base layer covering the liner adhesive of the remaining portion of the liner.
US09892661B2 Steganographic embedding of hidden payload
A method for digital immunity includes identifying a call graph of an executable entity, and mapping nodes of the call graph to a cipher table of obscured information, such that each node based on invariants in the executable entity. A cipher table maintains associations between the invariants and the obscured information. Construction of an obscured information item, such as a executable set of instructions or a program, involves extracting, from the cipher table, ordered portions of the obscured information, in which the ordered portions have a sequence based on the ordering of the invariants, and ensuring that the obscured information matches a predetermined ordering corresponding to acceptable operation, such as by execution of the instructions represented by the obscured information, or steganographic target program (to distinguish from the executable entity being evaluated). The unmodified nature of the executable entity is assured by successful execution of the steganographic target program.
US09892660B2 Navigable topological maps
Disclosed herein are methods of providing location-based information with respect to a topological map. A method may include (a) receiving a query for location-related information, (b) optionally generating data representing the topological map, (c) accessing the location-related information in a map-to-scale, (d) optionally determining an association between one or more points (or links) in the map-to-scale and one or more corresponding points (or links) in a topological map, (e) identifying one or more points (or links) in the map-to-scale that relate to the location-related information and that correspond to one or more points (or links) in the topological map, (f) optionally determining a relative position of the location-related information with respect to the identified one or more map-to-scale points (or links), and (g) displaying the location-related information with respect to the corresponding one or more points (or links) in the topological map.
US09892655B2 Method to provide feedback to a physical therapy patient or athlete
A process is disclosed to visually capture a person doing a set of steps for an exercise, and then to compare that person during exercise to those steps, measuring the results. Each exercise is tailored to the individual patient, rather than to an “ideal” or “generic” standard. This flexibility allows a physical therapist to optimize treatment for patients progressively, and/or to accommodate multiple physical problems in one patient. This invention can be used as a medical software product under the guidance of a physical therapist for rehabilitation exercises. It may alternatively be used as a fitness or sports training device under the guidance of a trainer or coach. By providing visual data and tracking results, it enhances communication between the physical therapist and the patient (or trainer and athlete), and optionally, the physician.
US09892651B2 Device and method for simulating a transportation emergency
Devices for simulating a transportation emergency are disclosed. The devices have a base with a framework of interconnected supports extending therefrom as a skeletal portion of a simulated transportation device and defining a chamber configured to receive a human or a medical-training manikin. Within the chamber a seat for receiving the human or the medical-training manikin is disposed. The framework defines one or more openings representative of access openings into the simulated transportation device such that a first responder in-training can receive instructions on how to assist a victim positioned in the simulated transportation device. The framework also defines one or more open frames representative of structural features of the simulated transportation device that block access to the victim such that realistic training occurs. The device may include one or more props such as a telescoping steering column, a prying simulator, a foot pedal unit, and a side impact bar.
US09892649B2 Audio noise reduction circuit, an intelligent terminal using this audio noise reduction circuit as well as a teaching method
The invention provides an audio noise reduction circuit, an intelligent terminal and a teaching method using this audio noise reduction circuit, where a dual microphone array is used for abatement of noise, ICA algorithm is used for blind source analysis; the audio noise reduction circuit is used to realize the extraction and separation of voice and improve the voice quality in noisy environment, so that the user can also obtain clear voice communication or recording effect even in noise environment; through real-time acquisition and recording of the audio information of teacher, the invention realizes the real-time recording of teaching voice data and solves the following problem: when the learning content is preset in the intelligent terminal, the learning experience is relatively monotonous, leading to unsatisfactory results of learning. Additionally, the invention also realizes the wireless sharing of high quality teachers and the real-time synchronous feedback in the process of teaching and learning, featuring such advantages as high interaction and good results of learning.
US09892645B2 Movement state presentation device and movement state presentation method
A movement state presentation device includes an information acquisition unit that acquires movement information relating to a plurality of moving objects including a current position, a position prediction unit that predicts each of positions of the plurality of moving objects at each of a plurality of future time points common to the plurality of moving objects based on the movement information acquired by the information acquisition unit, and a display processing unit that causes the current positions of the plurality of moving objects to be displayed on a display unit using the movement information acquired by the information acquisition unit, and causes the positions of the plurality of moving objects at each of the future time points to be sequentially displayed on the display unit in chronological order at a display interval common to the plurality of moving objects based on the positions predicted by the position prediction unit.
US09892642B1 Mobile device transport parking notification and movement tracking
Tracking movements of mobile devices may provide insight into parking space availability for transports deemed to be associated with those mobile devices. One example method of operation may include identifying a transport speed of a particular transport vehicle is moving above a first threshold speed, identifying a first change in direction of the transport and confirming a new transport speed after the first change in direction is less than a second threshold speed. The method may also include initiating a monitoring event to track movement of the transport responsive to the first change in direction of the transport or the confirmed new transport speed.
US09892641B2 Regulatory information notifying device and method
The regulatory sign or traffic information presented on a roadway is detected by capturing an image of ahead of a vehicle, and also the regulatory information is detected by receiving a signal transmitted from outside the vehicle. When the regulatory information is detected from the signal transmitted from outside the vehicle, that regulatory information is notified. When no regulatory information is detected from the signal transmitted from outside the vehicle, the regulatory information detected by capturing the image of ahead of the vehicle is notified.
US09892640B2 High-voltage apparatus and external reproduction apparatus and system
A high-voltage apparatus has at least one high-voltage component and at least one current sensor, which is assigned to a corresponding high-voltage component. The high-voltage apparatus has at least one transmission apparatus, to which at least one corresponding current sensor is assigned. The at least one transmission apparatus is designed to provide an information signal, which contains information on whether there is a potential risk originating from the corresponding high-voltage component or not, depending on a measurement signal of the at least one corresponding current sensor, by way of a wireless radio link in order for the information to be reproduced on an external reproduction apparatus.
US09892638B2 Lighting unit, fixture and newtork
A lighting unit (110) for an outdoor lighting fixture comprises a magnetic sensor module (215). The lighting unit (110) further comprises a controller (210) coupled to the sensor module (215). The controller (210) is configured to use the sensor module (215) to determine a measurement of vehicle traffic within a region defined by a sensing range of the sensor module (215), and use the sensor module (215) to determine a current orientation of the lighting unit.
US09892635B2 Congestion information generation device and congestion information generation method
An information generator may generate congestion information of a road link based on a link velocity calculated for the road link. A section velocity calculator may calculate a section velocity based on a plurality of pieces of position information and time information mapped on the road link. An information generator may determine, for each mobile information device, whether the link velocity calculated for the road link will be used for generation of the congestion information. The information generator may determine whether the link velocity will be used for generation of the congestion information based on a predetermined number or more of the section velocities.
US09892628B2 Method of controlling an electronic device
Embodiments disclosed herein generally include a system and a method of controlling a portable electronic device based on the interaction of the portable electronic device with an electronic device, such as a mounting device. Embodiments of the disclosure may include a system and a method of providing information to the portable electronic device that causes the portable electronic device to perform one or more desirable functions or processes based on the portable electronic device's interaction with the mounting device. In some embodiments, the portable electronic device may respond differently when it is caused to interact with differently configured mounting devices. Some aspects of the invention may include an apparatus, method and/or computing device software application that are configured to more easily setup and reliably control a portable electronic device based on the interaction of the portable electronic device with the mounting device.
US09892625B2 Personal protection service system and method
The present invention relates to a personal protection service and method, comprise: a user terminal requesting a personal protection service by transmitting basic user information, a situation setting message, and etc., when an emergency arises; a personal protection service server connecting to the user terminal through a mobile communication network to provide an Individual Safety Guard service; and a terminal of an institution connected to the personal protection service server and a social safety network. When an emergency arises, a user who encounters danger presses an emergency button on a terminal to immediately request to the personal protection service server that the emergency be transmitted to the terminal of a guardian or an institute linked to the social safety network to respond within a short period of time, and the location of the user terminal requesting rescue is tracked so that safety personnel can be immediately dispatched to provide safety.
US09892622B2 Emergency event virtual network function deployment and configuration
A method, computer-readable medium, and device for deploying virtual network functions in response to detecting an emergency event are disclosed. A method may detect an emergency event associated with a first location, deploy a first virtual network function on a first host device of the wireless network in a central zone associated with the first location, in response to detecting the emergency event, and configure a first alarm threshold for the first virtual network function that is indicative of a type loading condition at the first virtual network function. The method may further deploy a second virtual network function on a second host device of the wireless network in a second zone and configure a second alarm threshold for the second virtual network function that is indicative of the type of loading condition at the second virtual network function.
US09892621B2 Systems and methods for intelligent alarming
Systems and methods for using state machines to manage alarming states and pre-alarming states of a hazard detection system are described herein. The state machines can include one or more sensor state machines that can control the alarming states and one or more system state machines that can control the pre-alarming states. Each state machine can transition among any one of its states based on raw sensor data values, filtered sensor data values, and transition conditions. Filters may be used to transform raw sensor values into filtered values that can be used by one or more state machines. Such filters may improve accuracy of data interpretation by filtering out readings that may distort data interpretation or cause false positives. For example, smoke sensor readings may be filtered by a smoke alarm filter to mitigate presence of steam.
US09892620B2 System and method for preventing transfer of infectious disease
A system and method to assist in the prevention of the transfer of infectious diseases. More particularly, a system and method that monitors and alerts caregivers to cleanse, sanitize, and/or wash their hands prior to engaging with other individuals in their care. The disclosed technology includes beacons in wireless communication with a mobile computing device, such as a smart phone, that monitors, alerts and reports on compliance by caregivers and other healthcare workers to ensure that they routinely cleanse, sanitize and/or wash their hands prior to and after contacting a patient at a hospital, nursing home, clinic, office and/or similar environment. The beacons are located in a patient's wristband and in a disinfectant dispenser. The disclosed technology can monitor the patient at all times the patient is in the healthcare facility.
US09892619B2 Feeding-bottle sterilization reminding device and feeding-bottle sterilization reminding method thereof
Disclosed is a feeding-bottle sterilization reminding method, comprising the following steps: acquiring the temperature information of a current aqueous solution, and performing temperature compensation according to the temperature information; acquiring the resistance value of the aqueous solution after temperature compensation, and judging if the resistance value is within a preset threshold value, and if yes, reminding users to change water. The feeding-bottle sterilization reminding method provided in the invention is easy to operate, by collecting the water quality data in a real-time manner and comparing them with the database, and it will give a warning when the water quality is found unacceptable, to remind users to change water timely. In addition, a feeding-bottle sterilization reminding device is further disclosed in the invention.
US09892613B2 Method and apparatus for maintaining alertness of an operator of a manually-operated system
An apparatus for maintaining alertness of an driver of a motor vehicle periodically generates an audible alert signal to which the driver responds by pressing a button on the vehicle's steering wheel. The response time of the driver to the signal is monitored and if an increase is detected, the repetition rate of the alert signal is increased. The repetition rate may be further modified by taking into account vehicle driving conditions which may indicate a risk of boredom in the driver.
US09892611B1 Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection
A method and system that allows healthcare providers, hospitals, skilled nursing facilities and other persons to monitor disabled, elderly or other high-risk individuals to prevent or reduce falls and/or mitigate the impact of a fall by delivering automated notification of “at risk” behavior and falls by such an individual being monitored where assistance is required. Two systems are used to identify patients, a skeletal tracking system, which identifies patients by biometric indicators, and a virtual blob detection system. In the virtual blob system, the monitored individual is virtually represented as a blob object of at least a specific size by a computerized monitoring system and such system detects and alerts when the blob object enters or crosses into a virtually defined or designated blob detection zone and remains in the zone for at least a predetermined period of time. These systems may be used concurrently, or one system may be used primarily, with the other system acting as a failsafe.
US09892602B2 Integrated visual notification system in an accessory device
The described embodiments relate generally to an accessory device for a tablet device. The accessory device takes the form of a flexible screen protector that can be disposed over a display portion of the tablet device. Because the flexible screen protector covers the display of the tablet there is no visual way for the tablet to provide notifications to the user while the screen protector overlays it. By providing a data and power connection between the tablet and the accessory device, the processor of the tablet device can command illumination elements disposed in the accessory device to be illuminated in any of a number of illumination states. Each of the illumination states can be associated with an operating state of the tablet device thereby allowing the tablet device to visually communicate operating state information while the display is covered.
US09892601B1 Valet parking paging system
The valet parking and paging system is a wireless signaling apparatus that facilitates communication between a valet parking station and a client of the valet parking station. Specifically, the valet parking and paging system is a wireless signaling apparatus that exchanges status information between the valet parking station and a client. The valet parking and paging system comprises a plurality of valet units, a plurality of client units, and a base stations. The plurality of valet units comprises a collection of individual valet units. The plurality of client units comprises a collection of individual client units. Each individual valet unit selected from the plurality of valet units plugs into and is electrically connected to a location selected from the group consisting of the base station or an individual client unit selected from the plurality of client units.
US09892600B2 ATM skimmer detection based upon incidental RF emissions
The disclosed embodiments include methods and systems for detecting ATM skimmers based upon radio frequency (RF) signal. In one aspect, the disclosed embodiments include a system for detecting ATM skimmers including a memory storing instructions and one or more processors that execute the instructions to perform one or more operations for detecting ATM skimmers. The operations may include, for example, receiving radio frequency (RF) signal data corresponding to one or more RF signals detected by an antenna located within communication range of the ATM. The operations may also include determining one or more unidentified RF signals of the detected ATM RF signals that differ from one or more baseline RF signals. The operations may also include determining whether the one or more unidentified RF signals are present for a predetermined period of time, and determining whether a skimmer is present at the ATM based on a determination that the one or more unidentified RF signals are present for the predetermined period of time.
US09892592B2 Unidentified player tracking system and related methods
Unidentified player tracking systems and related methods of tracking an unidentified player are disclosed herein. According to one method, an unidentified player initiates a first gaming session on a first networked gaming machine, and the gaming activity data during the first gaming session is accumulated. A printed voucher that includes an identification number is issued in response to input from the unidentified player to terminate the first gaming session. The accumulated gaming activity data is then associated with the identification number of the printed voucher, and the identification number of the printed voucher and the associated gaming activity of the unidentified player is stored for future analysis.
US09892581B2 Vehicle door control system and operating method thereof
Disclosed is a vehicle door control technology such as a vehicle door control system. The vehicle door control system includes a communication unit configured to wirelessly communicate with a smart key or a portable terminal located around a vehicle, a controller configured to communicate with the smart key or the portable terminal using the communication unit, perform authentication on the smart key or the portable terminal based on a received signal, and output a door control signal for controlling a vehicle door when the authentication is successful, and a motor driver configured to lock or unlock the vehicle door according to the door control signal.
US09892579B2 Control method for smart lock, a smart lock, and a lock system
A control method of a smart lock is to be implemented by a mobile device which is communicably coupled to the smart lock. The control method includes the steps of sensing touch inputs performed upon the mobile device so as to generate a sensing signal, determining whether the sensing signal conforms to a preset touch code, which is associated with a predetermined sequence of touch inputs on the mobile device, generating a control signal which is to be transmitted to the smart lock for controlling the smart lock to lock or unlock when it is determined that the sensing signal conforms to the preset touch code; and transmitting the control signal to the smart lock.
US09892578B1 Garage automatic open or close linked to vehicle gearshift
A vehicular garage door operating assembly, a vehicle and a method of opening or closing a garage door. The assembly includes an electronic control unit, a receiver, a garage door remote control, and a gear status indicator. Upon receipt of at least a signal pertaining to a spatial position of the vehicle, a signal pertaining to a positional status of the garage door and a signal indicating that a change in vehicular gear selection, the garage door remote control selectively transmits an instruction signal for automatic opening or closing the garage door without manual intervention by the driver. In this way, when an egress maneuver by the vehicle relative to the garage is being initiated such as by a shift in gears, this is detected along with whether the vehicle is situated within the garage and whether the garage door is closed, the garage door may be automatically moved to an open position to permit egress of the vehicle from the garage. In one exemplary form, the garage door can be made to automatically open when the vehicle is situated within a garage and the vehicular gear selection is changed from PARK to REVERSE once the vehicle has been started.
US09892574B2 Method for monitoring access authorizations by an access monitoring system
A method of monitoring access authorizations by an access monitoring system by a first method, the data carriers or the mobile electronic devices, on which a valid access authorization or an ID is assigned, are detected and the carriers/devices current positions are determined by trilateration or multilateration. A second imaging method is executed, parallel to the first method, and the current position of all persons presented in the entry area is detected by cameras. All persons, with and without valid access authorization, in the entry area are detected so that an ID map and a people map are created. The ID map corresponds to people who have valid access authorization and the people map corresponds everybody in the entry area. An overlay map is created by matching the ID map with the people map, to identify persons with valid access authorization or ID and the people without valid access authorization.
US09892571B2 Data processing unit for aircraft undercarriage performance monitoring
A data processing unit for monitoring the performance of at least one undercarriage which is used for braking and/or steering an aircraft, wherein the data processing unit is configured to: receive data representative of operating characteristics of the undercarriage(s) and use that data to calculate a maximum achievable braking force and/or yaw moment to be generated by the undercarriage(s). Also a method for monitoring the performance of at least one aircraft undercarriage which is used for braking and/or steering an aircraft, the method including: receiving data representative of operating characteristics of the undercarriage(s); and using that data to calculate a maximum achievable braking force and/or yaw moment to be generated by the undercarriage(s).
US09892567B2 Vehicle sensor collection of other vehicle information
A method, implemented in an electronic processing system that includes a memory and one or more processors, includes receiving, at the electronic processing system, sensor data representing information collected by a sensor (i) located on or in a first vehicle and (ii) configured to sense an environment external to the first vehicle, storing the received sensor data in the memory, and determining, via the one or more processors and based on the stored sensor data, an identifying characteristic of a second vehicle different than the first vehicle.
US09892566B2 Image processing apparatus, method and program
A three-dimensional medical image is obtained, and displayed on a display screen. An input position by a user on the display screen and an input operation by the user are received. If the received input position is located in a center region of the display screen, rotation processing is performed on the three-dimensional medical image based on the received input operation. If the received input position is located in a region other than the center region, region specification processing is performed on the displayed three-dimensional medical image based on the received input operation. The region specification processing specifies a closed curve on the display screen based on the received input operation, and deletes a part of the three-dimensional medical image, and the part being an inside or an outside of a cylinder extending from the specified closed curve toward the depth direction of the display screen.
US09892562B2 Constructing augmented reality environment with pre-computed lighting
Embodiments related to efficiently constructing an augmented reality environment with global illumination effects are disclosed. For example, one disclosed embodiment provides a method of displaying an augmented reality image via a display device. The method includes receiving image data, the image data capturing an image of a local environment of the display device, and identifying a physical feature of the local environment via the image data. The method further includes constructing an augmented reality image of a virtual structure for display over the physical feature in spatial registration with the physical feature from a viewpoint of a user, the augmented reality image comprising a plurality of modular virtual structure segments arranged in adjacent locations to form the virtual structure feature, each modular virtual structure segment comprising a pre-computed global illumination effect, and outputting the augmented reality image to the display device.
US09892561B2 Method of hiding an object in an image or video and associated augmented reality process
A method for generating a final image from an initial image including an object suitable to be worn by an individual. The presence of the object in the initial image is detected. A first layer is superposed on the initial image. The first layer includes a mask at least partially covering the object in the initial image. The appearance of at least one part of the mask is modified. The suppression of all or part of an object in an image or a video is enabled. Also, a process of augmented reality intended to be used by an individual wearing a vision device on the face, and a try-on device for a virtual object.
US09892559B2 Portable terminal device, and portable control device
A PC includes: an image data setting section for (i) setting, to background image data indicative of a background image, apparatus image data obtained by capturing an image of an apparatus and serving as referential image data to be referred to for identifying the apparatus, and (ii) setting, to the apparatus image data, dynamic part image data indicative of a dynamic part image positioned on the apparatus image; and an address setting section for (i) associating, with the dynamic part image data, (a) an address for specifying a storage area of a memory in which storage area data to be accessed by a portable terminal device is stored and (b) address substitutive information to be substituted for the address, and (ii) generating address display data to be used to display the address substitutive information instead of the address.
US09892552B2 Method and apparatus for creating 3-dimensional model using volumetric closest point approach
A method for 3-Dimensional scanning includes generating a plurality of depth images when a depth sensor rotates around an object. The method further includes, for each depth image: estimating a rotation (R) and a translation (T) for each depth image, using data of a Truncated Signed Distance Function (TSDF) volume; and fusing each depth image accumulatively into the TSDF volume based on the estimated R and T. An apparatus for 3-Dimensional scanning includes a depth sensor configured to generate a plurality of depth images when rotating around an object. The apparatus further includes a processor configured to, for each depth image: estimate a rotation (R) and a translation (T) for each depth image, using data of a Truncated Signed Distance Function (TSDF) volume; and fuse each depth image accumulatively into the TSDF volume based on the estimated R and T.
US09892551B2 Avionics display system
The avionics display system is for displaying a scene in an aircraft cockpit. The avionics display system includes a central processing unit CPU, a graphics processing unit GPU operably coupled to the CPU, and a display. The GPU comprises at least one vertex shader, and the CPU is configured to provide vertex data representing at least one graphics primitive to the at least one vertex shader and to call the at least one vertex shader in order to render the at least one graphics primitive, representing at least a part of the scene, into a frame buffer. The display is operably coupled to the frame buffer and displays the scene. The system architecture of the avionics display system simplifies the coding process for the developer and also speeds up image processing in comparison to conventional systems.
US09892548B2 Lighting simulation analysis using light path expressions
A method, system, and computer program product for performing a lighting simulation are disclosed. The method includes the steps of receiving a three-dimensional (3D) model, receiving a set of probes, where each probe specifies a location within the 3D model and an orientation of the probe, and performing, via a processor, a lighting simulation based on the 3D model, the set of probes, and one or more light path expressions. The light path expressions are regular expressions that represent a series of events, each event representing an interaction of a ray at a location in the 3D model.
US09892547B2 Tessellating patches of surface data in tile based computer graphics rendering
A method and system for culling a patch of surface data from one or more tiles in a tile based computer graphics system. A rendering space is divided into a plurality of tiles and a patch of surface data read. Then, at least a portion of the patch is analysed to determine data representing a bounding depth value evaluated over at least one tile. This may comprise tessellating the patch of surface data to derive a plurality of tessellated primitives and analysing at least some of the tessellated primitives. For each tile within which the patch is located, the data representing the bounding depth value is then used to determine whether the patch is hidden in the tile, and at least a portion of the patch is rendered, if the patch is determined not to be hidden in at least one tile.
US09892545B2 Focus guidance within a three-dimensional interface
Methods, systems, and computer-readable media providing focal feedback and control in a three-dimensional display. Focal anchors are provided at different depths and used to determine at what depth the user is currently focusing. The focal anchors are also used to receive input from the user. By looking at a focal anchor, the use can cause the portion of content associated with the focal anchor to be displayed more prominently relative to content displayed at different depths. In one embodiment, predictive feedback is provided at a depth associated with one of the focal anchors.
US09892544B2 Method and apparatus for load balancing in a ray tracing architecture
An apparatus and method for load balancing in a ray tracing architecture. For example, one embodiment of a graphics processing apparatus comprises: an intersection unit engine to test a plurality of rays against a plurality of primitives to identify a closest primitive that each ray intersects; an intersection unit queue to store work to be performed by the intersection unit engine; and an intersection unit offload engine to monitor the intersection unit queue to determine a pressure level on the intersection unit engine, the intersection unit offload engine to responsively offload some of the work in the intersection unit queue to intersection program code executed on one or more execution units of the graphics processor.
US09892540B2 Image-based deformation of simulated characters of varied topology
A graphical asset associated with a simulated character of a video game is received. A first image and a second image associated with the simulated character are subsequently received, the first image comprising graphical displacement mapping information for a first topology of image deformation and the second image comprising graphical displacement mapping information for a second topology of deformation. A portion of the graphical asset is then deformed using the graphical displacement mapping information from the first image and the second image to change the 3D geometry of the portion of the graphical asset.
US09892537B2 Seamless compositing using a soft selection
A healing component that heals foreground pixels with background pixels is provided. In some embodiments, the healing component is programmed or otherwise configured to respond to a single healing request by identifying a plurality of regions within a selected area and healing each region of the plurality of regions independently of other regions.
US09892533B1 Graph visualization system based on gravitational forces due to path distance and betweenness centrality
The present invention relates to a system for graph visualization. The system includes a display and one or more processors with a memory. The processors perform several operations, including receiving as an input a graph G=(V,E), where V is a set of vertices and E is a set of edges between the vertices. The vertices are then randomly distributed through a unit square. The vertices are then arranged to generate an aesthetically pleasing graph, which is displayed on the display.
US09892532B2 Apparatus and method for generating a shortest-path tree in a graph
An apparatus generates, for each of vertices in a graph represented by the vertices and edges connecting the vertices, a first shortest-path tree rooted at a first root vertex equal to the each vertex, where the first shortest-path tree represents shortest paths from the first root vertex to vertices. The apparatus generates a vertex in the first shortest path tree whose distance from the first root vertex is a natural number of N, based on searching for one or more child vertices of a vertex within a second shortest-path tree rooted at a second root vertex adjacent to the first root vertex whose distance from the first root vertex is N−1, where the vertex for searching is included in both the first shortest-path tree and the second shortest-path tree.
US09892527B2 Development of iterative reconstruction framework using analytic principle for low dose X-ray CT
Disclosed is a method of reconstructing an image. The method of reconstructing an image includes receiving low dose X-ray computed tomography (CT) data, applying an analytic principle to an optimization approach for low dose imaging to transform the low dose X-ray CT data, and removing a noise included in the low dose X-ray CT data to reconstruct a high-quality image.
US09892524B2 Image displaying methods, devices, and storage media
Image displaying methods, devices, and computer-readable non-transitory storage media containing instructions for implementing the displaying methods are disclosed. In one embodiment, a method includes acquiring an image upon receipt of a request for displaying the image, locating in the image an image region composed of at least three adjoining monochromatic sections, when a difference in color value between any two adjacent ones of the adjoining monochromatic sections in the image region is less than a threshold value, calculating one or more target color values using color values of the monochromatic sections in the image region, replacing color values of the image region with the target color values to generate a target image, and displaying the target image.
US09892503B2 Monitoring changes in photomask defectivity
A reticle that is within specifications is inspected to generate baseline candidate defects and their location and size. After using the reticle in photolithography, the reticle is inspected to generate current candidate defects and their location and size. An inspection report of filtered candidate defects and their images is generated so that these candidate defects include a first subset of the current candidate defects and their images and exclude a second subset of the current candidate defects and their images. Each of the first subset of candidate defects has a location and size that fails to match any baseline candidate defect's location and size, and each of the excluded second subset of candidate defects has a location and size that matches a baseline candidate defect's location and size.
US09892498B1 Systems, methods, and mediums for producing panoramic images
The present disclosure describes systems and methods for producing panoramic images. The systems and methods may include storing a first image in a memory device, overlapping a plurality of sections of the stored first image over corresponding portions of a second image such that the second image is visible between adjacent pairs of the plurality of sections in response to the plurality of sections and the second image being displayed on a display device, and aligning at least one of the plurality of sections of the first image with at least a portion of the second image prior to storing the second image.
US09892494B2 Region-of-interest biased tone mapping
Methods, devices and computer readable instructions to generate region-of-interest (ROI) tone curves are disclosed. One method includes obtaining a statistic for an entire image such as, for example, a luminance statistic. The same statistic may then be found for a specified ROI of the image. A weighted combination of the statistic of the entire image and the statistic of the ROI yields a combined statistic which may then be converted to a ROI-biased tone curve. The weight used to combine the two statistics may be selected to emphasize or de-emphasize the role of the ROI's statistic in the final tone curve.
US09892489B1 System for and method of providing a virtual cockpit, control panel, or dashboard using augmented reality
An apparatus provides a virtual display in an environment for various applications including avionic, naval, military, remote control, medical and other applications. The apparatus includes a camera and a processor system. The processor system for provides the virtual display using an orientation of the head sensed from a camera image. The camera image includes a marker image associated with a fixed marker disposed in the environment. The virtual display includes a virtual panel and an image panel from the camera.
US09892483B2 Timing controller, display system including the same, and method of use thereof
A timing controller capable of communicating with a host via a Mobile Industry Processor Interface (MIPI) interface and communicating with a display via a display interface, includes a detection circuit that detects whether at least one of the MIPI interface and the timing controller is operating normally, and generates a detection signal, and an interrupt generation circuit that transmits the detection signal as an interrupt to the host via an exclusive line.
US09892482B2 Processing video content
Technologies may provide for processing video content. A request to process video content may be received at a user mode driver. In response, the user mode driver may insert a command associated with the request into a command buffer. In addition, the user mode driver may enqueue the command buffer to receive a further request to process further video content independent of an execution of the command by platform hardware. Additionally, a command submission process may dequeue the command buffer and call a kernel mode driver. The kernel mode driver may receive the system call independent of the user mode driver and submit the command buffer to the platform hardware to process the video content.
US09892475B1 System and method for interactive clinical support and compliance with clinical standards and guidelines in real-time
A method and system for assisting clinical staff in providing optimal care in real-time and assisting in compliance with clinical standards and guidelines. The system performs the steps of receiving items of patient data, comparing the received patient data with a set of best practice rules to determine if at least one item of patient data has not been received. The patient data can include patient information, diagnosis, decision, or an action to be taken. The system generates a first notification if an item of patient data has not been received. The first notification is generated based on the comparison of the received patient data with the set of best practice rules. The system displays the first notification, which includes a selectable portion for entering data corresponding to the at least one item of patient data that has not been received. The system upgrades the first notification to be redisplayed again at predetermined time intervals, based on a set of best practice rules, representing the organization's best practices, which determine that such missing patient data is critical for assuring the best clinical care is provided to the patient. The notification continues to be redisplayed until such item of missing patient data is received by the system. After a predetermined time period, based on the patient's clinical situation and the best practice protocols, the system further upgrades the notification to be presented at a central monitor for wider audience notification. After an additional predetermined time period, based on the patient's clinical situation and the best practice protocols, the system further upgrades the notification and mandates the entry of the reasoning why this critically missing patient data is not received. The staff, at that point, must either enter the missing data or provide the reasoning why the data in not entered.
US09892473B1 Electronic run ticket
Technology for completing an electronic run ticket is provided. In an example method, user credentials may be received on a client device. A barcode associated with an oil tank may be scanned to identify the oil tank. Fields of the electronic run ticket may be populated based on the identification of the oil tank. Fields of the electronic run ticket may also be populated based on the user credentials.
US09892472B2 Cost optimization for buildings with hybrid ventilation systems
A method including: computing a total cost for a first zone in a building, wherein the total cost is equal to an actual energy cost of the first zone plus a thermal discomfort cost of the first zone; and heuristically optimizing the total cost to identify temperature setpoints for a mechanical heating/cooling system and a start time and an end time of the mechanical heating/cooling system, based on external weather data and occupancy data of the first zone.
US09892467B2 System and method for implementing charge centric billing
Methods, systems, and apparatuses for improving the handling and interaction of charge events in a business using services of a multi-tenant computing platform, such as accounting, CRM, ERP, and the like. Embodiments are directed to implementing and using a charge record to enable efficient use of charges originating from multiple sources to generate reports and forecasts for multiple other services and/or recipients. In one embodiment, the charge record defines a single-source of data which enables maintaining critical business information in synchronization through a single repository of data. One aspect is to define a single abstraction, the charge record, which all sources can create. Thus, instead of multiple relationship between multiple sources and multiple processes, a charge record provides a single data point for a charge such that charges sources and processes that utilize data from the charge sources may interact using a single type of data record.
US09892465B2 System and method for suspect entity detection and mitigation
A plurality of institutions (such as financial institutions) contribute data to a data analysis and linking system. The system analyzes the data to create data nodes (records) associated with an entity, where the entity may be, for example, a person/individual, business, organization, account, address, telephone number, etc. After data is linked, and in order to retrieve linked data, a requester may provide to the system an identifier associated with an entity. The linked data provided by the system in response to the identifier may be in the form of a network of data nodes associated with the entity and for use in assessing risk, such as risk associated with a transaction being conducted by a person. The linked data may also be analyzed at the system to score risk associated with the entity, and the risk score provided in conjunction with or in lieu of the network of data nodes.
US09892462B1 Heuristic model for improving the underwriting process
Systems and methods for automating best practices involved in the underwriting process are disclosed. A computer system performs a risk classification of a potential customer based on a set of factors, company's underwriting standards, and best practices gathered from top performing underwriters. The computer system is able to improve the quality of its output over time by learning from previous outcomes, updating underwriting standards, and updating best underwriting practices.
US09892461B2 Methods and systems for assessing underwriting and distribution risks associated with subordinate debt
A method for assessing underwriting and distribution risks associated with a portfolio of subordinate debt is provided. The method is performed using a computer system coupled to a database. The method includes storing in the database historical bond issue data for a period of time preceding and proceeding at least one historical liquidity event and generating a plurality of simulated subordinate debt warehouses using the computer and the historical bond issue data stored in the database. The method also includes calculating a historical loss distribution based on the plurality of simulated subordinate debt warehouses generated. The method also includes determining a value at risk for a portfolio of subordinate debt resulting from a potential liquidity event by applying the historical loss distribution to the portfolio of subordinate debt.
US09892459B2 Methods and apparatus for routing securities orders
According to some embodiments, a securities order trading system may determine, during a trading session, one or more attributes of an order destination. The attribute or attributes may be other than a price quoted or a size of an order booked on an order destination. The trading system may also determine during the trading session, and based on the order destination attribute or attributes, at least one of whether to route an order to the order destination, and a proportion of the order to allocate to the order destination.
US09892458B1 Invoice financing and repayment
A payment processing system for processing point-of-sale transactions and extending financing to merchants for invoice payment is disclosed. The payment processing system receives a request from a first merchant to generate an invoice for a second merchant. The payment processing system calculates financing terms for payment of the invoice, wherein the financing terms include repayment terms designating a portion of each transaction processed by the payment processing system for the second merchant to withhold for payment of the invoice. The payment processing system may advance payment of the invoice to the first merchant and take repayment from the portion of the withheld portion of transactions or transmit the withheld portion to the first merchant for payment of the invoice.
US09892457B1 Providing credit data in search results
A credit report system is disclosed which may provide credit data to a consumer in the consumer's search results or at other times when credit data may be useful to a consumer. Searches relevant to credit data may be determined based on the search terms entered, or based on the results of the search. Credit data may be provided if the consumer accesses webpages relevant to credit reports or credit scores. The credit report system may also authenticate the consumer's identity before providing credit data to the consumer. Credit data may include the consumer's credit score as well as other information such as credit report data that may be useful to a consumer.
US09892456B1 Multi-sensory based notifications for financial planning
Generating a sensory notification for a user of an electronic computing device includes receiving an indication at the electronic computing device that a trigger for an alert has occurred. The trigger is related to an occurrence of a trigger condition. The sensory notification associated with the trigger condition is identified. A determination is made as to whether the user is near the electronic computing device. When the indication is received that the trigger for the alert has occurred and when a determination is made that the user is near the electronic computing device, a scent corresponding to the sensory notification is caused to emanate from the electronic computing device.
US09892455B2 Systems and methods for enriching the searchability of a transaction
Methods for enriching the searchability of a transaction are provided. Methods may include receiving a raw transactional data feed at a preference rules engine. The raw transactional data feed may be associated with a transaction. Methods may include transmitting a request, from the preference rules engine to a data warehouse, for enriched transaction detail associated with a transaction identification number. The transaction identification number may be associated with the transaction. The request may include the transaction identification number. Methods may include receiving, at the preference rules engine, the transaction identification number with enriched transaction detail from the data warehouse. Methods may include appending, at the preference rules engine, the enriched transaction detail to the raw transactional data feed, thereby creating a revised transaction. Methods may include transmitting the revised transaction to a database. Methods may include transmitting the revised transaction from the database to a secondary database.
US09892453B1 Automated product modeling from social network contacts
Aspects provide for automated modeling of products with user social network contacts. In response to a user selecting via a graphical user interface input a product that is offered in a graphic display device view of an electronic commerce web site, aspects search a social network service for pictures that visually depict social network connections of the user in association with the selected product. Aspects thus refresh the graphic display device to display an information page of the electronic commerce web site that provides information regarding the selected product, and an inset picture that depicts a social network connection of the user in association with the selected product, wherein the inset picture is returned in satisfaction of the searching of the social network connections of the user.
US09892449B2 Information providing system, information providing apparatus and information providing method
An information providing apparatus according to an embodiment includes a terminal information acquiring unit, a store information acquiring unit, and a sending unit. The terminal information acquiring unit acquires information on purchase planned products which is sent from a wireless terminal existing in a store in which a wireless LAN communication apparatus is installed, from the wireless LAN communication apparatus. The store information acquiring unit acquires information on sales products corresponding to the information on the purchase planned products which is acquired by the terminal information acquiring unit, from a store information storage unit which stores pieces of information on the sales products in the store. The sending unit sends the information on the sales products which is acquired by the store information acquiring unit to the wireless terminal through the wireless LAN communication apparatus.
US09892446B1 Web-based automated product demonstration
The innovations described in this disclosure include distinct differences that create a marketing and sales advantage. For convenience, these features are organized into several innovations, but the features described can be combined and implemented in various ways, both within a given innovation and across two or more innovations. Each innovation is unique in itself. Taken as a whole the innovations establish a demonstration category called “Demo Automation” or “Demonstration automation”. The innovations include, but are not limited to, automated self-configuring video content density and sequence based on personalization responses; automated responsive locked document library; sending a product demo that allows you to see who the recipient shared it with; and product demonstration analytics.
US09892445B2 Transaction arbiter system and method
A transaction arbiter system and method is disclosed which incorporates a merchant function database under control of a transaction arbiter that permits merchants to interact in an automated way with bids generated by other merchants. Rather than utilizing fixed price schedules as taught by the prior art, the present invention permits each merchant to define a set of functions which describe how the merchant will respond to a customer request-for-quote for a given product or service. These merchant functions interact with both the customer request-for-quote and the results of other merchant functions to generate a dynamic real-time bidding system which integrates competition among merchant bidders to achieve an optimal consumer price for a given product or service.
US09892444B2 Data processing systems and communication systems and methods for the efficient generation of privacy risk assessments
Data processing computer systems, in various embodiments, are adapted for: (1) presenting a threshold privacy assessment that includes a first set of privacy-related questions for a privacy campaign (2) receiving respective answers to the first set of questions; (3) using this initial set of answers to calculate an initial privacy risk score for the privacy campaign; (4) determining whether the privacy risk score exceeds the threshold privacy risk value; (5) in response to the privacy risk score exceeding the threshold privacy risk value, providing one or more supplemental questions to the user to facilitate the completion of a full privacy impact assessment. In some embodiments, in response to determining that the privacy risk score does not exceed the threshold privacy risk value, the systems and methods provide an indication that the particular privacy campaign is a relatively low privacy campaign.
US09892443B2 Data processing systems for modifying privacy campaign data via electronic messaging systems
In various embodiments, a privacy campaign data modification system is configured to store electronic messages in memory and associate those electronic messages with a particular privacy campaign. In particular, a privacy officer or other individual may receive e-mails or other electronic messages that are associated with an existing privacy campaign or an existing privacy impact assessment currently being performed for a particular privacy campaign. In various embodiments, it may be necessary to store and maintain the electronic messages for any suitable reason (e.g., record keeping, auditing, etc.).
US09892440B2 Method of comparing product-identifying serial codes
A process for protecting against fraudulent transactions entails comparing a first serial code with a second serial code, as well as comparing a first user identification with a second user identification. An additional comparison between a first stock keeping unit code and a second stock keeping unit code can also be made. If any of the compared data items do not match, then a notice of denial is issued for the transaction. Exceptions can be made, for example by comparing a first listing timestamp with a second listing timestamp to determine that a second transaction is occurring within a defined time period such as a return period. Data is recognized by an optical reader utilizing optical character recognition, with read data being saved to a data record. Serial codes can be directly printed on products or instead applied as a tamper evident sticker.
US09892439B2 Utilizing a vehicle to determine an identity of a user
There are provided systems and methods for utilizing a vehicle to determine an identity of a user. A user may establish a vehicle as associated with the user, such as a vehicle owned by the user or used by the user. The vehicle may include a vehicle device that may be configured to establish connections with other devices using short range and network communications. In various embodiments, the other devices may be devices at merchant locations. Thus, a merchant at the merchant location may be informed about settings, preferences, and/or parameters for use of the vehicle established by the user. The merchant may receive these parameters even if another user is utilizing the vehicle, thus, establishing rules for use of the vehicle by the other user. In other embodiments, the other devices may be devices in other vehicles, allowing the users to communicate and set waypoints during trips.
US09892438B1 Notification system and methods for use in retail environments
A scan avoidance monitoring system detects instances in which a respective customer in a retail environment fails to properly scan or tally one or more retail items for purchase. To avoid generating false positives, such as flagging of events as scan avoidances when they really are not or likely are not scan avoidances, the scan avoidance system can be configured to require a level of confirmation by one or more other analyzers to flag a particular circumstance as a scan avoidance.
US09892437B2 Digitization of a catalog of retail products
Embodiments of the present invention disclose a method, computer program product, and system for catalog digitization. A method including receiving observed information including physical attributes of a plurality of products, assigning an importance to each physical attribute, organizing the products into product categories based on the physical attributes and their corresponding importance, determining a product profile for of the products based on the product category of each of the products and a likelihood of any two attributes being observed together with respect to each of the products, identifying a match between two products based on a similarity between the physical attributes of the two products and their corresponding importance, and a comparison between the product profiles of the two products, preparing a product description based on a combination of the physical attributes of the two matching products, and creating a digital product catalog comprising the product description.
US09892435B2 Computational systems and methods for health services planning and matching
Systems and methods are described relating to accepting an indication of at least one attribute of an individual; accepting sensor data about the individual; presenting a set of health care options at least partially based on the accepting sensor data about the individual; and providing a matching system for procurement of at least one selected health service option.
US09892434B2 System and method for generating and storing digital receipts for electronic shopping
A system and a method are provided for generating a digital receipt for purchases made utilizing a digital wallet or with other payment procedures. The digital receipt is stored in the cloud in a digital receipts repository for later retrieval. The digital receipt can be standardized to facilitate data processing of the data contained in data fields of the digital receipt. The data fields are text/field searchable and actionable so that the receipts and the data therein can be viewed in any manner desired by the user of the digital wallet. A computer readable non-transitory storage medium can store instructions of a program, which when executed by a computer system, enables the recall of the digital receipt from the repository.
US09892433B2 Methods and systems for facilitating donation of prescription medication
Provided are methods, computer readable storage media, and systems for facilitating and receiving a donation of prescription medications through a peer-to-peer model. Exemplary methods include the steps of receiving registration information and a formulary from a recipient, receiving registration information from a donor, connecting the donor and recipient through communication of registration information, and verifying that the donor and recipient both approve a donation. Further methods include donation and recipient records for reconciling a medication donation. Other exemplary methods include the steps of providing a formulary to a medication donor, receiving registration information from a donor, approving the donor for donating a medication from the formulary, and receiving a donated medication, with further methods for reconciling and dispensing a donated medication. Computer readable storage media and computer-implemented systems including instructions for carrying out the described methods are also provided.
US09892431B1 Temporal features in a messaging platform
A real-time messaging platform allows advertiser accounts to pay to insert candidate messages into the message streams requested by account holders. To accommodate multiple advertisers, the messaging platform controls an auction process that determines which candidate messages are selected for inclusion in a requested account holder's message stream. Selection is based on a bid for the candidate message, the message stream that is requested, and a variety of other factors that vary depending upon the implementation. The process for selection of candidate messages generally includes the following steps, though any given step may be omitted or combined into another step in a different implementation: targeting, filtering, prediction, ranking, and selection.
US09892426B2 Search assistant system and method
Disclosed is a system and method for presenting content in response to receiving a portion of a search query. A computing device receives, over a network from a user computer, a portion of a search query submitted by a user in a search query entry area. The computing device receives, from a search suggestion module, one or more search suggestions related to the portion of the query. The computing device transmits, to the user computer, the one or more search suggestions for display in a search suggestion region, the search suggestion region displayed differently than a search results area. The computing device transmits a search suggestion of the one or more search suggestions to a rich content module. The rich content module generates rich content related to the transmitted search suggestion. The computing device transmits, to the user computer, the rich content for display in the search suggestion region.
US09892424B2 Communication with shoppers in a retail environment
Communication plans are created, modified, and executed by a campaign server. The campaign server creates a retail environment communication plan that specifies communications to be made to unidentified shoppers in a retail environment that includes at least one sensor. The campaign server identifies a shopper in the retail environment by the at least one sensor, and creates a shopper communication plan, based on the retail environment communication plan, that specifies communications to be made to the identified shopper in the retail environment. The campaign server executes the retail environment communication plan and the shopper communication plan. In response to processing an event sensed by the at least one sensor, the campaign server modifies one or both of the retail environment communication plan and the shopper communication plan.
US09892423B2 Systems and methods for fraud detection based on image analysis
Systems, methods, and non-transitory computer readable media configured to receive an advertisement including an image. A fraud assessment value for the advertisement can be determined. An image assessment value for the image can be determined. The fraud assessment value and a threshold value for fraud assessment can be compared. The image assessment value and a threshold value for image assessment can be compared. Fraud associated with the advertisement can be determined based on comparison of the fraud assessment value and the threshold value for fraud assessment and comparison of the image assessment value and the threshold value for image assessment.
US09892416B2 Automated agent for social media systems
A method to automatically process social media data includes capturing captured data, describing actions and/or context relating a user across multiple social media systems. The captured data is stored within a database. One or more interfaces are provided in order to provide access to the stored captured data. A rules database is configured to store multiple social media rules (e.g., behaviors) that may be associated with a user. A behavior engine is configured to perform autonomous activities, on behalf of a user with respect to multiple social media platforms, based on the social medial rules and/or the captured data.
US09892415B2 Automatic merchant-identification systems and methods
Merchant accounts associated with sales of counterfeit or other prohibited goods may be automatically discovered by identifying websites that have traits characteristic of those that sell prohibited goods. Automated browsing sessions are established with the respective websites, in which communication traffic, page identifiers, and page contents are captured for analysis. During each of the automated sessions, a website is automatically navigated to locate and visit a payment-processing page associated with a known payment processor. The captured data from the session is analyzed to identify a merchant account established with the payment processor for receiving proceeds from sales of prohibited goods. In some cases, the captured data is analyzed to identify a common merchant and/or page identifier that was encountered in multiple sessions. Multiple otherwise unrelated websites may thereby be grouped together as being likely associated with a common merchant account.
US09892414B1 Method, medium, and system for responding to customer requests with state tracking
Mathematical models and a state vector may be used to respond to a customer and perform actions for the customer, such as transmitting an API request to a server to update the customer's address. The mathematical models may include a message encoding model to generate a representation of a message received from a customer, a message generation model to generate a message to transmit to a customer, an API request model to generate an API request to transmit to a server, an API response encoding model to generate a representation of an API response, a state update model to update the state vector using another model output, and an action model to select an action to be performed. A mathematical model may process the state vector in determining an output, and an output of the mathematical model may also be used to update the state vector.
US09892413B2 Multi factor authentication rule-based intelligent bank cards
System, method, and computer program product to implement four factor authentication rule-based intelligent bank cards, by receiving valid authentication information for a card associated with an account, verifying that a captured image of a person presenting the card matches an image of an authorized user of the account, analyzing the captured image to detect an emotion of the person, and performing a predefined operation to control access to the account upon determining that the detected emotion satisfies an emotion rule associated with the account.
US09892412B2 Method and apparatus for using sensors on a portable electronic device to verify transactions
An attempt to conduct an electronic transaction using an electronic device is detected. The electronic device contains one or more sensors, such as an accelerometer, an ambient light sensor, a gyroscope, a GPS unit, or a transceiver. In response to the detected attempt to conduct the electronic transaction, an analysis is performed using data gathered by the one or more sensors to estimate one or more current statuses of the electronic device. The estimated one or more current statuses of the electronic device are compared with one or more expected statuses of the electronic device according to a model. An alert is generated in response to the comparison indicating that some of the estimated current statuses of the electronic device are inconsistent with the expected statuses of the electronic device.
US09892408B2 Transaction system and method performed by using peripheral device
A transaction system and method of performing a transaction by using a peripheral device are provided. The method includes receiving transaction information from an external device, searching for a peripheral device when the transaction information is received, and performing the transaction with a transaction server by using information received from the searched peripheral device and the transaction information.
US09892406B2 System and method for electronic prepaid account replenishment
A method for crediting a customer account maintained by a vendor of services in response to payment received from a customer is disclosed herein. The method includes issuing, to the customer, a membership account number associated with at least the customer account. A membership account number and a payment corresponding to a requested amount of a service offered by the vendor are received from the customer at a point-of-sale. The method further includes generating, at the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the service offered by the vendor and the requested amount. The embedded transaction information is then communicated from the point-of-sale to a database server. The customer account is credited, in response to the embedded transaction information, based upon an amount of the payment. The method also includes electronically transferring funds based upon the amount of the payment from a first account associated with the point-of-sale to a second account associated with the vendor.
US09892400B1 Invitation management based on existing contacts
Technology is disclosed for generating and sending invitations to recipients who have not enrolled in or associated with a convenient money transfer service that does not require any account login and/or creation activities. The disclosed technology enables a sender to transfer a specified amount of currency to one or more recipients through a payment application. The system verifies, based on the sender's existing contact information, whether the recipients have existing accounts associated with the payment application. The system then generates an invitation list. The system relies on the invitation list to send invitations to those recipients who haven't been associated with the payment application to download the payment application, enroll in payment service associated with the payment application, and/or associate their payment information with the payment application. The technology enables the sender to manually select recipients from a provided candidate list of contacts so as to initiate an invitation process.
US09892387B2 Sensory feedback indicators for transactional processes
A method for providing web transaction feedback includes a client device receiving a response indicating a success or a failure of a user operation pertaining to a potential web transaction. The client device then provides a web transaction feedback to the user using a human interface element capable of causing the client device to perform a set of motions and/or emit a range of temperatures. The set of motions is comprised of at least a first sub-set of the set of motions indicating the success of the user operation and at least a second sub-set of the set of motions indicating the failure of the user operation. The range of temperatures is comprised of at least a first temperature of the range of temperatures indicating the success of the user operation and at least a second temperature of the range of temperatures indicating the failure of the user operation.
US09892377B2 Re-factoring, rationalizing and prioritizing a service model and assessing service exposure in the service model
Provided herein are approaches to re-factor, rationalize, and prioritize a service model, and to assess service exposure in the service model. At least one approach provides: determining a granularity of a service of the service model; re-factoring and refining a service portfolio and a hierarchy of the service model; adapting a Service Litmus Test (SLT) and service exposure scope to the service model; applying at least one Service Litmus Test (SLT) to the service model; and verifying, with each affected stakeholder associated with the service model, that the service model achieves business and technical needs based on the results of the SLTs, which include tests to make exposure decisions, including whether to expose the service or not expose the service, wherein the service represent business capabilities and are placed in the hierarchy of the service model which represents the granularity.
US09892376B2 Operator performance report generation
A set of data indicative of sensed parameters on an agricultural machine is evaluated against a reference data set to obtain an evaluation value indicative of how the set of data compares to the reference data. A performance score is generated based on the evaluation value and indicates a performance of a given operator in operating the agricultural machine. An operator performance report is generated based on the performance score.
US09892375B2 Web based template reporting system
A system for generating an on-line report that includes a host site connected to user terminals via the Internet. The host site has a relational database for storing data and a server connected to the database and to the Internet. Users access and manipulate data, create report templates, and customize and run reports on the host site. The host site includes web pages that display options for accessing the relational database to create a data framework, web pages that display options for accessing the data framework to design a report template, and web pages that display options for accessing the report template to customize and run at least one report.
US09892371B1 Queue information transmission
Information may be determined about one or more queues located within an event venue, the information including how many people are in the queue and an average rate at which the queue is moving forward. The queues may each be associated with commercial enterprises such as concession stands. If a particular queue suffers from a low queue population or a low queue movement rate, a queue broadcast may be transmitted using one or more local wireless transmitters which each have a wireless transmission zone that is at least partially within the event venue. The queue broadcast may include queue information and may include an advertisement or perk, such as a discount or special offer for the commercial enterprise associated with the queue, thus incentivizing eventgoers to go to less-crowded or less-popular queues.
US09892369B2 System and method for forecasting and pairing advertising with popular web-based media
A system and method for identifying whether certain web-based media or web-based videos are likely to become popular is provided. Videos that are identified as having a strong likelihood of becoming popular with a particular demographic group are paired to advertisements or other media appropriate for the particular demographic group. Videos that are likely to be popular are identified by measuring early input rates such as request rates, replay rates, comment rates, forwarding rates and reply rates. Input rate patterns including pattern segments correlated to inputs from a particular demographic group are identified.
US09892368B2 Method and apparatus for acquiring training parameters to calibrate a model
Method and device of selecting training parameters for training a model are disclosed. The method includes: (1) setting a precision requirement for the model, and a first parameter value interval defined by an upper limit and a lower limit; (2) obtaining a first value point and a second value point within the first parameter value interval; (3) obtaining and comparing respective first and second error rates by respectively setting the training parameter at the first and second value points for the model; (4) updating three values out of the upper limit, the lower limit, the first value point and the second value point; (5) repeating steps (3) and (4), until the precision requirement is net by the respective first and second value points; and (6) obtaining the optimal value of the training parameter.
US09892366B2 Facies definition using unsupervised classification procedures
The disclosed embodiments include a method, apparatus, and computer program product for generating facies definition. One embodiment is a computer-implemented method that includes the steps of receiving well logging data indicative of one or more properties of geologic formations penetrated by one or more wellbores, wherein no assumptions are being introduced to the well logging data; determining a type well; developing an appropriate scaling of the well logging data based on the type well; creating a training set by drawing samples from the well logging data at random depths; modifying the training set to remove interfering data; performing an unsupervised classification procedure on the training set to group samples in the training set; comparing a suite of values of the well logging data in the groups to classify lithofacies of the type well; develop classification functions; and classifying unknown wells using the classification functions to generate the facies definition.
US09892365B2 Operating a multi-dimensional array of qubit devices
In some aspects, a quantum computing system includes a multi-dimensional array of qubit devices. Coupler devices reside at intervals between neighboring pairs of the qubit devices in the multi-dimensional array. Each coupler device is configured to produce an electromagnetic interaction between one of the neighboring pairs of qubit devices. In some cases, each qubit device has a respective qubit operating frequency that is independent of an offset electromagnetic field experienced by the qubit device, and the coupling strength of the electromagnetic interaction provided by each coupler device varies with an offset electromagnetic field experienced by the coupler device. In some cases, readout devices are each operably coupled to a single, respective qubit device to produce qubit readout signals that indicate the quantum state of the qubit device.
US09892361B2 Method and system for cross-domain synthesis of medical images using contextual deep network
A method and apparatus for cross-domain medical image synthesis is disclosed. A source domain medical image is received. A synthesized target domain medical image is generated using a trained contextual deep network (CtDN) to predict intensities of voxels of the target domain medical image based on intensities and contextual information of voxels in the source domain medical image. The contextual deep network is a multi-layer network in which hidden nodes of at least one layer of the contextual deep network are modeled as products of intensity responses and contextual response.
US09892360B2 Integrated on-chip antenna
The present disclosure is related to a microchip apparatus, where the microchip apparatus comprises a plurality of metallic layers. Each of the metallic layers may have a respective layer thickness. The microchip apparatus also comprises electronic components integrated within the metallic layers. The electronic components may be configured to communicate data. Further, the electronic components include an antenna feed. The microchip apparatus includes an antenna coupled to the antenna feed. The antenna includes multiple loops, each loop being formed by at least one layer of the metallic layers.
US09892357B2 Method for remotely controlling a reprogrammable payment card
One variation of a method for remotely controlling a payment card in real-time through a computing device includes: at the computing device, establishing a wireless connection with a payment card; over the wireless connection, receiving a first identifier of a first magnetic stripe card corresponding to a first magnetic stripe sequence command stored on the payment card; in response to receiving the first identifier of the first magnetic stripe card, rendering a first notification on a display of the computing device, the first notification indicating the first magnetic stripe card; and in response to receiving a selection for the first notification rendered on the display of the computing device, transmitting an instruction to the payment card, over the wireless connection, to emulate the first magnetic stripe card according to the first magnetic stripe sequence command during an upcoming transaction.
US09892351B2 Bluetooth low energy i(BLE)-based asset tag with integrated scanner for, and method of, transmitting an asset-identifying code as a beacon transmission
A Bluetooth low energy (BLE)-based asset tag transmits a code that identifies an asset. A device is attached to the asset. The code is scanned with a scanner supported by the device. An advertising beacon is transmitted in an advertising packet having a payload with a Bluetooth low energy (BLE)-based radio supported by the device. The scanned code is automatically loaded into the payload. The advertising packet with the scanned code in the payload is periodically transmitted as a series of beacon pulses.
US09892345B2 System and method for creating a preference profile from shared images
A method includes obtaining from an online social media site a plurality of instances of images of objects associated with a person; analyzing with a data processor the plurality of instances of the images with a plurality of predetermined style classifiers to obtain a score for each image for each style classifier; and determining with the data processor, based on the obtained scores, a likely preference of the person for a particular style of object. The plurality of instances of images of objects associated with the person can be images that were posted, shared or pinned by person, and images that the person expressed a preference for. In a non-limiting embodiment the object is clothing, and the style can include a fashion style or fashion genre including color preferences. A system and a computer program product to perform the method are also disclosed.
US09892342B2 Automatic image product creation for user accounts comprising large number of images
A computer-implemented method of grouping faces in large user account for creating an image product includes adding the face images obtained from an image album in a user's account into a first chunk; if the chunk size of the first chuck is smaller than a maximum chuck value, keeping the face images from the image album into the first chunk; otherwise, automatically separating the face images from the image album into a first portion and one or more second portions; keeping the first portion in the first chunk; automatically moving the second portions to subsequent chunks; automatically grouping face images in the first chunk to form face groups; assigning the face groups to known face models associated with the user account; and creating a design for an image-based product based on the face images in the first chunk associated with the face models.
US09892341B2 Rendering of medical images using user-defined rules
Systems and methods that allow transfer and display rules to be defined based on one or more of several attributes, such as a particular user, site, device, and/or image/series characteristic, as well as whether individual images and/or image series are classified as thin slices and/or based on other characteristics, and applied to medical images in order to determine which images and/or image data are analyzed, downloaded, viewed, stored, rendered, processed, and/or any number of other actions that might be performed with respect to medical image data. The system and methods may include image analysis, image rendering, image transformation, image enhancement, and/or other aspects to enable efficient and customized review of medical images.
US09892339B2 Using a probabilistic model for detecting an object in visual data
A probabilistic model is provided based on an output of a matching procedure that matches a particular object to representations of objects, where the probabilistic model relates a probability of an object being present to a number of matching features. The probabilistic model is used for detecting whether a particular object is present in received visual data.
US09892336B2 Detection devices and methods for detecting regions of interest
A detection method and a detection device for detection of at least one region of interest (ROI) using the same are provided. A plurality of successive frames is captured by an image sensor. A first frame among the plurality of successive frames is divided into a plurality of sub regions. A first vital-sign feature of a first sub region among the plurality of sub regions is obtained. A first feature signal is generated according to the first vital-sign feature. Whether the first feature signal is a first valid image signal is determined. When it is determined that the first feature signal is a first valid image signal, the first sub region is identified as a first ROI. In the frames occurring after the first frame, the first ROI is tracked.
US09892334B2 Optical coherence tomography array based subdermal imaging device
The invention teaches a multiple reference optical coherence tomography scanner that provides a subdermal fingerprint scan, covers an area of approximately 16 mm-17 mm×10 mm in less than a second, and fits into a slim profile of less than 6 mm in thickness, thereby fitting within the slim consumer electronics such as the iPhone and similar consumer electronics. Various embodiments are taught.
US09892332B1 Vision-based detection and classification of traffic lights
The present disclosure is directed to an autonomous vehicle having a vehicle control system. The vehicle control system includes an image processing system. The image processing system receives an image that includes a plurality of image portions. The image processing system also calculates a score for each image portion. The score indicates a level of confidence that a given image portion represents an illuminated component of a traffic light. The image processing system further identifies one or more candidate portions from among the plurality of image portions. Additionally, the image processing system determines that a particular candidate portion represents an illuminated component of a traffic light using a classifier. Further, the image processing system provides instructions to control the autonomous vehicle based on the particular candidate portion representing an illuminated component of a traffic light.
US09892327B2 Vision-based indicator signal detection using spatiotemporal filtering
An autonomous vehicle is configured to detect an active turn signal indicator on another vehicle. An image-capture device of the autonomous vehicle captures an image of a field of view of the autonomous vehicle. The autonomous vehicle captures the image with a short exposure to emphasize objects having brightness above a threshold. Additionally, a bounding area for a second vehicle located within the image is determined. The autonomous vehicle identifies a group of pixels within the bounding area based on a first color of the group of pixels. The autonomous vehicle also calculates an oscillation of an intensity of the group of pixels. Based on the oscillation of the intensity, the autonomous vehicle determines a likelihood that the second vehicle has a first active turn signal. Additionally, the autonomous vehicle is controlled based at least on the likelihood that the second vehicle has a first active turn signal.
US09892326B2 Object detection in crowded scenes using context-driven label propagation
A computer implemented method for detecting an object in a crowded scene utilizing an image capturing device. The method includes receiving an image of a predetermined area. From the image, the existence of selected portions as representing an entity of a selected class is determined. Each selected portion is assigned an initial confidence value that the selected portion is an entity representative of a selected class. Each selected portion is evaluated with each other to determine a context confidence value. The context confidence value and initial confidence value are utilized to determine which of the one or more selected portions are entities of a selected class.
US09892324B1 Actor/person centric auto thumbnail
Approaches, techniques, and mechanisms are disclosed for generating thumbnails. According to one embodiment, a subset of images each depicting character face(s) is identified from a collection of images. An unsupervised learning method is applied to automatically cluster the subset of images into image clusters. Top image clusters are selected from the image clusters based at least in part on weighted scores of images clustered within the image clusters. Thumbnail(s) are generated from images in the top image clusters.
US09892320B2 Method of extracting attack scene from sports footage
An extraction device includes a processor that executes a procedure. The procedure includes: from captured images obtained by capturing a sports game having a match style of attack toward a goal provided in territory of an opposing team, identifying a portion of captured images in which the captured images change over time toward a direction of one or other goal; and extracting a scene in which one or other team is attacking based on the portion of captured images.
US09892318B2 Method and apparatus for updating road map geometry based on received probe data
A method is provided for generating and revising map geometry based on a received image and probe data. A method may include: receiving probe data from a first period of time, where the probe data from a first period of time is from a plurality of probes within a predefined geographic region; generating a first image of the predefined geographic region based on the probe data from the first period of time; receiving probe data from a second period of time different from the first period of time, where the probe data from the second period of time is from a plurality of probes within the predefined geographic region; generating a second image based on the probe data from the second period of time; comparing the first image to the second image; and generating a revised route geometry based on changes detected between the first image and the second image.
US09892311B2 Detecting unauthorized visitors
An unauthorized visitor system collects an image of a person detected in a room of a patient. The system identifies reference points on the person's face, for example, points along the cheeks, jowls, and/or brow. The system may compare the reference points to reference points of images associated with registered visitors. The system then determines, based on the comparison, if the person is a registered visitor. One or more designated recipients may be alerted if the person is not a registered visitor or if the person breaches a patient identification zone established around a particular patient. The system may also register the person in a database of visitors.
US09892309B1 Signature system
A system and method for creating a unique signature, discrete from underpinning symbols, using a template having a plurality of symbols in an array and a continuous line connecting a defined order of a sequence of symbols on the template, the continuous line connecting all symbols in the sequence, the line forming a signature, discrete from the symbols and the template of symbols. The user selectively chooses the sequence of symbols defined by a name, nickname, username or ID number. The line has a plurality of segments, each having a span fillable with a graphic pattern and a plurality of colors. In one embodiment, the unique signature is created electronically by inputting the defined order of the sequence of symbols. When the user is a signatory to a document, they insert the unique signature into the document, the unique signature indicating the document has been signed by the user.
US09892302B2 Fingerprint sensing device and method for producing the same
A fingerprint sensing device includes an insulating package, an image-sensing die, a light-emitting element, and a conductive component. The insulating package has a bottom surface and a top surface formed with first and second recesses. The image-sensing die is disposed in the first recess and has an outer surface exposed therefrom. The light-emitting element is disposed in the second recess and has an outer surface exposed from the second recess, and an electrode unit. The conductive component is formed in the insulating package, has top and bottom ends exposed from the top and bottom surfaces of the insulating package, and is electrically coupled to the image-sensing die and the electrode unit.
US09892298B2 System and method for expansion of field of view in a vision system
This invention provides a field of view expander (FOVE) removably attached to a vision system camera having an image sensor defining an image plane. In an embodiment the FOVE includes first and second mirrors that transmit light from a scene in respective first and second partial fields of view along first and second optical axes. Third and fourth mirrors respectively receive reflected light from the first and second mirrors. The third and fourth mirrors reflect the received light onto the image plane in a first strip and a second strip adjacent to the first strip. The first and second optical axes are approximately parallel and a first focused optical path length between the scene and the image plane and a second focused optical path between the image plane and the scene are approximately equal in length. The optical path can be rotated at a right angle in embodiments.
US09892292B2 Smart card systems comprising a card and a carrier
A system and method for facilitating wireless transactions using a smart card includes a smart card interface configured to be coupled to the smart card when the smart card is accepted into the opening and configured to provide a data communication link with one or more processers in the smart card; a wireless transceiver configured to engage in wireless data communication with a transaction terminal when the smart card interface is coupled to the smart card; and a power source configured to supply power to the wireless transceiver and the smart card interface.
US09892290B2 Systems and methods of using magnetization to authenticate products
Systems and methods for authenticating a product using a magnetic code are disclosed. The systems and methods include detection of a magnetic code on the product using a device comprising a magnetometer, correlating the detected magnetic code to a symbolic code, determining whether the symbolic code matches a symbolic code stored in a database, and receiving, by the device, a signal indicating that the product is authentic if the symbolic code matches a symbolic code stored in the database.
US09892289B2 Reading RFID tags in defined spatial locations
Devices, methods, and software are disclosed for reading RFID tags located in defined spatial locations. In one illustrative embodiment, a system can comprise a processor, a memory, and an RFID reading device including at least one radio frequency (RF) antenna. The system can be configured to read a first plurality of RFID tags attached to items disposed within a first spatial zone and read a second plurality of RFID tags attached to items disposed within a second spatial zone. The system can be further configured to produce a list of identifiers of RFID tags which belong to the second plurality of RFID tags and do not belong to the first plurality of RFID tags. In some embodiments, the system can be further configured, responsive to successfully decoding decodable indicia attached to an item, to match the item to an RFID tag belonging to the list.
US09892288B2 Process for manufacturing decorative multilayer coatings method of use thereof
A process for optimizing the manufacture of decorative multilayer coatings for attachment to surfaces, including using a roll-to-roll printer to print a decorative layer on a surface of a film layer, wherein the decorative layer includes cutting lines and a first indication, using a curable roller coater to coat a layer on the surface above the print layer, using a laminator to laminate a mask over the print layer, using a cutter to cut the print layer into a cut print, and entering the cut print layer into a line printer to read the first indication and print a second indication on the cut print.
US09892280B1 Identifying illegitimate accounts based on images
Techniques for restricting access to certain members of an online service are provided. Member accounts include one or more images. Attributes of member accounts that share the same image are analyzed to determine whether to label the image “bad.” In one technique, a model is created and trained to learn the attributes or features (and their corresponding weights) that are associated with “bad” user accounts that share the same image. As a result, member accounts that are associated with a “bad” image may be restricted in one or more ways.
US09892274B2 Accessing and providing access to computer files over a computer network
Methods, systems and computer program products are provided that may relate to controlling access to or accessing computer files over a computer network. A file server may execute on a first computer system and a client may execute on a second computer system. The client may be configured to send a first communication to the file server relating to a first computer file stored on the first computer system. The first communication may include first access control data associated with the first computer file. The file server may be configured to receive the first communication and extract the first access control data from the first communication. The file server may then store the extracted first access control data in extended attributes of the first computer file on the first computer system.
US09892264B2 System and method for dynamic security provisioning of computing resources
The present invention facilitates the dynamic provisioning of computing and data assets in a commodity computing environment. The invention provides a system and method for dynamically provisioning and de-provisioning computing resources based on multi-dimensional decision criteria. By employing specialized computing components configured to assess an asset and requestor of an asset, a provisioning engine is able to transform the input from the computing components into a specific configuration of computing resource provisioning and security controls. According to the rules and policies applying to a security domain, the provisioning engine may dynamically allocate computing resources in a manner that is both safe and efficient for the asset.
US09892262B2 Analyzing target software for security vulnerabilities
A method of analyzing target software for security vulnerabilities comprises, with a processor, scanning a codebase of a target software using a static analysis scan to identify a number of security flaws, and calculating a number of code metrics of the codebase of the target software for a number of iterations over a period of time to obtain a number of historical scans.
US09892260B2 System and method for creating and executing breach scenarios utilizing virtualized elements
A system for analyzing a computing system for potential breach points, the system comprising a memory device having executable instructions stored therein, and a processing device, in response to the executable instructions, configured to parse a breach scenario file, the breach scenario file comprising a graph including action component nodes connected by edges, determine a root node from the action component nodes, execute the root node with breach point data, generate a root node return value based on the execution of the root node, the root node return value including a modified copy of the breach point data, determine children nodes from the action component nodes connected to the root node, execute the children nodes wherein each execution of the children nodes produces children node return values for a subsequent one of the children nodes, and return a final return value from the execution of the children nodes.
US09892257B2 Efficient data transfer in a virus co-processing system
Circuits and methods are provided for detecting, identifying and/or removing undesired content. According to one embodiment, a processor maintains a page directory and a page table within a system memory for use in connection with translating virtual addresses to physical addresses. Content scanning of a content object is offloaded to a hardware accelerator coupled to the processor by storing content scanning parameters, including the content object and a type of the content object, to the memory using one or more virtual addresses and indicating to the hardware accelerator that the content object is available for content scanning. Responsive thereto, the hardware accelerator: (i) translates the virtual addresses to corresponding physical addresses based on one or more of the page directory and the page table; (ii) accesses scanning parameters based on the physical addresses; (iii) scans the content object for undesirable content by applying multiple signatures; and (iv) returns a result of the content scanning to the processor.
US09892251B2 Privacy screen for amobile terminal that displays protected data
A mobile terminal includes: a display; and a controller. The controller puts at least one screen corresponding to the current display screen and having the same execution depth into standby, and when a predetermined trigger operation is performed, further displays on the display a screen chosen from the at least one screen by the trigger operation.
US09892250B2 Secure element as a digital pocket
The disclosure includes a system and method in which one or more virtual resources are presented to a secure element; and the one or more virtual resources are mapped to available resources based on a model architecture for the secure element in order to provide hardware abstraction, the available physical resources varying based on the model architecture and an associated host device, the virtual resources allowing consistent interaction with the virtual resources regardless of variation in the physical resources available and their location. The hardware abstraction increases the versatility of the secure element and may contribute to the secure element's functionality. The secure element providing functionality to replace most items carried in an individual's pockets, e.g., logical and physical keys, a thumb drive, identification, credit and debit cards, etc.
US09892247B2 Multimodal biometric authentication system and method with photoplethysmography (PPG) bulk absorption biometric
A multimodal biometric authentication system utilizes a bulk absorption characteristic of human tissue that is measurable using a photoplethysmography (PPG) sensor. One disclosed method of operation includes extracting bulk absorption features from biometric data obtained using a PPG sensor and generating a first biometric template. Additional biometric features are also extracted from biometric data obtained using a second biometric sensor and a second biometric template is also generated. An authentication output signal is provided in response to the first biometric template matching a first enrolled biometric template and the second biometric template matching a second enrolled biometric template.
US09892246B2 Security mode prompt method and apparatus
A security mode prompt method and apparatus where the method includes when it is determined that a terminal is currently in a first security mode, acquiring prestored first security information; receiving first verification information entered by a user, and establishing a first correspondence between the first security information and the first verification information; displaying confusion information, the first security information, and the first verification information on a screen for the user to select; receiving a selection result of the user, and determining, according to the first correspondence, whether the selection result of the user meets a preset rule; and when the selection result of the user meets the preset rule, prompting the user that the terminal is in a second security mode. Using the present disclosure, security of a terminal can be improved.
US09892243B2 Information processing apparatus, information processing method and non-transitory computer readable medium
An information processing apparatus comprises: storage unit that stores a first converted value converted by a one-way function in association with user identification information; input unit that receives, from a user, input of the user identification information and authentication information; holding unit that holds the authentication information input by the user; authentication unit that executes user authentication by converting, by the one-way function, the authentication information input by the user into a second converted value and checking the second converted value against the first converted value stored in the storage unit in association with the user identification information input by the user; and control unit that, based on success of the user authentication, causes the storage unit to store the authentication information held by the holding unit in place of the first converted value stored in the storage unit.
US09892242B1 Unified enterprise management of wireless devices in a controlled environment
A wireless device enterprise management system and a method for operating the management system in a controlled environment is disclosed. The enterprise management system includes implementing a container-based file system on wireless devices within the controlled environment. Enterprise management system manages and controls the organization of files into one or more containers on each wireless device. Each container is associated with one or more execution rules that allow or restrict execution of files that are located in the container.
US09892240B2 System and method for providing a content consumption journal to users in a multi-device environment
A system and method for providing content consumption data to users in a multi-device environment. Activity data from a plurality of UE devices associated with a subscriber account are obtained when one or more users tied to the subscriber account consume content on one or more UE devices. The activity data may be correlated with one or more pieces of information relating to the consumed content. When a journal request is received from a user operating a UE device associated with the subscriber account, a response is generated containing data for presentation in a journal format that includes correlated subscriber activity data for the subscriber account over a select period of time.
US09892239B2 Digital rights management for HTTP-based media streaming
Techniques and mechanisms described herein facilitate the management of digital rights for media content item presentation. According to various embodiments, a request for a content decryption key may be received at a media application implemented at a computing device. The request may be transmitted by a media content player implemented at the computing device. The request may be transmitted in accordance with a designated key exchange protocol. A license for an encrypted media content item corresponding with the requested content decryption key may be identified at the media application. Based on information included in the license, encrypted key material may be decrypted to create the requested content decryption key via a processor at the computing device. The requested content decryption key may be provided to the media content player.
US09892238B2 System and method for monitoring a process
A system for monitoring a process determined by a set of process data in a multidimensional process data domain pertaining to process input-output data, the system comprising: means for acquiring a plurality of historic process data sets; means for obtaining a transformation from the multidimensional process data domain to a model data domain of lower dimension by performing multivariate data analysis; and means for transforming a current process data set to a model data set to monitor the process.
US09892237B2 System and method for characterizing biological sequence data through a probabilistic data structure
A system and method for resolving data through a probabilistic data structure can include initializing a B-field data structure, inserting a key-value element into the B-field data structure, selecting at least one key query, and looking up the value of a key lookup request through the B-field data structure.
US09892232B2 System for vending medications from a vending machine in accordance with a dosing schedule that is downloaded and programmed into the vending machine from a remotely located electronic medication administration record
An automated method is provided for recording contents of medication packages vended from a plurality of vending machines in electronic records, such as an electronic medication administration record (eMAR), that store records for a plurality of patients who are associated with respective vending machines. A vending event causes the electronic record to be populated. The contents of the medication packages vended from the vending machines are recorded in electronic records without communicating patient names or vended medications in the electronic message sent from the vending machines.
US09892229B2 Diagnosis and risk stratification of bladder cancer
The invention provides a method of defining the likelihood of a subject having bladder cancer, comprising the steps of: (A) assessing the subject's likelihood of having bladder cancer by: i. identifying at least one sub-population group appropriate to the subject; ii. determining the level of one or more biomarkers selected according to the sub-population group in a sample obtained from the subject; iii. inputting each of the biomarker values into an algorithm to produce an output value; and iv. correlating the output value with the likelihood of the subject having bladder cancer, wherein the sub-population group is selected according to smoking habits, gender, presence/absence of stone disease, history of benign prostate enlargement (BPE) or prescription of anti-hypertensive, anti-platelet and/or anti-ulcer medication, and (B) determining the subject's stratified risk level of serious disease by: v. determining the level of one or more biomarkers specific for one or more risk classifiers defined using Random Forest Classifiers (RFC), logistic regression or another appropriate systems biology or statistical approach in a sample obtained from the subject, vi. inputting each of the biomarker values into an algorithm or algorithms to produce an output value; and vii. correlating the output value with a stratified risk level of underlying serious disease, wherein the likelihood of having bladder cancer is combined with the stratified risk level of having serious disease, wherein the risk of having bladder cancer and/or serious disease is categorized as: high-risk bladder cancer requiring immediate cystoscopy; low-risk bladder cancer requiring urgent cystoscopy; high-risk control requiring close evaluation and further investigation; or low-risk control requiring primary care monitoring.
US09892221B2 Method and system of generating a layout including a fuse layout pattern
A method of generating a layout usable for fabricating an integrated circuit is disclosed. The method includes generating a block layout layer usable in conjunction with a first conductive layout layer. The first conductive layout layer includes a fuse layout pattern, and the block layout layer includes a block layout pattern overlapping a portion of a fuse line portion of the fuse layout pattern. A second conductive layout layer is generated to replace the first conductive layout layer. The generating the second conductive layout layer includes performing an optical proximity correction (OPC) process on the first conductive layout layer except the portion of the fuse line portion of the fuse layout pattern corresponding to the block layout pattern.
US09892215B2 System and method for determining feedrates of machining tools
A method determines a feedrate of a tool machining a workpiece according to a path. The method partitions the path into a set of segments, such that within each segment a function of engagement of the tool and the workpiece is substantially constant. Next, the method determines a feedrate for each segment in the set.
US09892209B2 Linking business objects and documents
Managing content is disclosed. An indication is received that a content item comprising a body of managed content is associated with a business object not included in the body of managed content. The content item is linked with the business object.
US09892208B2 Entity and attribute resolution in conversational applications
User input expressed as text may be analyzed for determining a type of response, such as an application response, and/or determining a type of task that is requested by the user input. Entity representations may be identified, classified and/or or tagged based on a type of response, type of task and/or a set of entity types. A surface form of an entity, ambiguous entity representation and/or other type of expression within the user input may be resolved, normalized and/or mapped to a normalized value. Normalizing entities and/or entity attributes may involve using a set of normalization rules, a lookup table, one or more machined learned methods, and/or an entity normalization index that associates entities with alternate surface forms derived from web corpora. The normalized value may be used to construct a request to a structured knowledge source and/or an application.
US09892197B2 Information removal from a network
Technologies are generally described for systems, methods and devices effective to remove information from a network such as the Internet. In some examples, a device may include a memory including instructions and a processor configured in communication with the memory. The processor may be configured effective to receive user information relating to a user and search the network using the user information. In response to the search, the processor may find additional information relating to the user stored in the network. The processor may receive a first request to remove particular information from the network. The particular information may be part of the additional information and the particular information may be removable by a second user. The processor may send a second request to remove the particular information from the network.
US09892196B2 Method and system for entering search queries
Method and apparatus for entering search queries are disclosed. The method includes presenting a web page, wherein the web page includes at least a story and a thumbnail image associated with the story, dragging the thumbnail image to a search box on the web page, releasing the thumbnail image to the search box, and populating the search box with keywords associated with the thumbnail image.
US09892191B2 Complex query handling
Processing a query for a database includes: receiving a portion of a query from a client device in a server implemented by at least one processor, the portion of the query comprising an incomplete component; determining that the incomplete component is one of multiple predefined types with the server; providing the incomplete component to an auto-complete function specific to the determined type of the incomplete component; receiving in the server a suggestion for completing the query from the auto-complete function, the suggestion being specific to the type of the incomplete component; and providing the suggestion from the server to the client device.
US09892190B1 Search suggestions based on native application history
Methods, systems, and apparatus, for automatically generating search suggestions based on history data for multiple native application on a user device.
US09892188B2 Category-prefixed data batching of coded media data in multiple categories
Innovations for category-prefixed data batching (“CPDB”) of entropy-coded data or other payload data for coded media data, as well as innovations for corresponding recovery of the entropy-coded data (or other payload data) formatted with CPDB. The CPDB can be used in conjunction with coding/decoding for video content, image content, audio content or another type of content. For example, after receiving coded media data in multiple categories from encoding units, a formatting tool formats payload data with CPDB, generating a batch prefix for a batch of the CPDB-formatted payload data. The batch prefix includes a category identifier and a data quantity indicator. The formatting tool outputs the CPDB-formatted payload data to a bitstream. At the decoder side, a formatting tool receives the CPDB-formatted payload data in a bitstream, recovers the payload data from the CPDB-formatted payload data, and outputs the payload data (e.g., to decoding units).