Document | Document Title |
---|---|
US08593914B2 |
Method and system for optically coupling a laser with a transducer in an energy assisted magnetic recording disk drive
A method and system for providing an energy assisted magnetic recording (EAMR) head are described. The EAMR head includes a laser, a slider, and an EAMR transducer. The laser has a main emitter and at least one alignment emitter. The slider includes at least one alignment waveguide, at least one output device, and an air-bearing surface (ABS). The alignment waveguide(s) are aligned with the alignment emitter(s). The EAMR transducer is coupled with the slider and includes a waveguide aligned with main emitter. The waveguide is for directing energy from the main emitter toward the ABS. |
US08593905B2 |
Marine seismic surveying in icy or obstructed waters
A skeg mounts from the stern of a towing vessel and extends below the waterline. A channel in the skeg protects cables for steamers and a source of a seismic system deployed from the vessel. Tow points on the skeg lie below the water's surface and connect to towlines to support the steamers and source. A floatation device supports the source and tows below the water's surface to avoid ice floes. The streamers can have vehicles deployed thereon for controlling a position on the streamer. To facilitate locating the streamers, these vehicles on the streamers can be brought to the surface when clear of ice floes so that GPS readings can be obtained and communicated to a control system. After obtaining readings, the vehicles can be floated back under the surface. Deploying, using, and retrieving the system accounts for ice at the surface in icy regions. In addition, handling the seismic record can account for noise generated by ice impact events. |
US08593904B2 |
Method and device to acquire seismic data
Streamer and method for deploying the streamer for seismic data acquisition related to a subsurface of a body of water. The method includes a step of releasing into the body of water, from a vessel, a body having a predetermined length together with plural detectors provided along the body; a step of towing the body and the plural detectors such that the plural detectors are submerged; and a step of configuring plural birds provided along the body, to float at a predetermined depth from a surface of the water such that a first portion of the body has a curved profile while being towed underwater. |
US08593900B2 |
Method and apparatus for performing multi-block access operation in nonvolatile memory device
A nonvolatile memory device comprises a first mat, a second mat, a third mat, a first address decoder, a second address decoder, and a third address decoder. The first mat comprises first memory blocks, the second mat comprises second memory blocks, and the third mat comprises third memory blocks. The first address decoder selects one of the first memory blocks according to a first even address, the second address decoder selects one of the second memory blocks according to a second even address or a first odd address, and the third address decoder selects one of the third memory blocks according to a second odd address. |
US08593896B2 |
Differential read write back sense amplifier circuits and methods
A differential read write back sense amplifier circuit and corresponding methods. A memory array comprises a plurality of memory cells arranged in rows and columns; a plurality of read word lines coupled to the memory cells; a plurality of write word lines coupled to the memory cells arranged along rows of the memory array; a plurality of read bit line pairs coupled to the memory cells arranged in columns; a plurality of write bit line pairs coupled to the memory cells arranged in columns; and at least one differential read write back sense amplifier coupled to a read bit line pair and coupled to a write bit line pair corresponding to one of the columns of memory cells, configured to differentially sense small signal read data on the read bit line pair, and output the sensed data onto the write bit line pair. Corresponding methods are disclosed. |
US08593894B2 |
Semiconductor memory device having fuse elements programmed by irradiation with laser beam
A relief-address control unit of a semiconductor memory device includes a fuse storage unit and a relief circuit. The fuse storage unit includes a plurality of fuse elements that are made nonconductive by irradiation with a laser beam, and a protective film with an opening directly above the fuse elements to facilitate the laser beam to pass through. The relief circuit specifies a relieved address based on a nonconductive state of the fuse elements. The opening is in a unified form along a long-side direction of the fuse storage unit. Further, the relief circuit is arranged adjacent to a short-side end of the fuse storage unit. |
US08593886B2 |
Semiconductor system including semiconductor device
A semiconductor system includes a controller configured to apply code signals for setting levels of a reference voltage and data, and to receive output data. The semiconductor system also includes a semiconductor device configured to receive the data for the respective levels of the reference voltage set according to the code signals, to compare the reference voltages with the data to generate new data, to store the new data as internal data, and to process the stored internal data to output as the output data. |
US08593882B2 |
Semiconductor memory device and method of erasing the same
A semiconductor memory device includes memory cell blocks having physical pages coupled to memory cells, peripheral circuits configured to program the memory cells or read data stored in the memory cells, and a controller configured to control the peripheral circuits so that a pre-program is performed to make memory cells in the memory cell blocks have threshold voltages higher than a set voltage by programming memory cells of the selected memory cell block, having threshold voltages lower than the set voltage, in response to an erase command. The set voltage is an intermediate threshold voltage obtained from the threshold voltages of the memory cells of the selected memory cell block. |
US08593881B2 |
Pre-charge sensing scheme for non-volatile memory (NVM)
The pipe effect can significantly degrade flash performance. A method to significantly reduce pipe current and (or neighbor current using a pre-charge sequence) is disclosed. A dedicated read order keeps the sensing node facing the section of the pipe which was pre-charged. The technique involves pre-charging several global bitlines (such as metal bitlines, or MBLs) and local bitlines (such as diffusion bitlines, or DBLs). The pre-charged global bitlines are selected according to a pre-defined table per each address. The selection of the global bitlines is done according to whether these global bitlines will interfere with the pipe during the next read cycle. |
US08593880B2 |
Semiconductor memory system including a plurality of semiconductor memory devices
A communication line is connected to first and second chips, and held at a first signal level. A monitor circuit changes a signal level of the communication line from the first signal to a second signal level while one of the first and second chips uses a current larger than a reference current. When the signal level of the communication line is the second signal level, the other of the first and second chips is controlled to a wait state that does not transfer to an operating state of using a current larger than the reference current. |
US08593877B2 |
Method of programming non-volatile memory device and apparatuses for performing the method
A non-volatile memory device is provided. The non-volatile memory device includes a cell string including a plurality of non-volatile memory cells; and an operation control block configured to supply a program voltage to a word line connected to a selected non-volatile memory cell among the plurality of non-volatile memory cells during a program operation, configured to supply a first negative voltage to the word line during a detrapping operation, and configured to supply a second negative voltage as a verify voltage to the word line during a program verify operation. |
US08593874B2 |
Voltage generation circuit which is capable of reducing circuit area
According to one embodiment, a voltage generation circuit includes a first boost circuit, a first output circuit, a rectifying circuit, a second output circuit, and a detection circuit. The first boost circuit outputs a first voltage in first and second operation modes. The first output circuit is connected to the first boost circuit, and outputs the first voltage as a second voltage in the first operation mode. The rectifying circuit is connected to the first boost circuit, and outputs a third voltage which is lower than the first voltage in the first operation mode. The second output circuit short-circuits the rectifying circuit in the second operation mode, and outputs the first voltage as a fourth voltage. The detection circuit detects the second and fourth voltages which are supplied from the first and second output circuits. |
US08593867B2 |
Flash memory device and reading method thereof
A flash memory device wherein off cell margin is increased by controlling a voltage of a sensing node and a corresponding reading method, wherein the flash memory device includes a memory cell array; a sensing node voltage controller generating a precharge voltage and a sensing node voltage control signal; and a page buffer unit connected to the memory cell array through bit lines and having page buffers. The page buffers include a bit line connection unit connected between a corresponding bit line and a sensing node, that controls a voltage of the sensing node according to the sensing node voltage control signal; a precharge unit which precharges the sensing node according to the precharge voltage responsive to a precharge control signal; and a data input/output unit sensing a voltage level of the sensing node responsive to a latch control signal and outputting the data of the selected memory cell. |
US08593866B2 |
Systems and methods for operating multi-bank nonvolatile memory
A non-volatile memory system that has multiple memory banks initially assigns logical addresses to memory banks according to an assignment scheme, maintains this assignment for a period of time, then identifies frequently-written data (“hot-data”) assigned to a memory bank that is heavily worn over that period of time and reassigns it to a less worn memory bank. |
US08593865B2 |
Nonvolatile memory device having stacked transistor configuration
A nonvolatile memory device comprises a memory cell array comprising a plurality of memory blocks, an address decoder that selects one of the memory blocks in response to an input address and generates a first control signal and a second control signal, a plurality of metal lines connected with the memory blocks and extending along a first direction, a plurality of pass transistors that connect the address decoder with a first subset of the metal lines connected with the selected memory block in response to the first control signal, and a plurality of ground transistors that supply a low voltage to a second subset of the metal lines connected with unselected memory blocks in response to the second control signal. The ground transistors have channels that extend along a second direction perpendicular to the first direction. |
US08593864B2 |
Nonvolatile memory device and method of programming the same
A nonvolatile memory device includes a memory cell array including a number of memory cells coupled to a selected bit line, a bit line selection unit configured to select and precharge the selected bit line, and a potential control unit configured to control a voltage level of the precharged bit line in response to a voltage level corresponding to a value of program data. |
US08593862B2 |
Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
A spin-torque transfer memory random access memory (STTMRAM) element includes a fixed layer formed on top of a substrate and a tunnel layer formed upon the fixed layer and a composite free layer formed upon the tunnel barrier layer and made of an iron platinum alloy with at least one of X or Y material, X being from a group consisting of: boron (B), phosphorous (P), carbon (C), and nitride (N) and Y being from a group consisting of: tantalum (Ta), titanium (Ti), niobium (Nb), zirconium (Zr), tungsten (W), silicon (Si), copper (Cu), silver (Ag), aluminum (Al), chromium (Cr), tin (Sn), lead (Pb), antimony (Sb), hafnium (Hf) and bismuth (Bi), molybdenum (Mo) or rhodium (Ru), the magnetization direction of each of the composite free layer and fixed layer being substantially perpendicular to the plane of the substrate. |
US08593860B2 |
Systems and methods of sectioned bit line memory arrays
A sectioned bit line of an SRAM memory device, an SRAM memory device having a sectioned bit line, and associated systems and methods are described. In one illustrative implementation, the sectioned bit line may comprise a local bit line, a memory cell connected to the local bit line, and a pass gate coupled to the local bit line, wherein the pass gate is configured to be coupled to a global bit line. In other implementations, an SRAM memory device may be configured involving sectioned bit lines and a global bit line wherein the pass gates are configured to connect and isolate the sectioned bit line and the global bit line. |
US08593855B2 |
Semiconductor memory device
In a semiconductor memory device using a variable resistive element made of a metal oxide for storing information, a voltage amplitude of a writing voltage pulse for changing the variable resistive element to a high resistance state is set within a voltage range in which the resistance value of the high resistance state after the change increases with time. The voltage amplitude is set within the voltage range in which the resistance value of the high resistance state after the change increases toward a predetermined peak with increase in voltage amplitude. When a data error is detected by the ECC circuit, it is estimated that the data that should be in the low resistance state changes to the high resistance state, and the variable resistive elements of all memory cells from which the error is detected are written to the low resistance state to correct the error bit. |
US08593854B1 |
Structure and method for forming conductive path in resistive random-access memory device
An array and forming method for resistive-RAM (RRAM) devices provides for the simultaneous selection of multiple bit cells and the simultaneous forming of the RRAM resistive elements within the selected bit cells. The bit cells each include a resistive element and a transistor and are arranged vertically along vertical bit lines. The resistive elements of the bit cells are coupled to source lines that are parallel to word lines and perpendicular to the vertical bit lines. The bit lines are maintained at different biases. A high voltage is applied to one of the source lines coupled to adjacent resistive elements of bit cells disposed along more than one vertical bit line. When the associated transistors are turned on by a sufficiently high gate voltage, the desired RRAM resistive elements along one of the bit lines are formed without stressing other bit cells of the array. |
US08593852B2 |
Test device and test method for resistive random access memory and resistive random access memory device
According to the embodiments, a first write enable signal that changes with a constant period and a second write enable signal that changes at a time portion in which a limit time between activation/deactivation control of word lines and activation/deactivation control of bit lines is checked are input, a plurality of core control signals in which a time interval with which the core control signals change is locally shorter than a period of the first write enable signal based on the first write enable signal and the second write enable signal that are input is generated, and an operation verification of the resistive random access memory is performed by using the generated core control signals, whereby a cycle time in an arbitrary test cycle is locally and arbitrary adjusted. |
US08593849B2 |
Memory device interface methods, apparatus, and systems
Apparatus and systems for memory system are provided. In an example, a memory system can include a plurality of memory dice and an interface chip. The memory dice can include a first memory die including a memory array coupled to through wafer interconnects (TWIs) and a second memory die, wherein the first memory die is stacked over the second memory die. In an example, the interface chip can be coupled to the TWIs and configured to provide memory commands to selected memory addresses within the plurality of memory dice. In an example, the interface chip can be configured to perform DRAM sequencing. |
US08593848B2 |
Programming method for programming flash memory array structure
The invention provides a flash memory array structure and a method for programming the same, which relates to a technical field of nonvolatile memories in ultra large scale integrated circuit fabrication technology. The flash memory array of the present invention includes memory cells, word lines and bit lines connected to the memory cells, wherein the word lines connected to control gates of the memory cells and the bit lines connected to drain terminals of the memory cells are not perpendicular to each other but cross each other at an angle; the control gates of two memory cells adjacent to each other along the channel direction between every two bit lines are controlled by two word lines, respectively, drain terminals thereof are controlled by two bit lines, respectively, and source terminals thereof are shared. The present invention also provides a method for programming the flash memory array structure, which can realize a programming with low power consumption. |
US08593844B2 |
Interconnection inverter device
First and second capacitors are connected in series between positive/negative electrodes of a DC power source. A first terminal of a reactor and a first terminal of an electric power system are connected to the interconnection point between the first and second capacitors. A first switch section has first and second terminals respectively connected to the positive electrode of the DC power source and a second terminal of the reactor. A second switch section has first and second terminals respectively connected to the negative electrode of the DC power source and the second terminal of the reactor. A third switch section has first and second terminals respectively connected to the second terminal of the reactor and a second terminal of the electric power system. A fourth switch section has first and second terminals respectively connected to the second terminal of the reactor and the second terminal of the electric power system. |
US08593841B2 |
Compensation circuit for constant current regulation of power supply and method thereof
A compensation circuit and method for constant current regulation of switching mode power supply are disclosed. The ringing waveform of a feedback signal, indicative of the output current of the power supply, causes error. To eliminate the error, a current source charges a capacitor in response to a demagnetizing oscillation signal indicative of the error caused by the ringing waveform of the feedback signal. The voltage across the capacitor is compared to a reference signal to generate a more accurate signal indicative of the conductive time of a secondary diode in a secondary winding of the switching mode power supply. This more accurate signal is inputted to a logic circuit to generate a constant current control signal to control a power switch of the power supply. |
US08593840B2 |
Boosting circuit and RFID tag including boosting circuit
One object is to provide a boosting circuit whose boosting efficiency is enhanced. Another object is to provide an RFID tag including a boosting circuit whose boosting efficiency is enhanced. A node corresponding to an output terminal of a unit boosting circuit or a gate electrode of a transistor connected to the node is boosted by bootstrap operation, so that a decrease in potential which corresponds to substantially the same as the threshold potential of the transistor can be prevented and a decrease in output potential of the unit boosting circuit can be prevented. |
US08593839B2 |
Accuracy of a volt-second clamp in an isolated DC-DC converter
A novel system and methodology for providing a volt-second clamp. A DC/DC conversion system configured for producing an output voltage in response to an input voltage has a transformer with a primary winding responsive to the input voltage and a secondary winding for producing the output voltage. The conversion system has a power switch coupled to the primary winding of the transformer and controlled with a converter control signal, such as a PWM control signal. The power switch is further controlled by a comparator that compares an input value supplied to its input with a variable reference value so as to prevent magnetic flux density of the transformer from increasing to an undesired level. The input value of the comparator is produced by a comparator input circuit as a function of the input voltage and an on-time of the power switch. A reference circuit produces the reference value that varies as a function of the input voltage. |
US08593837B2 |
Power supply device and method, based on power supply mode, for image forming apparatus
Provided is a power supply device for an image forming apparatus, the power supply device including: a filter unit filtering alternating current (AC) power from an AC power source; and a converter generating a direct current (DC) power from the filtered AC power, wherein the filter unit includes: a capacitor connected to the AC power source; a discharge device connected to the capacitor and discharging electric charges accumulated in the capacitor; and a switching device switching connection between the capacitor and the discharge device according to a power supply mode of the power supply device. |
US08593836B2 |
Power converter using soft switching method for zero current switching at turn on and zero voltage switching at turn off
A power converter includes a main switch to which a capacitor is connected through a sub-diode. A series connection of a primary coil of a transformer and a sub-switch is connected parallel to the capacitor. A main diode is coupled in series with the main switch. A series connection of a sub-diode and a secondary coil of the transformer is parallel to the main diode. The rate of a rise in voltage across the main switch when turned off is suppressed by the rate of charging of the capacitor. Subsequently, by turning on the sub-switch, the current flowing through the main diode to be delivered to the transformer, thereby causing the current flowing through the main switch when turned on to be decreased by the sub-inductor. |
US08593834B2 |
DC converter with independently controlled outputs
A controller for use in a power supply includes a clock coupled to output a clock signal. The clock signal determines a frequency. A modulator is coupled to receive the clock signal. The clock signal is divided into N cycles within the power supply. N is an integer greater than one. The modulator is coupled to receive N feedback signals from N output circuits during each respective one of the N cycles to control conduction times of a primary switch during each respective one of the N cycles to regulate N outputs of a power supply. Each of the N feedback signals is representative of a respective one of N output voltages of a respective to one of the N outputs of the power supply. |
US08593831B2 |
Method for controlling a series resonant DC/DC converter
The invention relates to a method for controlling a series resonant DC/DC converter. The method comprises the steps of: defining a switching period TP having a first half period TA and a second half period TB and defining a subsequent switching period TP+1 after the switching period TP. In a next step, a first set (S1sc1; S1sc1, S4sc1) of switches of a first switching circuit (SC1) is controlled to be ON from the beginning Tstart of the first half period TA minus a time interval ΔTAE1, where the time interval ΔTAE1 is provided at the end of the first half period TA and a second set (S2sc1; S2sc1, S3sc1) of switches of the first switching circuit (SC1) is controlled to be ON from the beginning Tcenter of the second half period TB minus a time interval ΔTBE1, where the time interval ΔTBE1 is provided at the end of the second half period TB. A first set (S1sc2; S1sc2, S4sc2) of switches of a second switching circuit (SC2) is controlled to be ON in the first half period TA minus a time interval ΔTAS1 and minus a time interval ΔTAE2, where the time interval ΔTAS1 is provided at the beginning of the first half period TA and where the time interval ΔTAE2 is provided at the end of the first half period TA and a second set (S2sc2; S2sc2, S3sc2) of switches of the second switching circuit (SC2) is controlled to be ON in the second half period TB minus time interval ΔTBS1 and minus time interval ΔTBE2, where the time interval ΔTBS1 is provided at the beginning of the second half period TB and where the time interval ΔTBE2 is provided in the end of the second half period TB. Time intervals Tsc1off1 and Tsc2off1, and time intervals Tsc1off2 and Tsc2off2, where the sets of the first and second switching circuits all are off, are at least partially overlapping. |
US08593826B2 |
Memory module, memory system having the memory module, and method for manufacturing the memory module
Provided is a memory module, a system using the memory module, and a method of fabricating the memory module. The memory module may include a printed circuit board and a memory package on the printed circuit board. The printed circuit board may include an embedded optical waveguide and a first optical window extending from the optical waveguide to a first surface of the printed circuit board. The memory package may also include a memory die having an optical input/output section and a second optical window. The optical input/output section, the second optical window, and the first optical window may be arranged in a line and the first optical window and the second optical window may be configured to at least one of transmit an optical signal from the optical waveguide to the optical input/output section and transmit an optical signal from the optical input/output section to the optical waveguide. |
US08593824B2 |
Tamper secure circuitry especially for point of sale terminal
Tamper secure circuitry including a first printed circuit board having mounted thereon circuit components and a slotted anti-tamper grid containing printed circuit board mounted onto the first printed circuit board defining at least one slot and arranged to overlie at least some of the circuit components, which are located in a volume defined by the at least one slot and the first printed circuit board. |
US08593823B2 |
Suspension board with circuit
A suspension board with circuit includes a conductive pattern. The conductive pattern includes a first terminal provided on the front face of the suspension board with circuit and electrically connected with a magnetic head; and a second terminal provided on the back face of the suspension board with circuit and electrically connected with an electronic device. |
US08593822B2 |
Electronic apparatus provided with a detachable electrical component
The present invention improves the operability when opening and closing a cover. Since the cover is curved such that the front face is in a concave form, when opening a memory slot, part of the cover is lifted from a first casing by simply removing a screw from the first casing and the cover. The cover can be detached from the first casing by holding the lifted portion of the cover, and, thus, the memory slot can be opened easily without using the weight of the cover. Accordingly, it is possible to improve the operability when attaching a memory module to the memory slot or when detaching a memory module from the memory slot. |
US08593821B2 |
Lightweight audio system for automotive applications and method
A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture is bifurcated into a first board carrying common circuit components in a surface mount configuration suitable for high volume production, and a second board carrying application specific circuit components in a wave soldered stick mount configuration. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The radio architecture includes improved push buttons employing 4-bar living hinge linkage and front loaded decorative trim buttons. |
US08593814B2 |
Heat sink assembly
A heat sink includes a contact portion, a first support rib, a second support rib, a third support rib and a fourth support rib radially extended from the contact portion, and a plurality of parallel fins radially extended from the first support rib, the second support rib, the third support rib and the fourth support rib between two adjacent support ribs. The contact portion contacts with a first heat source. A distance from the contact portion to an edge of the plurality of parallel fins between the first support rib and the second support rib is a first distance. A distance from the contact portion to an edge of the plurality of parallel fins between the third support rib and the fourth support rib is a second distance. The first distance is less than the second distance. |
US08593813B2 |
Low profile heat dissipating system with freely-oriented heat pipe
A heat dissipating system adapted to dissipate heat generated from an IC package mounted onto a socket connector, comprises a heat dissipating device comprising a heat spreader embedded with at least one heat pipe and a supporting plate flexibly seated upon an upper face of the heat spreader, and a clip located upon the heat dissipating device for pressing the heat dissipating device downward toward the socket connector. |
US08593812B2 |
Heat exchanger, semiconductor device, method for manufacturing the heat exchanger, and method for manufacturing the semiconductor device
Disclosed is a heat exchanger wherein warping (bending) of an intervening member and a frame is suppressed when the intervening member and a wall portion of the frame member having different linear expansion coefficients are welded with each other. A method for manufacturing the heat exchanger, a semiconductor device wherein warping (bending) of an intervening member and a frame is suppressed, and a method for manufacturing the semiconductor device are also disclosed. Specifically disclosed is a heat exchanger wherein a fin member provided with a plurality of fins forming flow channels for a refrigerant is arranged within a frame which forms the outer casing. The frame has a first frame member (a first wall portion) to which insulating plates (intervening members) interposed between the frame and heat-generating bodies (semiconductor elements are welded. The insulating plates (intervening members) have a linear expansion coefficient different from that of the frame. The first frame member is provided with elastically deformable projections (elastically deformable portions) along an arrangement surface of the outer surface on which the insulating plates (intervening members) are arranged. |
US08593811B2 |
Method and structure for optimizing heat exchanger performance
A heat exchanger structure including multiple fluid circuits, through which respective streams of a first fluid pass from a stream inlet to a stream outlet to transfer heat to or from a second medium. The fluid circuits are arranged into at least a first group and a second group, at least the first group consisting essentially of only fluid circuits that perform substantially similarly according to at least one selected performance criterion. A control sensor for at least the first group generates a signal representative of a parameter of the first fluid in the associated group. A valve for at least the first group is in fluid communication with of all the streams of the associated group so as to be able to control the flow of fluid through the streams of the associated group in parallel. |
US08593807B2 |
Electronic equipment having open/close lock mechanism
The rotation direction of a lock member is substantially the same as the rotation direction of a second housing when the second housing is rotated from a closed position to an opened position. Thus, when the second housing is in a closed state, a user presses a base in a direction indicated by an arrow D with a finger of a hand, engages the finger with an inner surface of a concave, and displaces the hand in a direction indicated by an arrow B, thereby performing lock cancel of the lock member and a rotation operation of the second housing continuously. |
US08593806B2 |
Heat dissipation system
A heat dissipation system includes an enclosure, and a mainframe module enclosed in the enclosure. The mainframe module includes a baseboard with a motherboard and a mass storage device attached to the baseboard, a first cooling fan mounted on a top surface of the motherboard, and an air guiding panel attached on the baseboard surrounding the mass storage device. The air guiding panel guides cool air to the mass storage device along a first direction and out of the mainframe module by the first cooling fan in a second direction perpendicular to the first direction. |
US08593803B2 |
Mounting apparatus for data storage device
A mounting apparatus for mounting a data storage device, includes a drive bracket and a slider mounted on the data storage device. The drive bracket includes a side piece in which a sliding groove is located. The sliding groove includes a first end and a second end. The second end is adjacent to an edge of the side piece. The first end is located on the side piece. A guiding surface is located at the first end. The guiding surface inclines from an inner surface of the side piece to an outer surface of the side piece. The slider slides in the sliding groove from the second end to the first end. The slider abuts the guiding surface. The guiding surface retains the slider at the first end. |
US08593802B1 |
Tri-holder/organizer system
A plurality of stations is positionable on the top of a stereo radio/alarm clock. The stations include end stations and a central station between the end stations. Each station has a downwardly extending recess to removably receive and support a smaller consumer electronic music device. Each station has a support plate extending upwardly from an associated recess. The end recesses are laterally aligned with their associated support plates in a forward plane. The central recess is rearwardly spaced from the end recesses with its associated support plate in a rearward plane. The arrangement of the support plates allows the support plates to removably receive and support a larger consumer electronic music device. |
US08593800B2 |
Electronic equipment with hinge mechanism
In the electronic equipment of the present application, a center axis of a cylindrical portion 11a of a shaft 11 is eccentric with respect to a rotation center axis of the shaft 11, whereby even when a cable 21 comes closest to the shaft 11 in the turning of a first housing 1 or second housing 2, a sufficient space can be secured between the shaft 11 and the cable 21. Thus, in a turning range of the first housing 1 or second housing 2, it is highly unlikely that the shaft 11 and the cable 21 come into contact with each other, which avoids an increase in a tension of the cable 21 and wear on an insulation cover of the cable 21. By avoiding the increase in the tension of the cable 21, breakage of the electric wires in the cable 21 can be avoided. |
US08593794B2 |
Hinge assembly for foldable electronic device
A hinge assembly includes a shaft, a seat made of plastic, a follower, a cam, a latching member, a resilient member, and a sleeve. The follower includes a cam surface. The seat is fixed to the follower, and the seat and the follower are placed around the shaft. The cam has a latching cam surface, the cam surface is engaged with the cam latching surface. The latching member is fixed to the cam, and the cam and the latching member are placed around the shaft. An outer diameter of the cam is smaller than the latching member. The resilient member is placed around the shaft and provides an elastic force to make the cam surface abut against the latching cam surface. The sleeve receives the cam, the latching member, and the resilient member, and the latching member engages with the sleeve. |
US08593792B2 |
Utility pit meter AMR device with multiple mounting provisions
An automatic meter reading (AMR) system device is adapted to be mounted in a utility meter pit. The device includes a housing constructed to at least partially enclose at least one portion of an AMR system device. The housing is integrally formed with at least two different mounting members selected from among: a rod mounting member that includes a port sized and shaped to receive a rod to facilitate mounting of the device in the pit, a wall mounting member that includes a wall-mount provision that facilitates mounting of the device to a wall of the pit, a tie mounting member constructed to receive at least one tie fastener that facilitates mounting of the device to a structure in the pit, and a lid mounting portion constructed to facilitate mounting of the device to a lid of the pit. |
US08593789B2 |
Device for distributing high-voltage power for vehicle
Provided is a device for distributing high-voltage power for a vehicle which supplies the main power of the vehicle to the electronic devices mounted in the vehicle. More specifically, a power distribution unit includes a plurality of first interlock connectors that connect distributed power to the electronic devices through cables, respectively. Furthermore, a switching unit including switching elements is disposed between the power distribution unit and the first interlock connectors and an interlock circuit unit that is connected with the first interlock connectors and the electronic devices and is separated before the cables are separated due to separation or breaking of the first interlock connectors. A switching control unit checks or determines which electronic devices connected with the interlock circuit unit are separated and controls the switching unit so that the distributed power is not supplied to just those effected electronic devices which have been determined to be separated. |
US08593788B2 |
Supercapacitors with block copolymer electrolytes
An electrode for a supercapacitor includes a block copolymer and active material particles. The block copolymer is used both to bind the particles together and to act as an electrolyte. The electrode does not have a porous structure, but rather it is pressed or rolled to achieve zero porosity and to ensure good contact between the particles and the block copolymer electrolyte. Thus, the entire surface of the active particles can be accessed for charge storage. Furthermore, the volume of such an electrode is smaller than typical electrodes with the same capacity, as none of the volume is wasted with additional, non-active binder material, offering a higher effective active material loading per unit volume. Electrodes made in this way, with block copolymer electrolyte and active materials, can also form free-standing films that are easy to handle during manufacture of supercapacitors. |
US08593786B2 |
Electrical multilayer component and circuit arrangement
An electrical multilayer component has a monolithic main body that includes a number of alternating ceramic layers disposed one above the other and at least one electrode layer. The main body has two end faces opposite each other and two lateral faces opposite each other. The component also includes a number of outer electrodes and at least three inner electrodes. Each of the inner electrodes is associated with one outer electrode. A first inner electrode protruding from an end face and a second inner electrode protruding from an opposite end face have a first distance to each other. A third inner electrode protrudes from a side face. |
US08593784B2 |
Thin film structure that may be used with an adhesion layer
A conductive structure, including an adhesion layer and a conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms. The present invention may be used to form a capacitor, including an adhesion layer, a first conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms, a second conductor, and a dielectric between the first and second conductors. The present invention is also directed towards structures wherein iridium or rhodium may be used in place of the combination of the adhesion layer and conductor. |
US08593782B1 |
Clad fiber capacitor and method of making same
A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand. |
US08593781B2 |
Metalized film capacitor
Disclosed is a metalized film capacitor having excellent safety preservation ability and an excellent withstand voltage at high temperatures. This capacitor has a structure for which a split electrode section wherein a split electrode is formed by spliting a metalized film along the longitudinal direction by means of plural insulating slits, and a non-split electrode section for which a vapor-deposited electrode is continuous in the longitudinal direction, are arranged alternately in the film width direction of the metalized film, with each split electrode being connected to the non-split electrode section by a fuse formed between the ends of adjacent insulating slits; and has a structure for which three rows or more of split electrode sections, which are split by means of insulating slits that are aligned in the longitudinal direction of the film, are arranged in the width direction, with each split electrode that forms a split electrode section being connected to an adjacent split electrode by a fuse, and the area of a split electrode in the center of the film being smaller than the area of a split electrode arranged on the outer side. |
US08593778B2 |
Apparatus for removal of surface oxides via fluxless technique involving electron attachment and remote ion generation
The present invention provides a method and apparatus for the dry fluxing of at least one component and/or solder surface via electron attachment. In one embodiment, there is provided a method for removing oxides from the surface of a component comprising: providing a component on a substrate wherein the substrate is grounded or has a positive electrical potential to form a target assembly; passing a gas mixture comprising a reducing gas through an ion generator comprising a first and a second electrode; supplying an amount of voltage to at least one of the first and second electrodes sufficient to generate electrons wherein the electrons attach to at least a portion of the reducing gas and form a negatively charged reducing gas; and contacting the target assembly with the negatively charged reducing gas to reduce the oxides on the component. |
US08593776B2 |
Voltage surge and overvoltage protection using prestored voltage-time profiles
Disclosed are various embodiments of voltage protectors that include a first voltage clamping device configured to clamp a voltage of an input power applied to an electrical load, and a second voltage clamping device configured to clamp the voltage applied to the electrical load. A series inductance separates the first and second voltage clamping devices. Also, a switching element is employed to selectively establish a direct coupling of the input power to the electrical load, where a circuit is employed to control the operation of the switching element. |
US08593768B2 |
Apparatus and method for disabling the operation of high power devices
A drive circuit for delivering high-level power to a load, and method of stopping a high power load from operating, are disclosed. The drive circuit includes a high power circuit capable of being coupled to the load and delivering the high level power thereto, and a low power circuit that controls the high power circuit. The low power circuit includes a first circuit portion that provides at least one control signal that is at least indirectly communicated to the high power circuit and that controls the delivering of the high level power by the high power circuit, and a second circuit portions coupled to the first circuit portion. The second circuit portion is capable of disabling the first circuit portion so that the at least one control signal avoids taking on values that would result in the high power circuit delivering the high level power to the load. |
US08593767B2 |
Power supply and the control method for controlling the same and power supply system incorporating such power supplies
Disclosed is a power supply and a power supply system using such power supply. The inventive power supply includes a power converter for converting an input voltage into an intermediate output voltage, an output protection circuit connected to an output terminal of the power converter and an output terminal of the power supply for protecting the power converter by its ON/OFF operations, and a control unit connected to the output protection circuit for controlling the output protection circuit. When an operating frequency of the power converter is higher than a first reference frequency and the intermediate output voltage is higher than a first reference voltage, the control unit outputs a first control signal to a control terminal of the output protection circuit to turn off the output protection circuit. |
US08593762B1 |
Magnetic head for perpendicular magnetic recording capable of producing a write magnetic field of sufficient magnitude from the main pole while reducing the length of a magnetic path that connects the write shield and the main pole
A magnetic head includes a coil, a main pole, a write shield, first and second yoke layers, and first and second coupling parts. The first yoke layer is located on the trailing side relative to the main pole whereas the second yoke layer is located on the leading side relative to the main pole. The first coupling part couples the main pole and the first yoke layer to each other. The second coupling part couples the first yoke layer and the second yoke layer to each other. The first coupling part includes a plurality of first magnetic path portions, and the second coupling part includes a plurality of second magnetic path portions. The coil includes one winding portion extending to pass around the first and second magnetic path portions alternately in a zigzag manner. |
US08593754B2 |
Magnetic tape driving apparatus having a head displacing portion
A magnetic tape driving apparatus, which does not cause damage to either a magnetic head or a magnetic tape when making transition of the magnetic tape from a stopped state to a running state, when making transition of the magnetic tape from a running state to a stopped state, or when reversing the transportation direction of the magnetic tape, is provided. In a state where any one of a magnetic head and a magnetic tape moves and the other rests (i.e., a state where static friction may occur), such as at the time of starting transportation of the magnetic tape, at the time of stopping the tape in a running state, and at the time of reversing the transportation direction of the magnetic tape, a head displacing portion vibrates the magnetic head under the control by a displacement control portion, and thus no static friction occurs between the magnetic head and the magnetic tape. Therefore, the risk of causing damage to the magnetic head (such as an MR head unit equipped with an MR element) or the magnetic tape can be reduced. |
US08593753B1 |
Touchdown detection
Systems and methods for detecting touchdown of a head on a disk are provided. In one embodiment, a disk drive comprises a thermal sensor configured to sense a temperature of a head and to generate a thermal signal based on the sensed temperature. The disk drive also comprises touchdown circuit configured to receive the thermal signal, to increment a count value each time the thermal signal exceeds a thermal threshold, and to output a fault signal when the count value is equal to or exceeds a count threshold. |
US08593751B2 |
Patterned magnetic recording disk for multi-track recording with compensation for head skew
The invention is a patterned-media disks for multi-track recording that are fabricated by nanoimprinting from a master template and that have data islands arranged in a pattern to compensate for head skew. The islands are arranged along lines canted relative to a disk radial line by an acute angle, as required for multi-track recording. However, this angle is not the same for all bands, but varies from band to band to compensate for head skew. The angle the lines in a band are canted is reduced by the amount of head skew. There are a plurality of bands between the disk inside-diameter (ID) and mid-diameter (MD) where the angle is in one direction from a radial line and a plurality of bands between the disk MD and outside-diameter (OD) where the angle is in the opposite direction from a radial line. |
US08593750B2 |
Magnetic storage medium, information storage device, and control device
According to one embodiment, a magnetic storage medium, includes a magnetic recording layer that includes: a servo area including predetermined servo information; a user data area including predetermined user information; two preamble areas including a plurality of magnetic bodies made of magnetic particles, the magnetic bodies being arranged in a staggered pattern so that the staggered pattern is inverted with respect to an axis of symmetry at a track center; and a re-sync mark area positioned at a head of the preamble areas and indicates a start of the preamble areas. |
US08593748B1 |
Shingled magnetic recording disk drive with compensation for the effect of far track erasure (FTE) on adjacent data bands
A shingled magnetic recording (SMR) disk drive has concentric shingled data tracks having data sectors with physical block addresses (PBAs), with the tracks being arranged in annular bands separated by annular inter-band gaps. The disk drive also has an on-disk extended cache region and may have writable inter-band cache (IBC) tracks in the inter-band gaps. A count is maintained in memory for each band and each IBC, and the count is incremented for each writing to a band or an IBC. When a count for a band or IBC reaches a predetermined threshold, the data is read from the tracks in the boundary region of the adjacent band that are within the range of the FTE and that data is then written to the extended cache. The FTE-affected tracks are then invalidated, meaning that PBAs can no longer be assigned to the data sectors in those tracks. |
US08593746B2 |
Image display device
An image display device capable of maintaining continuity of images of adjacent image display elements on a display screen that is composed of a plurality of image display element includes image display elements (1, 2) and a prism (3). The prism (3) is an L-shaped prism having two planar surfaces, and image display elements (1, 2) are arranged on the portion of the prism that corresponds to the rear side as seen from the viewing direction (9). Image display elements (1, 2) are arranged such that the virtual images (5, 6) of the image display portions of each are optically continuously connected in the prism (3). |
US08593745B2 |
Lenses for communication devices
Some embodiments disclosed herein relate to a lens component having one or more lenses attached to a retainer portion configured to removably attach to communication devices such as mobile phones, tablet computers, media players, and the like. The retainer portion may be configured so as not to interfere with a user's view of a display panel of the communication device. In some embodiments, a plurality of lenses may be provided, and the lenses may be removably attached to the retainer portion and may be interchangeable. A structure for providing a flash may also be provided. In some embodiments, additional features may be provided, such as attachment components to facilitate attachment to stability devices, such as tripods, and to user-wearable accessories. |
US08593744B2 |
Optical device and manufacturing method therefor
An optical device may include a movable body holding a lens, a fixed body movably holding the movable body, a drive magnet and a drive coil for relatively moving the movable body with respect to the fixed body, and a metal member fixed to the drive magnet. The drive magnet is fixed to one of the movable body and the fixed body and the drive coil is fixed to the other of the movable body and the fixed body. A nickel plating layer containing at least nickel is formed on a surface of the drive magnet and a surface of the metal member, and the drive magnet and the metal member are joined to each other by a joining layer which is made of tin-based metal containing at least tin and is disposed between the drive magnet and the metal member. |
US08593742B2 |
Screw-mount lens barrel
A screw-mount lens barrel includes a screw mount cylinder which is screw-engaged with a screw mount of a camera body, a shift ring which is rotatably supported by the screw mount cylinder to be coaxial therewith, a lens barrel body which supports an optical system and is adjustable relative to the shift ring in a direction orthogonal to an optical axis, and a shift adjustment mechanism for adjusting a position of the lens barrel body relative to the shift ring in directions orthogonal to the optical axis. |
US08593741B2 |
Optical system and image pickup apparatus using the same
An optical system includes a positive lens unit, wherein the positive lens unit includes an optical element containing a base material and minute particles that are mixed with the base material and have Abbe number that is lower than that of the base material, and the minute particles are higher in density at a peripheral portion of the optical element than on an optical axis of the optical element. |
US08593736B2 |
Zoom lens and image pickup apparatus including the same
A zoom lens includes, in order from an object side: a first lens unit having a positive refractive power which does not move for varying magnification; a second lens unit having a negative refractive power which moves for varying magnification; a third lens unit having a positive refractive power which moves for varying magnification; and a fourth lens unit having a positive refractive power which does not move for varying magnification, in which: the first lens unit includes a first sub lens unit which does not move for focusing and a second sub lens unit having a positive refractive power which moves for focusing; the first sub lens unit includes three lenses having negative, positive, and positive refractive powers; and each of the elements is appropriately set. |
US08593732B1 |
Partially metallized total internal reflection immersion grating
A diffraction grating comprises a substrate with a set of protruding ridges and intervening trenches characterized by a ridge spacing Λ, width d, and height h. The substrate comprises a dielectric or semiconductor material with a refractive index n1; the first substrate surface faces an optical medium with a refractive index n2 that is less than n1. Each ridge has a metal layer on its top surface of thickness t; at least a portion of the bottom surface of each trench is substantially free of metal. Over an operational wavelength range, λ/2n1<Λ<λ/(n1+n2) can be satisfied. An optical signal can be incident on the diffractive elements from within the substrate at an incidence angle that exceeds the critical angle. The parameters n1, n2, Λ, d, h, and t can be selected to yield desired polarization dependence or independence of the diffraction efficiency. |
US08593731B2 |
Three dimensional image alignment
In an embodiment, two retro-focus lens systems are configured to provide a stereoscopic image. In an embodiment, each retro-focus lens system has a low power negative lens group with a long focal length. In an embodiment, each retro focus lens system has an optical component mounted with three points. One optical component is associated with a first of the two retro-focus lenses. The three points may be loosened, such that the optical component may be adjusted in a first direction, which in turn moves the corresponding image in the opposite direction. Another optical component is associated with the other retro focus lens system. The other optical component has a second set of points that may be loosened such that the other optical component may be adjusted in a second direction that is perpendicular to the first direction, moving the corresponding image in the opposite direction from the second direction. |
US08593730B2 |
Stage control device, stage control method and microscope
A stage control device including a position detection portion which detects a position deviation of a support plate relative to a reference position regulated by a convex portion provided in a stage, from an image of a scope including the support plate on which a sample is disposed and which is mounted on the stage; and a stage control portion that presses the stage, which is moved and controlled in a surface direction of the support plate so that the sample is in an imaging scope of an imaging element, from a position of a detection point in time in a direction corresponding to a position deviation at a pressing speed, and returns the stage up to a position of the detection point in time at a return speed slower than the pressing speed, when the position deviation of the support plate relative to the reference position is detected. |
US08593726B2 |
Methods and apparatus for producing short optical pulses
Apparatus for producing short optical pulses comprising an oscillator for producing optical pulses at a first optical pulse frequency, the optical pulses having a first wavelength; first and second optical amplifiers; a pulse picker, located between the first and second optical fiber amplifiers, the pulse picker operable to reduce the optical pulse frequency of optical pulses, the amplifier amplifying optical pulses at the first optical pulse frequency and the second amplifier amplifying optical pulses at a reduced optical pulse frequency that is less than said first optical pulse frequency; and a nonlinear optical fiber receiving amplified optical pulses at the reduced optical pulse frequency and having the first wavelength to nonlinearly produce, at the reduced optical pulse frequency, optical pulses that include a wavelength that is different than the first wavelength. |
US08593725B2 |
Pulsed optical source
The invention relates to pulsed optical sources formed of a source of seed optical radiation, a pulsed optical amplifier for pulsing the seed optical radiation, and an output optical port for outputting a pulsed optical signal produced by the pulsed optical amplifier. An optically isolating element such as an optical circulator is provided in the optical path between the optical seed source and the pulsed optical amplifier. |
US08593722B2 |
Systems and methods for providing temperature stability of acousto-optic beam deflectors and acousto-optic modulators during use
The invention provides a method of laser processing that includes the steps of: generating a sequence of RF pulses corresponding to a sequence of laser pulses having a laser pulse repetition rate, the RF pulses including transmitting RF pulses at transmitting RF frequencies and non-transmitting RF pulses at non-transmitting RF frequencies for causing the sequence of laser pulses to be deflected in respective transmitting and non-transmitting directions, each RF pulse comprising an RF frequency, an RF amplitude and a duration; controlling each RF pulse such that the sequence of RF pulses provides a modulated RF drive signal that is modulated to provide a balanced thermal loading on the acousto-optic deflector; applying the modulated RF drive signal to the acousto-optic deflector; and deflecting at least one laser pulse with the acousto-optic deflector using the modulated RF drive signal to irradiate a selected target position with a predetermined pulse energy. |
US08593720B2 |
Electronic paper and method for producing same
Provided is an electronic paper that permits a high-quality, large area to be easily created. Also provided is a method for producing the electronic paper. The electronic paper comprises: a first substrate upon which first electrodes are formed and a second substrate upon which second electrodes are formed, said first substrate and second substrate disposed so as to face each other; and a plurality of cell spaces constituting pixels between said first substrate and second substrate. The first substrate comprises a plurality of first sheet members, each having a first electrode formed thereon. By disposing a cover substrate on said first sheet members, each with a partition wall therebetween, a plurality of subsheet formations comprising the plurality of cell spaces partitioned by the partition walls are formed, and the first electrodes are connected in between adjacent subsheet formations. |
US08593719B2 |
Particles for electrophoretic displays
This invention relates to colored polymer particles preferably with surface functionality for charge retention, a process for their preparation, the use of these particles for the preparation of an electrophoretic device, color electrophoretic displays comprising such particle, and new water-soluble dyes. |
US08593714B2 |
Composite electrode and electrolytes comprising nanoparticles and resulting devices
This invention discloses novel electrochromic devices and polymer actuator materials where nanoparticles are used to make composites. In particular, the said nanoparticles are wire shaped and disc shaped. These composites allow EC devices to be made with improved performance, particularly display devices could be made that consume low power and can be manufactured at low cost. |
US08593710B2 |
Holographic projection device for the reconstruction of scenes
A holographic projection device comprises for the reconstruction of scenes at least one light source which emits sufficiently coherent light for the generation of a wave front. Further, the projection device comprises at least one light modulator device containing modulation element, said projection device being of a two-dimensional design. The light modulator device and a scanning element are combined such that the light emitted by the scanning element only scans one one-dimensional arrangement of modulation elements of the two-dimensional light modulator device at a time. |
US08593707B2 |
Image reading apparatus, image data output processing apparatus, and image reading method performing color correction based on UV and visible light
Image data Rin, Gin, Bin are read out from an image on a document, on reception of light reflected by the image after being emitted from a first light source for irradiating the document with visible light. Image data RUV, GUV, BUV are read out from the image on the document, on reception of light reflected by the image after being emitted from a second light source for irradiating the document with ultraviolet light. A color correction process is performed by reading out color corrected imaged data from a color correction table which stores in advance color corrected image data, which are associated with a combination of (i) image data, which correspond to the image data Rin, Gin, Bin, and image data which correspond to the image data RUV, GUV, BUV. By this, it is possible that even in a case where an image on the document contains a fluorescent image, the fluorescent image be easily and accurately reproduced. |
US08593704B2 |
Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing device
An erecting equal-magnification lens array plate comprises first and second lens array plates stacked on one another, a fourth surface light-shielding wall, and an intermediate light-shielding wall. An intermediate through hole formed in the intermediate light-shielding wall is formed such that the hole diameter is progressively smaller in a tapered fashion away from the first lens array plate toward the second lens array plate. An angle of inclination θ of an interior wall surface of the intermediate through hole with respect to a optical axis is given by θ≧tan−1(D4/(Gap+L2+H4))/2 where Gap denotes a gap between the lens array plates, L2 denotes a thickness of the second lens array plate, H4 denotes a height of the fourth surface light-shielding wall, and D4 denotes a diameter of the opening of the fourth surface through hole formed in the fourth surface light-shielding wall facing the image plane. |
US08593703B2 |
Imaging head for a flat bed scanner
A method for imaging using a flatbed imaging system includes providing first imaging data to a first imaging source; providing second imaging data to a second imaging source; imaging a first beam from the first imaging source at a first height on a rotating multi-facet spinner; imaging a second beam from the second imaging source at a second height on the rotating multi-facet spinner; distributing the first beam on a first location on a printing plate; and distributing the second beam on a second location on a the printing plate. |
US08593701B2 |
Optical scanning device and image forming apparatus
An oscillating mirror module as a deflecting unit is disposed so that a movable mirror faces a plane where image carriers are arranged. A plurality of light source units are disposed within a plane parallel to the plane where the image carriers are arranged so that main light fluxes of light beams emitted from the light sources form predetermined angles with each other. The oscillating mirror module includes an incidence mirror that bends a plurality of light beams emitted from the light source units to direct the light beams to the movable mirror, and a separation mirror that separates the light beams scanned by the movable mirror into two opposite directions with respect to a cross-section including a surface normal of the movable mirror and perpendicular to the rotation axis of the movable mirror. A light collecting unit collects light beams so that output optical axes of the light beams corresponding to the light source units intersect on a surface of the movable mirror of the deflecting unit. |
US08593696B2 |
Document securization method and device printing a distribution of dots on said document
The document securization method includes: a step of printing a distribution of dots on the document, the printing, as a result of unanticipated unknowns in printing, causing an unpredictable variation, dot by dot, of at least one geometric characteristic of the printed dots and prior to the print step, a step of generating the distribution of dots so that dots of the distribution have at least one geometric characteristic that varies among dots, the geometric amplitude of the generated variation having the order of magnitude of the unpredictable variation. Preferably during the generation step, in the dot distribution: at least half the dots of the distribution are not laterally juxtaposed to four other dots of the dot distribution, and at least one dimension of at least one part of the dots of the dot distribution is of the same order of magnitude as the average for the absolute value of the unpredictable variation. |
US08593695B2 |
Image processing apparatus and non-transitory computer readable recording medium
An image processing apparatus including: a first storage portion that stores patterns used for matching with edge portions of a linear image included in an input image, the patterns having respective different sizes, and each of the patterns being composed of pixels and including a target pixel corresponding to a pixel to be deleted in the linear image; a selection portion that selects a pattern having a size according to a line width of a line thinning process to the linear image, from the stored patterns; a pattern detection portion that matches the selected pattern with the linear image while shifting the selected pattern, and detects whether the selected pattern is matched with the linear image; and a deletion portion that, when the matching result is detected, deletes the pixel in the linear image corresponding to the target pixel in the selected pattern. |
US08593690B2 |
Method for making overprint predictions
To improve a method for making an overprint prediction to that extent, that the method allows more reliable overprint predictions with a reduced effort, the invention proposes a method for making the overprint prediction for a color combination, in which method a printing substrate and at least two printing colors and one gradation of hue values per printing color including the full tone as well as color combinations are predefined as data of the hue value of the n printing colors, wherein first of all individual color predictions comprising three transmittance components and the associated transmittance spectra for the respective hue value are determined for each of the n printing colors, wherein for an intended color combination up to (3 to the power of n) combinations of the transmittance components and the associated combined transmittance spectra are determined, and an overall reflectance spectrum of an overprint is predicted on the basis of the determined transmittance components with their transmittance spectra and the reflectance spectrum of the unprinted substrate. |
US08593689B2 |
Systems and methods for specifying color tolerance intent and implementation as part of a digital print workflow
Systems and methods are provided for enabling submission of color accuracy requirements with the submission of a print job. More specifically, a print job analysis system may be configured to receive a print job request having a color accuracy requirement level directly from a customer (or from an operator on behalf of the customer). In addition, the print job analysis system may also be configured to determine an appropriate color accuracy requirement level for the print job request if no color accuracy requirement level is directly provided with the print job request. Furthermore, the print job analysis system may also be configured to provide an analysis of recommended color accuracy requirement levels to the customer and/or the operator if they are unsure of an appropriate color accuracy requirement level to be used for the particular print job. |
US08593688B2 |
Method for enhancing security printing
A method for enhancing security printing includes determining fields associated with print job variability. Physical security information is entered, and a physical security data stream is generated from the physical security information. The physical security data stream is mapped to a data stream that is used to provide settings for the fields for the print job variability. The fields for the print job variability are set based upon the mapping the physical security data stream. |
US08593682B2 |
Color conversion system and color conversion processing method
For color conversion of image data in a L*a*b* color space, a color conversion system includes a color conversion processor to implement a first color conversion for color conversion of data positions of an image data in a reference-color representing first region covering a constant hue line at a prescribed hue angle on an a*b* plane, and a second color conversion for color conversion of data positions of the image data in a second region set outside the first region within an angular range smaller in hue angle than the prescribed hue angle on the a*b* plane, the prescribed hue angle being set up in an angular region of 0 degree or more and 90 degree or less relative to an a* axis, the color conversion processor being adapted to implement mutually different color conversion processes for the first color conversion and the second color conversion. |
US08593679B2 |
Position-based image scanning, processing and storage
A scanning apparatus which scans a document, includes: a scanning section which includes a scanning area and which scans the document in the scanning area; a control device which includes a position information capturing section which captures a position information indicating a position of the document on the scanning area when the document is scanned by the scanning section and a processing section which performs a plurality of processes with respect to an image data of the document scanned by the scanning section based on the position information captured by the position information capturing section. |
US08593678B2 |
Information processing system, method and recording medium
An image forming apparatus that functions as a client of a distributed file system is provided, in which the image forming apparatus includes: a distributed file system process part for mounting a file system of a server apparatus on the image forming apparatus to enable the image forming apparatus to access the file system of the server apparatus as the distributed file system of the image forming apparatus; and a storing process part for accessing the file system of the server apparatus and storing, in the file system, information that is stored in a storage unit used by the image forming apparatus. |
US08593677B2 |
Mobile printing system using a device management server
A mobile printing system includes a cloud server apparatus, a mobile terminal device, a device management server apparatus, a print-control device, and an image forming apparatus. The cloud server apparatus stores a document data file. The mobile terminal device includes a wireless communication interface, and a short-range communication interface of which the maximum communicable distance is shorter than that of the wireless communication interface, and transmits the document data file with its device ID to the cloud server apparatus. The device management server apparatus receives the document data file in association with the device ID, and converts the document data file to print data and stores it. The print-control device detects the mobile terminal device using a short-range communication interface, and receives its device ID, and receives the print data from the document management server apparatus, and transmits the print data to the image forming apparatus for printing. |
US08593675B2 |
Scan back control of stacked received faxes
A method of selectively printing facsimiles on an image forming apparatus, the method includes the steps of: receiving incoming facsimiles on the image forming apparatus, each of the incoming facsimiles having one or more pages; printing at least one page of each of the incoming facsimiles; storing an entirety of each of the incoming facsimiles in a memory of the image forming apparatus; selectively printing incoming facsimiles by scanning the at least one page on the image forming apparatus to retrieve the entirety of a selected incoming facsimile from the memory of the image forming apparatus; and printing the entirety of the selected incoming facsimile. |
US08593674B2 |
Method and apparatus for estimating file size before transmission of image data
An image processing apparatus stores a plurality of conversion conditions for converting input image data and, if the image data is converted according to each conversion condition, information indicating a relationship between a data size of the image data before conversion and a data size of transmission data that is acquired after conversion by associating the conversion conditions and the information with each other; sets the conversion condition for converting the input image data according to an instruction from a user, estimates the data size of the transmission data that is acquired if the input image data is converted according to the set conversion condition, using the stored information; and issues a notification to the user based on a result of the estimation. |
US08593673B2 |
Systems and methods for routing a facsimile confirmation based on content
A method for routing a confirmation of receipt of a facsimile or portion thereof according to one embodiment of the present invention includes analyzing text of a facsimile for at least one of a meaning and a context of the text; and routing one or more confirmations to one or more destinations based on the analysis. A method for routing one or more confirmations according to another embodiment of the present invention includes analyzing a pattern of light and dark areas of a facsimile; correlating the pattern to one or more forms; and routing one or more confirmations to one or more destinations based on the correlation. Additional systems and methods are also presented. |
US08593659B2 |
System and method for third party authentication of web-based print-on-demand requests
A system and program implement a process for allowing users of third party vendors to access print shop applications without separate authentication. The process includes the steps of creating a query-string having identification information of a third party vendor and authentication information of a user of the third party vendor. The query-string is created in response to the user's access to the third party vendor's web-site, and is contained in an inline frame and encrypted. Upon receiving the encrypted query-string sent from a third party vendor server to a print shop server, the query-string is decrypted. It is then determined whether the user has an existing account on the print shop server. If the user has an existing account, the user is automatically logged into the print shop server so that the user may access and use any print-on-demand applications on the print shop server without manually inputting user authentication information on the print shop server. |
US08593655B2 |
Host apparatus and system finishing method thereof
A system finishing method of a host apparatus communicating with an image forming apparatus for performing a printing operation, comprises: selecting system-finishing in an OS (operation system) of the host apparatus; confirming the presence or absence of a printing operation of the host apparatus; and if it is confirmed that there exists the printing operation of the host apparatus, displaying a finish selection message indicating an after-print system finish item.Thus, the present invention provides a host apparatus, which is capable of promoting user's convenience at the time of system-finishing of the host apparatus by providing a user with a finish selection message indicating that the host apparatus is automatically finished after a printing operation is completed, when the user selects the system-finishing of the host apparatus during the printing operation, and a system finishing method thereof. |
US08593653B2 |
Print management method and apparatus with multiple views
A method for managing a plurality of pint jobs is implemented in a print job management apparatus connected to printers. The method includes receiving print job, and visually presenting a display screen to a user, the display screen including first, second and third panels for classifying the received print jobs according to processing phase thereof, the first panel being provided for listing print jobs that are awaiting assignment of printers thereto for processing the print jobs, the second panel being provided for listing print jobs that have been assigned to printers and that have not been completed by the assigned printers, the third panel being provided for listing at least one of first and second categories of print jobs, the first category including print jobs that have been completed, the second category including print jobs that have been cancelled. |
US08593648B2 |
Target method using indentifier element to obtain sphere radius
A method is provided of obtaining the characteristics of a target by a device. The method includes providing the target having a target frame of reference, a retroreflector and a body. Providing a contact element rigidly fixed with respect to the body. A device is provided having a frame of reference and a light source, the device configured to measure a distance and two angles from the device to the retroreflector reference point. An identifier element located on the body. A workpiece surface is provided. The contact element contacts the workpiece surface. The retroreflector is illuminated with light from the light source and returns a reflected light. A distance and two angles are measured based at least in part on the reflected light. The first information is read with a first reader attached to the device. A three-dimensional coordinate of a point on the workpiece surface is calculated. |
US08593647B2 |
Wide field of view optical tracking system
An optical tracking system for determining the pose of a moving object in a reference coordinate system includes light emitters, optical detectors, and a pose processor. The processor is coupled with an optical detector and also with a light emitter. The processor determines the object's pose according to detected light. An optical detector and a light emitter are situated at a fixed position in the reference coordinate system. Other ones of the optical detectors and light emitters are attached to the object. One optical detector is a WFOV detector comprising an optical sensor and optical receptors. The receptors are spaced apart and optically coupled with the optical sensor. The sensor senses light received from a light emitter. Each receptor projects a different angular section of a scene on the sensor. The pose processor associates the representation on the sensor, with a respective receptor which projected the light on the sensor. |
US08593645B2 |
Microlithographic projection exposure apparatus and related method
A microlithographic projection exposure apparatus includes an optical surface and a measurement device which measures a parameter related to the optical surface at a plurality of separated areas on the optical surface. The measurement device includes an illumination unit which directs individual measuring light beams towards the areas on the optical surface. Each measuring light beam illuminates at least a portion of an area, which is associated with the measuring light beam, and at least a portion of an adjacent area which is not associated with the measuring light beam. A detector unit measures a property for each measuring light beam after it has interacted with the optical surface. |
US08593641B2 |
Apparatus and methods for uniform frequency sample clocking
The invention provides systems and methods for producing an OCT image from a swept laser source. In certain embodiments, methods of the invention involve producing light from a swept laser source, splitting the light into a first and a second portion, in which the first portion is sent to an OCT interferometer to produce an OCT signal and the second portion is sent to a uniform frequency sample clock, processing the second portion into an external clock signal that is accepted by a digitizer, sending the OCT signal and the clock signal to the digitizer, and generating an OCT image from a combination of the OCT signal and the clock signal. |
US08593639B2 |
System and method for optical coherence tomography with light or detector modulation
The invention relates to a system and to a corresponding method for optical coherence tomography having an interferometer (10) for emitting light with which a specimen (1) is irradiated, the interferometer (10) comprising a beam splitter (13) and at least one reflector (12) the optical distance (I) of which from the beam splitter (13) can be changed by an optical path (L), and a detector (30) with a first number of detector elements arranged in a first area for collecting light which is reflected by the specimen (1).In order to be able to record images of a specimen, in particular in real time, more simply and quickly, the system is operated in a first mode in which light reflected by the specimen (1) is only collected by a second number of detector elements of the detector (30) and converted into corresponding detector signals, the second number of detector elements being smaller than the first number of detector elements. |
US08593637B2 |
Spectrometric instrument
A spectrometric instrument comprising: a scanning interferometer having a beamsplitter for dividing incident optical radiation into a reflected beam, following a reflected beam path and a transmitted beam following a transmitted beam path; a monochromatic optical radiation source for launching a reference beam into the interferometer along a first propagation path to be initially incident on a first face of the beamsplitter; an observation optical radiation source for launching a divergent observation beam into the interferometer along a second propagation path to be initially incident on the first face of beamsplitter and overlap the reference beam at the first face; wherein the radiation sources cooperate to generate a first angle between the directions of propagation of the two beams along respective first and second propagation paths when initially and simultaneously incident at the first face which is larger than a divergence half-angle of the observation beam 64. |
US08593636B2 |
Pipe system, a fluid sensing system for a pipe system, and a method of determining a fluid component in an annulus cavity of a pipe
The invention relates to a pipe system comprising a) a pipe, b) a fluid sensing station and c) a remote light detector system. The pipe comprises a flow channel and an annular fluid cavity surrounding the flow channel. The fluid sensing station comprises a sensing fluid cavity which is in fluid communication with the annular fluid cavity, and the sensing fluid cavity comprises a light emitter and a light receiver placed at a distance from each other. The light emitter and the light receiver are optically connected to each other and optically connected to the remote light detector system.The invention also relates to a fluid sensing system for sensing a fluid in an annulus cavity of a pipe, said fluid sensing system comprises a fluid sensing station and a remote light detector system. The fluid sensing station comprises a sensing fluid cavity comprising a light emitter and a light receiver placed at a distance from each other and optically connected to each other. The remote light detector system comprises a light source and an analyzer. The light emitter is optically connected to the light source, and the light receiver being optically connected to the analyzer. The fluid sensing station is arranged to be connected to a pipe with an annular fluid cavity to provide a fluid communication between said annular fluid cavity and said sensing fluid cavity.The invention further relates to a method for sensing a fluid in an annulus cavity of a pipe. |
US08593630B2 |
Discrete frequency spectroscopy and instrumentation
Described herein are spectrometers comprising one or more wavelength-selective filters, such as guided mode resonance filters. Some of the spectrometers described herein are configured for obtaining absorbance spectra in a discrete fashion by measuring absorbances of a sample at multiple discrete wavelengths or wavelength bands. In another aspect, methods are also provided for obtaining spectra, images and chemical maps of samples in a discrete fashion. |
US08593627B2 |
Apparatus and method for inspecting the inner surface of a tubular structure for contamination
A method for inspecting the inner surface of a tubular structure for contamination comprises emitting a light beam directed onto the inner surface at a first end thereof, wherein the beam is directed at a predetermined glancing angle such that it repeatedly reflects off of the inner surface of the tubular structure along the length thereof. The method further comprises receiving the reflected beam at a second end of the tubular structure. The method still further comprises measuring a value of the reflectance of the received reflected beam, defining a parameter value using the measured value, and comparing the parameter value with a predetermined threshold value. The method further comprises determining, based on the comparison, the extent to which the inner surface of the tubular structure is contaminated, and displaying an indication representative of the contamination based on the determination. An apparatus for performing the method is also provided. |
US08593623B2 |
Instrument and method for characterising an optical system
An instrument (1) for characterizing an optical system, includes: at least one primary source (3) for emitting an illumination light beam (FE); an optical device for directing the illumination beam (FE) onto the optical system (L) to be characterized; a wave front analyzer (4) adapted for receiving a beam from the optical system (L); and a unit for processing the measure signals from the wave front analyzer (4), adapted for providing characterization information of the optical system (L). The instrument further includes a scattering member (22) substantially provided in the focal plane of the optical system (L) so as to create a secondary source generating a secondary beam flowing through the optical system (L) and further directed towards the wave front analyzer. |
US08593619B2 |
System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
Exemplary embodiments of apparatus, method and computer accessible medium can be provided which can facilitate a determination of at least one characteristic of a structure. For example, it is possible to use at least one first arrangement which can be structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis. The first and second transmitted radiations can impact the structure and generate respective first and second returned radiation. The first and second axis can be provided at a predetermined angle with respect with one another which is greater than 0. Further, at least one second arrangement can be provided which can be configured to receive data associated with the first and second returned radiations, and determine at least one relative velocity between the structure and the first arrangement along the first and second axes. |
US08593615B2 |
Height measurement apparatus, exposure apparatus, and device fabrication method
The present invention provides a measurement apparatus which measures a height of a test surface, the apparatus including an image sensing device including a plurality of detection units configured to detect interfering light formed by measurement light from the test surface and reference light from a reference surface, and an optical system configured to guide the measurement light and the reference light to the plurality of detection units, wherein the reference surface is placed such that differences are generated among optical path differences between measurement light beams and reference light beams which enter the plurality of detection units, respectively. |
US08593608B2 |
Three-dimensional display
A three-dimensional display includes a display panel having a plurality of first pixels arranged in the odd row, and a plurality of second pixels arranged in the even row. Each first pixel has a first and a second transparent regions and a first semiconductor pattern. Each second pixel has a third and a fourth transparent regions and a second semiconductor pattern. In any two adjacent first and second pixels, the first and the third transparent regions are mirror images of each other, and the second and the fourth transparent regions are mirror images of each other. In the adjacent first and second pixels arranged in any two rows, the loss of the light transmittance at any position along the row direction due to overlapping of the first semiconductor and the first transparent region and overlapping of the second semiconductor and the fourth transparent region remains unchanged. |
US08593607B2 |
Liquid crystal display element
The object is to make alignment of liquid crystals more uniform by reducing alignment disorder when a voltage is applied and to improve the display quality. A liquid crystal display element comprises a first electrode (122), a second electrode (141) opposed to the first electrode, and a liquid crystal layer provided between the first electrode and the second electrode and having alignment of liquid crystal in the voltage-off state being vertical alignment, wherein either one of the first electrode and the second electrode is provided with a plurality of regularly disposed L-shaped slits, and the L-shaped slits (21) are formed so that at least within an area where the first electrode and the second electrode overlap each other, the electrode provided with the slits, is divided into a plurality of rectangular sub-pixel electrodes each having connection portions at three corners for connection to adjacent sub-pixel electrodes. |
US08593606B2 |
Liquid crystal display and fabricating method thereof
A liquid crystal display (LCD) includes: a gate line formed as a first conductive pattern; a common line formed as the first conductive pattern; a data line insulatedly crossing the gate line and the common line, and formed as a second conductive pattern; a thin film transistor (TFT) formed at a crossing of the gate line and the data line; a common electrode formed as a third conductive pattern, and connected with the common line; and a pixel electrode connected with the TFT and formed as the third conductive pattern to form a horizontal field together with the common electrode, wherein the third conductive pattern is formed as a dual-layer comprising a metal film and a low reflection film formed on the metal film. |
US08593605B2 |
Liquid crystal display
The present invention relates to a liquid crystal display including: a first substrate and an opposing second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a light blocking member disposed on the first substrate or the second substrate; a first field generating electrode disposed on the first substrate; a second field generating electrode disposed on the first substrate and including branch electrodes overlapping the first field generating electrode; and a gate line disposed on the first substrate and extending in a first direction. A branch electrode of the branch electrodes includes a central portion and a first edge portion disposed at one end of the central portion. A first angle formed between the first edge portion and a second direction is greater than a second angle formed between the second direction and the central portion, the second direction being perpendicular to the first direction. |
US08593602B2 |
Production method for liquid crystal display device and exposure device including exposure of alignment layers
The present invention provides a production method of a liquid crystal display device, and an exposure device, which can inhibit the deterioration of display quality even when the aligning treatment of an alignment layer is performed using an optical alignment method. The present invention pertains to a production method of a liquid crystal display device in which an alignment layer is provided on a substrate and two or more domains are formed in each pixel of a display region by exposing the alignment layer, wherein the production method includes the exposure step of exposing the alignment layer through a photo mask in which a plurality of light-transmitting areas are located in a stripe pattern, and wherein the exposure step is a step of exposing the alignment layer continuously while the relative position of the photo mask with respect to the substrate is moved at the time of viewing a substrate surface from the front in substantially parallel with the light-transmitting area. |
US08593601B2 |
Display panel and method for manufacturing the same
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å. |
US08593599B2 |
Liquid crystal panel and liquid crystal display
[Object]The present invention provides a liquid crystal panel with which a display with extremely small change in color depending on a viewing direction can be realized, and a liquid crystal display including the same.[Solution to Problem]The liquid crystal panel includes: a first polarizer 30; a second polarizer 50; a first optical compensation layer 60; a second optical compensation layer 70; and a liquid crystal cell 40. The first polarizer 30 is arranged on one surface of the liquid crystal cell 40. The second polarizer 50 is arranged on the other surface of the liquid crystal cell 40. The first optical compensation layer 60 is arranged between the liquid crystal cell 40 and the first polarizer 30. The second optical compensation layer 70 is arranged between the liquid crystal cell 40 and the second polarizer 50. The first optical compensation layer 60 satisfies the following mathematical formulae (1) and (2). The second optical compensation layer satisfies the following mathematical formulae (3) and (4). nx>ny≧nz (1) (Re[450]/Re[550])<1.00 (2) nx≧ny>nz (3) (Rth[450]/Rth[550])≧1.10 (4) |
US08593593B2 |
Polarization element, projector, liquid crystal device, electronic apparatus, and method of manufacturing polarization element
A polarization element according to the invention includes a substrate, a metal layer and an absorber layer formed on the substrate to form a stripe in a plan view and stacked in a thickness direction of the substrate, a first dielectric layer formed on a surface of the metal layer and a second dielectric layer formed on a surface of the absorber layer. The first dielectric layer is made of an oxide of a metal constituting the metal layer, and the second dielectric layer is made of an oxide of a material constituting the absorber layer. |
US08593583B2 |
Liquid crystal display and driving method thereof
The present invention relates to a liquid crystal display including: a first substrate, a gate line formed disposed on the first substrate, a first data line and a second data lines formed both of which are disposed on the first substrate, and insulated from and intersection disposed substantially perpendicular to the gate line, a first thin film transistor connected to the gate line and the first data line, a second thin film transistor connected to the gate line and the second data line, a first pixel electrode connected to the first thin film transistor, a second pixel electrode connected to the second thin film transistor, a second substrate facing disposed substantially opposite to the first substrate, a common electrode formed disposed on the second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, and including biaxial liquid crystal. |
US08593581B2 |
Thermally switched optical downconverting filter
A thermally switched optical downconverting (TSOD) filter is a self-regulating device including a downconverter that converts incoming light at a variety of wavelengths into longer-wavelength radiation and then directs it using one or more bandblock filters in either the inward or outward direction, depending on the temperature of the device. This control over the flow of radiant energy occurs independently of the thermal conductivity or insulating properties of the device and may or may not preserve the image and color properties of incoming visible light. The TSOD filter is energy-efficient as it can be used to regulate the internal temperature and illumination of buildings, vehicles, and other structures without the need for an external power supply or operator signals. The TSOD filter has unique aesthetic and optical properties not found in traditional windows, skylights, stained glass, light fixtures, glass blocks, bricks, or walls. |
US08593580B2 |
Projection-type display apparatus
A projection-type display apparatus, being suitable to be applied as a light source of a solid-state light source, in the place of a conventional lamp, comprises: a light source unit, which is configured to emit a white-color light therefrom; a light separation optic system, which is configured to separate the white color light from the light source unit into three primary color lights, red-color (R), green-color (G) and blue-color (B); R, G and B light modulating portions, each of which modulates each of R, G and B polarized lights separated, depending on a video signal, respectively; a light composing unit, which is configured to compose optical images, which are formed by the R, G and B light modulating portions; and a projecting portion, which is configure to project the optical image composed, enlargedly, wherein the light source unit emits a white color light emitting from a nearly point-like light source, including an excitation light from a solid-state light emitting element therein. |
US08593577B2 |
Image pickup apparatus and control method for image pickup apparatus, image display apparatus and control method for image display apparatus, and recording medium
An image pickup apparatus operates in a normal power-consumption mode in the period after reception of an image-transfer request command from a digital television set until completion of an operation for transferring still image data in accordance with the image-transfer request command, and operates in a low power-consumption mode in the period after the completion of the operation for transferring the still image data in accordance with the image-transfer request command until reception of another image-transfer request command from the digital television set. |
US08593572B2 |
Video signal motion detection
Systems and methods directed to determining motion in a video signal are provided. A plurality of pixels of a plurality of adjacent field lines of alternating parity of the video signal are evaluated to generate a plurality of differential values. A sign of each differential value is determined, and when each differential value has the same sign, at least one differential value can be compared with a threshold value. Responsive to the comparison of at least one differential value with a threshold value, a motion coefficient indicative of a magnitude of motion associated with one of the plurality of pixels can be generated. |
US08593568B2 |
Shape memory alloy actuation apparatus
A shape memory alloy actuation apparatus comprises a movable element supported on a support structure by a suspension system comprising a plurality of resilient flexures. A shape memory alloy actuator drives movement of the movable element on contraction. An end-stop limits the movement of the movable element in the opposite direction. Rather than using the resilient flexures of the suspension system as the sole biassing means, an additional Massing element biasses the movable element against the SMA actuator. When the moveable element is held against the end-stop, the force applied by the biassing element is greater than the force applied by the flexures of the suspension system. This reduces the design constraints, for example allowing a greater range of movement. |
US08593558B2 |
Camera-based orientation fix from portrait to landscape
A portable electronic device includes a camera and a display switchable between a portrait mode and a landscape mode in response to an inertial sensor. When it is determined that the display mode should be switched in response to movement of the device, a feature of a user of the device, such as the user's face, is imaged with the camera. If the imaged feature changes orientation with respect to the display by less than a threshold amount, then the switch in display mode is disabled and the display remains in its current mode. Other embodiments are also described and claimed. |
US08593549B2 |
Image capture apparatus
An image capture apparatus includes an image sensor, a determination unit which determines one image capturing mode, a driving unit which drives the image sensor by different driving methods in the respective image capturing modes, and a control unit which controls the operation of the driving unit. The image sensor includes a plurality of two-dimensionally arrayed pixels, a predetermined number of vertical output lines arranged for each array of pixels, and a holding memory which holds pixel signals from pixels on rows. The control unit drives the image sensor in the first power save mode when a horizontal transfer period is not less than twice a vertical transfer period, and drives the image sensor in the second power save mode when the vertical transfer period is not less than twice the horizontal transfer period. |
US08593538B2 |
Solid state imaging device
According to one embodiment, a solid state imaging device has a semiconductor substrate. First, second and third photoelectric conversion portions are provided in a surface region of the semiconductor substrate. A blue color filter has a film thickness to give a first light path length. A green color filter has a film thickness to give a second light path length longer than the first light path length. A red color filter has a film thickness to give a third light path length longer than the second light path length. A flattening film is formed on the blue color filter, the green color filter and the red color filter. The flattening film flats steps of the color filters. Micro lenses are provided on the flat film. Each of the micro lenses is formed at a position corresponding to each of the first, second and third photoelectric conversion portions. |
US08593536B2 |
Image pickup apparatus with calibration function
An image pickup apparatus comprises a lens array with a plurality of lenses, a part of which lenses makes one or more stereo lens pairs; an image pickup device for taking a multifaceted compound-eye image consisting of a set of monocular images formed by the plural lenses; and a computing unit for computing range imagery from one or more pairs of the monocular images formed by said one or more stereo lens pairs. The computing unit includes imaging position determination means for determining from the monocular images an image pickup position of each of one or more subjects whose relative positional relationships with respect to the image pickup apparatus are known by dividing the multifaceted compound-eye image into the monocular images, and image distortion parameter determination means for determining an image distortion parameter based upon a determination result of the imaging position determination means. |
US08593534B2 |
Auto-triggered camera self-timer based on recognition of subject's presence in scene
An automated image capture mode of a camera in an electronic device insures that a particular subject appears in the captured image. An image of the particular subject, which may be the photographer, is initially captured. Subsequently, another image capture is automatically triggered when the same subject is detected within the camera's field of view. In one embodiment, a motion sensor within the device may be employed to begin a search for the subject, when the camera is subjected to a sudden movement. Other embodiments are also described and claimed. |
US08593533B2 |
Image processing apparatus, image-pickup apparatus, and image processing method
The present invention provides an image processing apparatus capable of obtaining good shake-corrected images in electronic image stablization irrespective of changes of image-taking conditions. An image processing apparatus comprises a shake correcting part that performs coordinate transformation processing based on shake information to an input image that is generated by use of an image-pickup device, and a method changing part that changes a coordinate transformation method for the coordinate transformation processing. |
US08593523B2 |
Method and apparatus for capturing facial expressions
A method and an apparatus for capturing facial expressions are provided, in which different facial expressions of a user are captured through a face recognition technique. In the method, a plurality of sequentially captured images containing human faces is received. Regional features of the human faces in the images are respectively captured to generate a target feature vector. The target feature vector is compared with a plurality of previously stored feature vectors to generate a parameter value. When the parameter value is higher than a threshold, one of the images is selected as a target image. Moreover, a facial expression recognition and classification procedures can be further performed. For example, the target image is recognized to obtain a facial expression state, and the image is classified according to the facial expression state. |
US08593521B2 |
Imaging system for vehicle
An imaging system for a vehicle includes an imaging device having a forward field of view exterior of the vehicle. The imaging device is operable to capture multiple frames of image data, and the multiple frames of image data include repeating frame sets. A particular frame set of the repeating frame sets has at least two frames. An image processor operable to process image data captured by the imaging device. A control, responsive to processing of captured image data, controls, at least in part, an intelligent headlamp control feature of the vehicle and a lane departure warning feature of the vehicle. One frame of a particular frame set is processed by the image processor for the intelligent headlamp control feature and no other frame of the particular frame set is processed by the image processor for the intelligent headlamp control feature. |
US08593520B2 |
Peripheral viewing system for a vehicle
A peripheral viewing system for a vehicle includes a pair of digital cameras, each positioned on the exterior of the vehicle proximately positioned where a side view mirror would typically be mounted. An additional digital camera is mounted on the vehicle roof immediately adjacent the top edge of the rear window. A plurality of LCD's each discretely associated with a corresponding camera are mounted within the vehicle passenger compartment at a location that is readily observable by the vehicle driver. The driver can panoramically view trailing traffic by observing the LCD's in the passenger compartment. One or more infrared phototransistor receivers are positioned at the rear of the vehicle for detecting oncoming vehicles. If the driver attempts to change lanes and activates a turn signal, a warning message will be emitted within the passenger compartment if any of the transistors detect an approaching vehicle within a predetermined range of the vehicle. |
US08593518B2 |
Computer system for continuous oblique panning
A computer system for continuously panningoblique images. More particularly, the computer system uses a methodology whereby separate oblique images are presented in a manner that allows a user to maintain an understanding of the relationship of specific features between different oblique images when panning. |
US08593517B2 |
Method and apparatus for configuring a video surveillance source
A method of controlling a video source in a video surveillance system having a video source connected by a network to a workstation having a graphical user interface for enabling a user to control the video source comprising the steps of providing a video analysis program for analyzing the video images generated by the video source before the video images are transmitted over the network, providing a file containing the user interface controls for the graphical user interface and the parameters for configuring the video analysis program; storing the file in memory, downloading the file to the workstation at run time and enabling a user to configure the video analysis program by interacting with the graphical user interface. |
US08593511B2 |
Playback device, integrated circuit, recording medium
A playback device for playing back a graphics stream in accordance with a stream selection table recorded on the recording medium. A procedure means determines a playback type of a graphics corresponding to the current stream number, based on the playback capability indicated by the capability register. The playback of graphics streams falls into two types, one of which is a first playback type in which a monoscopic graphics stream is used and the other is a second playback type in which a pair of left-eye graphics stream and right-eye graphics stream is used to perform a stereoscopic playback. The capability register indicates whether or not a capability to perform the stereoscopic playback by using the pair of left-eye graphics stream and right-eye graphics stream is present in the graphics decoder. |
US08593506B2 |
Method and system for forming a panoramic image of a scene having minimal aspect distortion
A panoramic image is generated from a sequence of input frames captured by a camera that translates relative to a scene having at least two points at different distances from the camera. A processor (13) is responsive to optical flow between corresponding points in temporally different input frames for computing flow statistics for at least portions of some of the input frames and for computing respective stitching costs between some of the portions and respective neighboring portions thereof. A selection unit (18) selects a sequence of portions and respective neighboring portions that minimizes a cost function that is a function of the flow statistics and stitching costs. A stitching unit (21) stitches the selected portions and respective neighboring portions so as to form a panoramic image of the scene, which may then be displayed or post-processed. |
US08593494B2 |
Method and apparatus for processing and/or inspecting pellet-shaped articles
A system for marking pellet shaped articles includes a conveyer to convey the pellet-shaped articles along a transport path, and a laser to generate at least one beam to print or etch information on one or more of the pellet-shaped articles. The information includes at least one of alphabetical characters, numeric characters, and/or logos. The information comprises at least one engraving, e.g., two engravings or holes, apertures, etc., that are adjacent one another and at least partially overlapping. The system includes a controller to control x and y or x, y and z coordinates of the beam of the laser relative to the transport path to align the beam with the one or more of the pellet-shaped articles. |
US08593492B2 |
Light guide plate, backlight unit and display apparatus including the same and manufacturing method thereof
A light guide plate, a backlight unit and a display apparatus including the same and a manufacturing method thereof are provided. The light guide plate includes: a body which includes an incident surface and an emission surface; at least one first optical path converter which is formed in an opposite surface of the body which is opposite to the emission surface, and extends continuously in a first direction to convert an optical path of an incident light introduced through the incident surface so that the incident light passes through the emission surface; and at least one second optical path converter which is formed in the opposite surface, and is arranged discontinuously in at least one row extending in the first direction. |
US08593486B2 |
Image information output method
Provided is a video image data generation system including a database for storing a plurality of image data photographed in various directions in various locations, correlating the directions and the locations with the stored image data, and correlating and storing a photographed sub-region when the image data is acquired, a route view point specifying device which specifies various locations and eye level directions arranged on a view point route, an image search engine which searches an image of an eye level direction specified from a location of a view point route specified by the route view point specifying device and outputs video data, wherein the image search engine searches image data stored in a database and the image data including a sub-region located in an eye level direction in each of a plurality of locations on a view point route by referencing photography direction data correlated with the sub-region. |
US08593480B1 |
Method and apparatus for image data transformation
Image data is transformed for display on a target display. A sigmoidal transfer function provides a free parameter controlling min-tone contrast. The transfer function may be dynamically adjusted to accommodate changing ambient lighting conditions. The transformation may be selected so as to automatically adapt image data for display on a target display in a way that substantially preserves creative intent embodied in the image data. The image data may be video data. |
US08593477B2 |
Line drawing processing apparatus and computer-readable recording medium
A plurality of closed regions constituting a line drawing image are extracted and displayed on a display means. A desired closed region included among the plurality of displayed closed regions is extracted as an image layer by specifying the desired closed region by means of a manipulation means. At this time, a closed region display screen for displaying the extracted closed regions thereon and an image layer display screen for displaying the extracted image layer thereon are displayed in side by side relation on the display means. Thus, whether an appropriate closed region is converted to the image layer or not is easily determined. Also, when a plurality of closed regions are specified, the plurality of specified closed regions are extracted as an image layer. Thus, the plurality of closed regions are treated together as the single image layer. This achieves such functions and effects that both the improvement in the efficiency of the color application to the line drawing resulting from the image layer process and the improvement in the efficiency of the color application to the line drawing resulting from the closed region extraction are accomplished. |
US08593476B2 |
System for accurately and precisely representing image color information
A method and system for accurate and precise representation of color for still and moving images, particularly sequences of digitized color images. Spectral and/or extended dynamic range information is retained as images are captured, processed, and presented during color adjustment. Using this extra spectral information, various methodologies for further presenting or processing the color within these images can be optimized. Presentation-device independence is achieved not by attempting to discover a device-independent intermediate representation, but rather by deferring the binding and mapping of color representation onto a presentation device until its actual use. |
US08593473B2 |
Display device and method for optimizing the memory bandwith
A display device that comprises a flag memory containing state flags of pixel areas of the image is provided. The display device comprises a display screen and a graphical generation unit implementing at least three functions for displaying an image, i.e. a first data erasure function, a second function for generating an image comprised of pixels in a first memory, and a third function for displaying the image by reading the pixels in said memory and controlling the screen, in which an image is divided into a plurality of separate pixel areas and in that each area is addressed by a flag, wherein the display device further includes a memory that stores the flag states so that the graphical generation unit can execute the display function on the basis of the flag states. The generation of images having a predominantly uniform background can, in particular, be used for application in aeronautics. |
US08593472B1 |
System and method for accessing a frame buffer via a storage driver
One embodiment of the invention sets forth a mechanism for retrieving and storing data from/to a frame buffer via a storage driver included in a GPU driver. The storage driver includes three separate routines, the registration engine, the page-fault routine and the write-back routine, that facilitate the transfer of data between the frame buffer and the system memory. The registration engine registers a file system, corresponding to the frame buffer, the page-fault routine and the write-back routine with the VMM. The page-fault routine causes a portion of data stored in a specific memory location in the frame buffer to be transmitted to a corresponding memory location in the application memory. The write-back routine causes data stored in a particular memory location in the application memory to be transmitted to a corresponding memory location in the frame buffer. |
US08593471B2 |
Memory access method and access controller for a memory
The method includes the following steps: monitoring an actual value of a relevant parameter of a display bandwidth of data to be output by the memory; comparing the actual value of the relevant parameter with a threshold to determine whether the actual display bandwidth meets predetermined requirements; and selecting an access arbitration mode for the memory according to whether the predetermined requirements are met. The access controller includes: a monitoring and comparing unit, adapted to monitor an actual value of a relevant parameter of a display bandwidth of data to be output by the memory and compare the actual value of the relevant parameter with a threshold to determine whether the actual display bandwidth meets predetermined requirements; and an arbitration adjusting unit, adapted to select an access arbitration mode for the memory according to whether the predetermined requirements are met. |
US08593470B2 |
Dynamic memory clock switching circuit and method for adjusting power consumption
A power adjustment circuit includes memory controller logic that is couplable to system memory or other memory if desired. The memory control logic is operative to provide a variable memory clock signal to the system memory and to place the system memory in a self refresh mode wherein the self refresh mode does not require a memory clock signal. Thereafter, the memory clock control logic adjusts the frequency of the memory clock signal to a lower (or higher) frequency clock signal, and in response to the frequency of the memory clock signal becoming stable, the memory clock control logic restores the memory to a normal mode using the lower adjusted frequency memory clock signal. As such, a dynamic memory clock switching mechanism is employed for quickly varying the frequency of memory modules for discrete graphics processors, graphics processors integrated on a chip, or any other processors such that the memory clock can be reduced to a lower frequency in real time to save power. |
US08593469B2 |
Method and circuit for efficient caching of reference video data
In some embodiments, a video processing system including video processor, an external memory, and an integrated circuit that implements both a memory controller (having embedded intelligence) and an internal memory coupled to the memory controller. The memory controller is configured to pre-cache in the internal memory partial frames of reference video data in the external memory (e.g., N-line slices of M-line reference frames, where M>N), and to respond to requests (e.g., from the video processor) for blocks of reference video data including by determining whether each requested block (or each of at least two portions thereof) has been pre-cached in the internal memory, causing each requested cached block (or portion thereof) to be read from the internal memory, and causing each requested non-cached block (or portion thereof) to be read from the external memory. Preferably, the pre-caching is performed in a predetermined manner independent of which read requests for the reference data are actually asserted, and exploits known correlation between two-dimensional pixel locality of each block (“current block”) of data to undergo processing (e.g., decoding) using reference data, two-dimensional pixel locality of each block of reference data that may be requested to process the current block, and probability that each such reference data block will be needed to process the current block. Other aspects are memory controllers for use in such a system and methods performed during operation of any such system or memory controller. |
US08593468B2 |
Scalable high performance 3D graphics
A high-speed ring topology. In one embodiment, two base chip types are required: a “drawing” chip, LoopDraw, and an “interface” chip, LoopInterface. Each of these chips have a set of pins that supports an identical high speed point to point unidirectional input and output ring interconnect interface: the LoopLink. The LoopDraw chip uses additional pins to connect to several standard memories that form a high bandwidth local memory sub-system. The LoopInterface chip uses additional pins to support a high speed host computer host interface, at least one video output interface, and possibly also additional non-local interconnects to other LoopInterface chip(s). |
US08593464B2 |
System and method for controlling animation by tagging objects within a game environment
A game developer can “tag” an item in the game environment. When an animated character walks near the “tagged” item, the animation engine can cause the character's head to turn toward the item, and mathematically computes what needs to be done in order to make the action look real and normal. The tag can also be modified to elicit an emotional response from the character. For example, a tagged enemy can cause fear, while a tagged inanimate object may cause only indifference or indifferent interest. |
US08593463B2 |
Controlling animation frame rate of applications
Many computer applications incorporate and support animation (e.g., interactive user interfaces). Unfortunately, it may be challenging for computer applications and rendering systems to render animation frames at a smooth and consistent rate while conserving system resources. Accordingly, a technique for controlling animation rendering frame rate of an application is disclosed herein. An animation rendering update interval of an animation timer may be adjusted based upon a rendering system state (e.g., a rate of compositing visual layouts from animation frames) of a rendering system and/or an application state (e.g., a rate at which an application renders frames) of an application. Adjusting the animation rendering update interval allows the animation timer to adjust the frequency of performing rendering callback notifications (work requests to an application to render animation frames) to an application based upon rendering system performance and application performance. |
US08593460B2 |
Information processing apparatus and power saving effect display method
According to an aspect of the present invention, there is provided an information processing apparatus that is operable in a first operation state and a second operation state, the apparatus including: a history storage unit configured to accumulate: a power usage reduction that is calculated based on a power usage difference between the first operation state and the second operation state; and an acquisition time at which the power usage reduction is acquired; an adding-up unit configured to add up values of the power usage reduction for a given period thereby calculating a power usage reduction amount; and an image generation unit configured to generate an image indicating a difference between the power usage reduction amount and a target value therefor and to display the image on a display device. |
US08593458B2 |
Systems and methods of multidimensional query resolution and computation organization
Aspects include API interfaces for interfacing shaders with other components and/or code modules that provide ray tracing functionality. For example, API calls may allow direct contribution of light energy to a buffer for an identified pixel, and allow emission of new rays for intersection testing alone or in bundles. The API also can provide a mechanism for associating arbitrary data with ray definition data defining a ray to be tested through a shader using the emit ray call. The arbitrary data is provided to a shader associated with an object that is identified subsequently as having been intersected by the ray. The data can include code, or a pointer to code, that can be used by or run after the shader. The data also can be propagated through a series of shaders, and associated with rays instantiated in each shader. Recursive shaders can be recompiled as non-recursive shaders interfacing with API semantics according to the description. |
US08593457B2 |
Method of three-dimensional image data processing
The present invention relates to the field of data processing, and particularly to a software system and associated method for 3D image processing. The invention is to transform 3D images into space codes, and further align code-associated 3D images with known data within a target database. |
US08593456B2 |
Image generating apparatus, method of generating image, program, and recording medium
The object is to generate an image in which an overlapped part of a tuned object and a non-tuned object having a contour line drawn therein is naturally represented. Only tuned objects among objects existing in a virtual three-dimensional space are perspective transformed, and image data and depth data of each tuned object is written into a process buffer 163a for each pixel. The contour of each tuned object is detected based on the depth data and normal line data acquired from the perspective transformation process, and contour line data is written into a process buffer 163c together with the depth data. When a non-tuned objects is perspective transformed, in a pixel in which a non-tuned objected is located on the front side of a tuned object, image data and depth data of the process buffer 163a are updated. The contour line data of the process buffer 163c is combined with the image data of the process buffer 163a, and the composed data is written into a frame buffer 112. However, the contour line data of pixels having different depth data is not written. |
US08593455B2 |
Method and system for compressing and decoding mesh data with random accessibility in three-dimensional mesh model
A method and system to compress and decode mesh data with random accessibility in a three-dimensional mesh model, the system to compress mesh data with random accessibility in a three-dimensional mesh model including: a mesh data acquisition unit to acquire mesh data from a three-dimensional mesh model having a plurality of cells; a wire mesh generation unit to generate a wire mesh including a plurality of wire cells by using the mesh data, each wire cell including at least two cells of the plurality of cells; a data structure generation unit to generate wire mesh information on the wire mesh and wire cell data including mesh data of the respective wire cells; and an encoding unit to compress the generated wire mesh information and the generated wire cell data. |
US08593448B2 |
Organic light emitting display and method of driving the same
An organic light emitting display, and a method of driving the same, controls the voltage of a second power source in accordance with an ambient temperature. The organic light emitting display includes a driver IC configured to drive a pixel unit and to generate a control signal in accordance with an ambient temperature, and a DC-DC converter configured to generate a first power source and a second power source from an input voltage, to change a voltage of the second power source in accordance with the control signal from the driver IC, and to output the changed voltage of the second power source and the first power source. |
US08593445B2 |
Display apparatus, driving methods and electronic instruments
A display apparatus employs a pixel array section including pixel circuits forming a matrix, signal lines as columns, scan lines as rows and power-supply lines, and driving sections. The driving sections are a signal selector, a write scanner and a drive scanner. The signal selector provides an electric potential representing a gradation or a predetermined reference electric potential. The write scanner provides a control signal. The drive scanner provides a power-supply voltage changing the electric potential from high to low. The drive scanner drives adjacent power-supply lines as a group. The number of lines as a group is determined in advance. The drive scanner switches a power-supply voltage from high to low and vice versa, and applies the voltage to groups by shifting the phase from group to group. The voltage is supplied to a group at the same phase and switched the electric potential. |
US08593442B2 |
Sensor device, method of driving sensor element, display device with input function and electronic apparatus
Techniques are described for detecting and compensating for characteristic changes of a photoelectric conversion element, such as changes related to the temperature of the photoelectric conversion element. A display device that includes an I/O display panel and a light-receiving drive circuit is disclosed. The I/O display panel includes a plurality of display pixels; and a plurality of photoelectric conversion elements including a first photoelectric conversion element that substantially is shielded from light and a second photoelectric conversion element that is exposed to light. The light-receiving drive circuit receives a first detection signal from the first photoelectric conversion element and resets the second photoelectric conversion element based on the first detection signal. |
US08593439B2 |
Load driving device, illumination device, display device
A load driving device according to the present invention is provided with: an enabling control section generating an enabling signal from an externally inputted PWM signal; and a load driving section that is turned on/off according to the enabling signal, and that PWM-drives the load according to the PWM signal. |
US08593436B2 |
User interface systems and methods for manipulating and viewing digital documents
Systems, including handheld computing devices that include system code stored within the memory and adapted to be executed by the processor. The system code can process an input byte stream that is representative of contents to be displayed on the touch sensitive display and can generate a content document file representative of an internal representation of the content.A tool document file may also be stored in the memory and may provide an internal representation of a document providing an image that is representative of a graphical tool. Associated with a tool document can be tool code that is capable of processing the content document file to create an internal representation of the contents that presents the content in a manner that achieves a display effect associated with the tool. The device will also include parsing code that processes the content document file, the tool document file, and the processed internal representation to generate a screen document for display on the touch sensitive display in a manner that portrays the display effect. |
US08593429B2 |
Sensing circuit and method for a capacitive touch panel
A sensing method and circuit for a capacitive touch panel sense the capacitance variation of a lateral capacitor formed at the intersection of two traces of the capacitive touch panel, to distinguish a real point from a ghost point. A sensing cycle includes two non-overlapping clock phases. In the first clock phase, the voltages across the lateral capacitor and across a sensing capacitor are set. In the second clock phase, the voltage at a first terminal of the lateral capacitor is changed, and a second terminal of the lateral capacitor is connected to a first terminal of the sensing capacitor, causing a voltage variation at a second terminal of the sensing capacitor. This voltage variation is used to determine whether the intersection is touched. The sensing method and circuit reflect the status of the lateral capacitor in real-time and prevent the location of the touch point from being misjudged. |
US08593428B1 |
Radial track-pad system and method
Systems and methods for track-pad input are disclosed. In one embodiment, a track-pad device includes a center sensor and a plurality of radial sensors. The center sensor senses electrical characteristic change at a center of the track-pad device. The plurality of radial sensors sense electrical characteristic changes in the respective vicinity of each of the plurality of radial sensors. The plurality of radial sensors can be configured in concentric rings about the center sensor. |
US08593427B1 |
System and method for managing display power consumption
Systems and methods for managing display power consumption are disclosed. In some embodiments first information is displayed in an available display area including a first portion of a display screen in a configuration having a set of portions. The set of portions includes the first portion of the display screen, which is configured in a powered-on state to perform display functions and receive user input, and a second portion of the display screen, which is configured in a powered-off state. Responsive to a user indication in the in the first portion, the second portion is added to the available display area by transitioning the second portion to the powered-on state to perform display functions and receive user input. Second information is displayed in the second portion. |
US08593419B2 |
Using touches to transfer information between devices
A device may comprise a display and a processor. The processor may obtain a first set of one or more touches on a remote surface of a remote device based on a signal received on a communication link between the device and the remote device, receive information associated with the first set of one or more touches through the signal, detect a gesture on the display, and determine whether the information is to be used to obtain content based on the gesture. |
US08593415B2 |
Method for processing touch signal in mobile terminal and mobile terminal using the same
A method for processing a touch signal in a mobile terminal and a mobile terminal using the same are disclosed, wherein the method comprises: detecting a shaking of a mobile terminal by using a mobile terminal shaking detection sensor within a predetermined time from a touched time while a touch screen is being touched; and outputting an output signal based on the detected shaking. |
US08593414B2 |
Optical touch system and operating method thereof
An optical touch system is disclosed. The optical touch system includes an optical touch apparatus, a control apparatus, and a rotating apparatus. When the control apparatus receives a mode switching signal, the control apparatus selects a corresponding specific using mode from a plurality of default using modes according to the mode switching signal. And, the specific using mode corresponds to a specific rotating angle. The rotating apparatus rotates the optical touch apparatus with the specific rotating angle to make the optical touch apparatus is rotated from a first location to a second location, so that a user can perform an input action via the optical touch apparatus according to the specific using mode. |
US08593410B2 |
Touch sensor panel design
A touch sensor panel including a plurality of drive lines crossing a plurality of sense lines, forming an array. The plurality of drive lines and the plurality of sense lines are formed by interconnecting sections of at least one conductive material having a truncated diamond shape or formed of interconnected conductive lines. At least one conductive dummy region may be disposed in an area of the touch sensor panel around the truncated diamond shape sections or interconnected conductive lines of the plurality of drive lines and the plurality of sense lines. One or more lines may be formed overlapping the interconnected sections of each of the plurality of drive lines and the plurality of sense lines. |
US08593409B1 |
Method and apparatus for providing haptic feedback utilizing multi-actuated waveform phasing
A method and device for generating haptic feedback over a touch surface using multi-actuated waveform phasing are disclosed. A haptic device, in one embodiment, includes a touch surface and a group of haptic actuators. The touch surface is capable of sensing an event, wherein the event can be a contact on the touch surface or a movement nearby the surface. A portion of the haptic actuators, which are coupled to the touch surface, is configured to provide haptic feedback on the touch surface in response to the event. Another portion of the haptic actuators is used to minimize unwanted haptic effect on the touch surface. |
US08593407B2 |
Electronic device system utilizing a character input method
A character input method is implemented in a device with a plurality of keys. If a key is activated by a first operation matching a first input pattern, a first route is selected to traverse a plurality of characters corresponded by the key during presentation of the plurality of characters. If the first key is activated by a second operation matching a second input pattern, the plurality of characters corresponded by the first key are orderly retrieved and presented according to a second route in response to operations on the first key. The order for presenting two characters corresponded by the first key in the first route is reversed in the second route. |
US08593406B2 |
Interchangeable input modules associated with varying languages
Interchangeable input modules, such as keypads, having user input devices configured to mate with base devices are described herein. The user input devices may include pluralities of inputs, such as input keys, associated with languages. The interchangeable input modules may further include storage components configured to store configuration data, linguistic structures, and/or predictive logic. Additionally, the interchangeable input modules may have interfaces configured to electrically couple the interchangeable input modules to the base devices after the interchangeable input modules are mated with the base devices. |
US08593404B2 |
Reduced key arrangement for a mobile communication device
A keyboard for a mobile communication device includes a first set of alphanumeric keys that is arranged in a two column by three row array. In a first example, the key arrangement includes vowels and consonants in the two by three array, with function keys positioned in a row that is different from the first set of keys. In another example, the key arrangement includes consonants in the first set of keys and vowels in a second set of keys, with the first set of keys including a two by three array of keys and the second set of keys being positioned in a row other than the rows of the two by three array of keys. The keys may be toggle keys. The characters may be input via multi-tapping the keys, word completion, and/or other known text entry techniques. |
US08593399B2 |
Interface apparatus and method for controlling a device
A specific site of a user's body is detected from an input image, it is detected on the basis of a moving speed and a moving direction of the specific site whether the specific site makes a feeding motion in which the specific site moves in any direction, and when the feeding motion is detected, a control command for a device is changed. |
US08593398B2 |
Apparatus and method for proximity based input
In accordance with an example embodiment of the present invention, a method is provided for transferring information items between communications devices. A source device detects a selection input by an input object. Direction of movement of the input object is detected after the selection input. A target device is identified on the basis of the direction of movement of the input object. The target device is connected for transferring an information item associated with the selection input. |
US08593397B2 |
Handheld electronic device having hidden sound openings offset from an audio source
The disclosure relates to a handheld electronic device. The device comprises a case and an audio transducer. The case has a housing, a cover, an indentation, a first opening and an audio transducer. The housing has a housing surface. The cover has a cover surface with at least a portion of the cover surface being disposed adjacent at least a portion of the housing surface; an elongated channel formed therein opposite the cover surface; an insert; and a lens disposed adjacent to the insert. The indentation is formed in at least one of the housing adjacent the housing surface and the cover adjacent the cover surface and the indentation is disposed between and forms a cavity in the case between at least a portion of the housing adjacent the housing surface and at least a portion of the cover adjacent the cover surface. The cavity is elongated along at least a first axis. The first opening is formed in the case and provides fluid communication between the cavity and the channel and being located along a first axis. The audio transducer is disposed on the housing and is in fluid communication with the cavity where the audio transducer is spaced from the first opening along the first axis. In the device, the indentation and the first opening are formed in the insert; and the channel is disposed between the insert and the lens. |
US08593396B2 |
Methods and apparatus for driving electro-optic displays
Waveforms for driving electro-optic displays, especially bistable electro-optic displays, are modified by one or more of insertion of at least one balanced pulse pair into a base waveform; excision of at least one balanced pulse pair from the base waveform; and insertion of at least one period of zero voltage into the base waveform. Such modifications permit fine control of gray levels. |
US08593394B2 |
Backlight control method for high dynamic range LCD
A cumulative function of image is obtained according to its gray levels of pixels. This function is then mapped to obtain a backlight modulation function according to a reference line. The backlight brightness provided for different regions of the liquid crystal display are decided by the backlight modulation function while displaying the images. |
US08593392B2 |
Backlight unit and liquid crystal display device having the same
A backlight unit adapted to prevent a combination defect is disclosed.The backlight unit includes: a plurality of light sources arranged in fixed intervals; first and second light source printed-circuit-boards configured to apply driving signals to the plurality of light sources; a plurality of grips disposed on the first and second light source printed-circuit-boards and engaged with both ends of the light sources; and at least two support sides disposed on both ends of the light sources and configured to each include a protrusion which is united with the support side and is configured to prevent a separation of the light sources. |
US08593389B2 |
Gamma-voltage generator
A gamma-voltage generator is provided to generating a plurality of first gamma voltages and second gamma voltages. At least one of the first gamma voltages generated by DACs of the gamma-voltage generator within a first frame period and at least one of the second gamma voltages generated by the DACs within a second frame period are outputted from a same one of the gamma buffers of the gamma-voltage generator, whereby the transmitted gamma voltages have substantially equal offset. Therefore, the display quality approaches an ideal condition. |
US08593387B2 |
Display device, driving method of the same and electronic device
A display device includes a pixel portion to which a non-inverted video signal is input in a first period and an inverted video signal is input in a second period, and a signal line driver circuit comprising a switch circuit portion for controlling output of the non-inverted video signal and the inverted video signal to the pixel portion. The switch circuit portion is controlled by a first signal serving as a first high power supply potential and a first low power supply potential in the first period and is controlled by a second signal serving as a second high power supply potential and a second low power supply potential in the second period, so that the switch circuit portion controls output of the non-inverted video signal and the inverted video signal to the pixel portion. |
US08593386B2 |
Display device
A display device includes: a first display substrate having a plurality of pixel electrodes, a plurality of data lines disposed parallel with each other and that cross a center portion of the pixel electrodes, a plurality of gate lines that cross the data lines, and a plurality of driving thin film transistors connected with the data lines, the gate lines and the pixel electrodes; a second display substrate disposed opposite to the first display substrate having a common electrode, a liquid crystal layer disposed between the first display substrate and the second display substrate; wherein one of the data lines supplies a data voltage to the pixel electrodes crossed by the one of the data lines and to the pixel electrodes crossed by the adjacent one of the data lines alternately along a longitudinal direction of the data lines. |
US08593385B2 |
Display device comprising color pixels connected to gate drivers and driving method thereof
Disclosed are a display device and a driving method thereof. The display device includes: a display panel including a plurality of pixels, a plurality of gate lines, and a plurality of data lines; a first gate driver and a second gate driver which each transmit a gate signal to the gate lines and are at edge regions of the display panel; and a data driver which transmit data voltages to the data lines. The pixels include a plurality of first color pixels which display a first color and are connected to the first gate driver, a plurality of second color pixels which display a second color and are connected to the second gate driver, and a plurality of third color pixels which display a third color and comprise at least a pixel connected to the first gate driver and at least a pixel connected to the second gate driver. |
US08593380B2 |
Organic light emitting diode display and method of manufacturing the same
An organic light emitting diode (“OLED”) display includes; a substrate, first and second signal lines which intersect each other and are disposed on the substrate, a switching control electrode connected to the first signal line, a switching input electrode connected to the second signal line, a switching output electrode disposed substantially opposite the switching input electrode with respect to the switching control electrode, a switching semiconductor which partially overlaps the switching input electrode and the switching output electrode, first and second driving control electrodes connected to the switching output electrode, a driving semiconductor disposed between the first and second driving control electrodes, a driving input electrode and a driving output electrode which partially overlap the driving semiconductor and are disposed substantially opposite each other with respect to the driving semiconductor, a first electrode connected to the driving output electrode, a second electrode which faces the first electrode, and a light emitting member disposed between the first electrode and the second electrode. |
US08593379B2 |
System and method for determining an overall brightness level of an image to be displayed in a frame period in electroluminescent display devices
In an active matrix electroluminescent display device, comprising an array of display pixels, each pixel comprises an electroluminescent display element, active matrix circuitry including at least one drive transistor for driving a current through the display element, means for determining an overall brightness level of an image to be displayed in a frame period, means for controlling the at least one drive transistor of each pixel in dependence on, (1) a respective input signal providing a drive level for the pixel, and (2) the overall brightness level. The novel arrangement is capable of controlling the pixels to limit the maximum currents drawn by the pixels, thereby limiting cross-talk effects resulting from voltage drops along row or column conductors. If an image is bright, the pixel drive levels across the image, or at least part of the image, can be reduced, so that the maximum brightness is reduced. |
US08593373B2 |
Headup display device and method for indicating virtual image
A headup display device controls a brightness of an image according to a present illumination in an environment of a vehicle and projects the image to a front windshield of the vehicle to indicate the image as a virtual image in an interior of the vehicle. An illumination determination unit determines a present illumination by multiplying an increasing rate by an interior illumination in the interior of the vehicle when being in a light-adapted state, in which the interior of the vehicle is lighter than the exterior of the vehicle. The illumination determination unit determines the present illumination by multiplying a decreasing rate by an exterior illumination in the exterior of the vehicle when being in a dark-adapted state, in which the interior of the vehicle is darker than the exterior of the vehicle. A brightness control unit controls the brightness to correspond to the determined present illumination. |
US08593371B1 |
Portable device and method for controlling the same
A method for controlling a portable device and which includes detecting one of a first unlock command for switching a state of a first display unit to an active state and maintaining a state of a second display unit in a locked state or a second unlock command for switching the state of the first display unit to the active state and switching the state of the second display unit to a ready-to-activate state; switching the states of the first and second display units to the active state and the ready-to-activate state, respectively, when the second unlock command is detected; detecting an unlock trigger; and switching the second display unit to the active state according to the detected unlock trigger. |
US08593370B2 |
Methods of modifying erect concealed antenna towers and associated modified towers and devices therefor
The disclosure describes installing an antenna canister in a portion of a concealed antenna pole at a location that is below a top of the pole while the antenna pole is erect and associated components to facilitate the procedure, as well as multi-piece vertical rods, pole mounting bracket assemblies and retrofit kits. |
US08593367B2 |
Modified ground plane (MGP) approach to improving antenna self-matching and bandwidth
An antenna design technique which allows antennas to be self-matched while supporting multi-band and broadband operations. The technique includes adding a raised and curved ground plane section electrically coupled to the ground plane. The curved ground plane section allows for a smooth transition of the surface current hence a boarder bandwidth is achieved. A slit positioned between the ground plane and the ground plane section can also be used to further improve the antenna bandwidth. The technique does not increase the antenna thickness neither its volume, thus allowing application in slim handheld device applications such as flip phones. Using this technique, a narrow band antenna is made broadband to cover several frequency bands of interest. The technique is applied to a quad-band antenna to broaden its bandwidth to become a sept-band antenna. The technique is used to also improve the antenna match at all the seven bands it supports. |
US08593365B2 |
Method for installing radiator elements arranged in different planes and antenna thereof
A method for installing radiator elements arranged on different planes and an antenna having the radiator elements are provided, in which a first-position radiator element is placed on one plane, a second-position radiator element is placed on another plane, and power supply cables are connected to the first-position radiator element and the second-position radiator element. The power supply cables are designed to compensate for a phase difference between signals radiated in the air from the first-position radiator element and the second-position radiator element by a phase difference between signals propagated via the power supply cables. |
US08593364B2 |
450 MHz donor antenna
The present invention provides a donor antenna comprising a base plate having a top surface and a bottom surface; an array of folded dipole antenna mounted on the top surface of the base plate through a plastic holder, wherein the array of folded dipole antennas are arranged in a lattice form; and a feed network defining on the bottom surface for electrically connecting the array of folded dipole antennas to collectively feed to a connector; wherein each of the folded dipole antenna comprises a substrate having symmetrically configured conducting strips defined on the both side of the substrate forming an excitation arm and a ground arm of the folded dipole antenna. |
US08593362B2 |
Multi band telemetry antenna feed
A multi band antenna feed, for supporting multiple frequency bands, is coupled to a reflector and includes a cylindrical core waveguide and at least three coaxial cylinders, encircling said cylindrical core waveguide and forming at least three coaxial waveguides, bounded between pairs of consecutive coaxial cylinders. The cylindrical core waveguide and the at least three coaxial waveguides provide a pair of sum and difference radiation patterns, for each frequency band: a C-band, an S-band and an L-band. |
US08593361B2 |
Multi-sector radiating device with an omni-directional mode
The present invention relates to a multi-sector radiating device intended to receive and/or transmit electromagnetic signals, comprising at least, arranged on a plane substrate: a first set of antennas, with: a first antenna, a second antenna, a third antenna, arranged in the opposite manner to the first antenna, a fourth antenna, arranged in the opposite manner to the second antenna, the antennas being longitudinal radiation slot type antennas, said antennas each presenting a bisector, wherein the radiating device comprises a switching circuit capable of activating one or more of the antennas, and notably all the antennas of the first set of antennas, -and in that the bisectors of the opposed antennas on the substrate are not combined. |
US08593360B2 |
Slotted ground-plane used as a slot antenna or used for a PIFA antenna
A wireless device includes a ground plane with at least two portions. On each of the at least two portions at least one connecting means is provided. The two connecting means are connected with an electric component for connecting the at least two portions of the ground plane. The ground plane is partially covered with an insulating material and the connecting means are given by a part of the ground plane which is not covered by any insulating material. |
US08593359B2 |
Antenna
An antenna includes a metal member, an antenna, and a capacitor. The metal member includes a plurality of sidewalls connecting with each other. The antenna includes a fixing end and a free end, the fixing end is fixed to the metal member. The capacitor connects with the metal member and the free end of the antenna. |
US08593355B1 |
Reconfigurable buoyant cable antenna with improved gain
An antenna element with a single-conductor antenna is provided within a removable core. The removable core is mounted within a hollow liner by sliding the core into the hollow liner. A pull cable may be attached to an end of the removable core to pull the core through the outboard end of the hollow liner. Due to reduced strain on the core as compared to the liner, the single-conductor antenna may be formed in segments interconnected with capacitors for adjusting the antenna gain to a maximum in the vicinity of a desired operating frequency or frequencies. |
US08593352B2 |
Triple-band antenna with low profile
A multi-band antenna includes a grounding element having an edge and a grounding point, a first radiating arm being substantially of L shape and located above the grounding element, a second radiating arm working at a first frequency band and being substantially of L shape above the first radiating arm, a third radiating arm working at a second frequency band and being substantially of rectangular metal patch parallel to the edge of the grounding element, and a feeding line including an inner conductor connected to the first radiating arm and an outer conductor connected to the grounding point of the grounding element. The feeding line, the first radiating arm, the grounding element commonly compose a slot operating at a third frequency band. |
US08593351B2 |
Portable electronic device
A portable electronic device is provided. The portable electronic device includes a housing, a circuit board, an amplifier, an antenna and a short element. The circuit board is disposed in the housing, wherein the circuit board includes a first edge and a second edge, and the first edge is opposite to the second edge. The amplifier is disposed on the circuit board and adjacent to the first edge. The antenna is disposed on the second edge of the circuit board, wherein the antenna transmits a wireless signal. The short element is disposed on the second edge of the circuit board, wherein the short element is separated from the antenna, and the short element couples with the antenna to reduce Specific Absorption Rate (SAR) value around the amplifier. |
US08593343B2 |
Adjusting a bandwidth of GNSS receivers
Embodiments of the invention provide a method of adjusting a bandwidth of receivers. A plurality of outputs from a correlator engine are combined. User dynamics are sensed. Bandwidth of one or more receivers are adjusted. By detecting when the user is stationary, the Doppler frequency estimation can be corrected or the SNR can be boosted more both of which lead to improved performance. The embodiments allow a receiver to process signals in when the signal level would otherwise be too low—for example indoors. The embodiments can improve performance when one or more satellites are temporarily blocked but one or more satellites are still being tracked. |
US08593339B2 |
Mobile satellite communications
Provided is a mobile satellite transceiver system for communicating with a Global Positioning System (GPS) satellite and a communications satellite. In on implementation, the mobile satellite transceiver system includes a GPS receiver configured to receive communications from the GPS satellite, a satellite modem configured to transmit and receive communications from the communications satellite, and an operating system. In some implementations, the operating system of the mobile satellite transceiver system is configured to send and receive text messages to/from the communications satellite via the satellite modem. In some implementations the mobile satellite transceiver system also includes a Radio Frequency Identification (RFID) interrogator for communicating with RFID tags. |
US08593338B2 |
Creating and processing universal radar waveforms
A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution. |
US08593337B2 |
Phased array antenna and its phase calibration method
A phased array antenna includes an oscillator, a plurality of antenna elements, a phase shifter, a distributor, a receiver, and a control processor. The control processor performs a first calibration process to calibrate a phase of the phase shifter connected to a pair of antenna elements that is selected from the antenna elements and are located at a pair of positions symmetric with respect to a central axis of an array formed by the phased array antenna, and a second calibration process to calibrate a phase of the phase shifter connected to a pair of target antenna elements with respect to a phase of the phase shifter connected to a reference antenna elements located at a central portion of the array. The pair of target antenna elements are located at a pair of positions that are symmetric with respect to the central axis of the array. |
US08593328B2 |
Method for performing exo-atmospheric missile's interception trial
An inflatable dummy target fittable into a carrier missile capable of being released from the carrier missile during exo-atmospheric flight; upon release, the dummy target or portion thereof is capable of being inflated and manifest characteristics that resemble GTG missile characteristics, wherein the GTG missile characteristics include IR signature, RF signature and GTG missile. |
US08593324B2 |
Analog-to-digital converting circuit and analog-to-digital converting method
An analog-to-digital converting circuit includes a reference circuit and an analog-to-digital converter (ADC). The reference circuit provides a base voltage, which has one end grounded. The ADC receives an analog input signal and a base voltage signal. The ADC includes a first DC buffer and an ADC core unit. The first DC buffer internally receives an offset voltage signal and a data voltage signal to be digitized, and outputs two converting control signals. The ADC core unit receives the two converting control signals from the first DC buffer and an ADC input range voltage signal, and outputs a digital code. All of the offset voltage signal and the data voltage signal and the ADC input range voltage signal have been added with the base voltage signal. |
US08593323B2 |
A/D conversion device
An A/D conversion device has first to third pulse delay circuits, first to third pulse passage stage detection circuits, a time output circuit, and an output circuit. Each of the first to third pulse delay circuit has multiple stages of delay units which are connected together and delay a first to a third pulse signals, respectively. Each of the first to third pulse passage stage detection circuit detects a first to a third number of stages, respectively. The time output circuit outputs a time signal. The output circuit outputs the digital value corresponding to the third number of stages. |
US08593321B2 |
Computation apparatus and method, quantization apparatus and method, and program
A computation apparatus includes a range table creation unit configured to create a range table in which a discrete value of a computation result obtained by applying a nonlinear computation on an input value corresponds to a range of the input value which may take the discrete value, and a search unit configured to search, when the input value is input, in the range table, for the range in which the input value is included and output the discrete value corresponding to the searched range. |
US08593319B2 |
Image sensors and image processing systems
An image sensor includes a delta-sigma analog-to-digital converter (ADC) including a delta-sigma modulator (DSM) and a voltage adjusting circuit. The DSM is configured to perform delta-sigma modulation on an analog signal from a unit pixel. The delta-sigma ADC is configured to convert the analog signal to a digital signal. The voltage adjusting circuit includes a replica inverter having a same configuration as at least one inverter included in the DSM. The voltage adjusting circuit is configured to adjust a power supply voltage and an input voltage provided to the at least one inverter based on a current flowing in the replica inverter. |
US08593316B2 |
Combined digital output system
A combined digital output system includes two quantization modules, a common mode counter, a differential mode counter, and a summing module. The quantization modules provide two digital signals, the common mode counter generates a common mode signal according to the digital signals, the differential mode counter generates a differential mode signal according to the two digital signals, and the summing module obtains the common mode signal and the differential mode signal, so as to generate a summing signal. |
US08593315B2 |
A/D conversion device and A/D conversion correcting method
An A/D conversion unit performs an A/D conversion operation twice during a hold period of an analog value. In a first conversion operation, the A/D conversion unit compares the analog value with a first reference voltage and outputs a comparison result as first converted data. In a second conversion operation, the A/D conversion unit compares the analog value with a second reference voltage and outputs a comparison result as second converted data. The second reference voltage is a voltage obtained by adding or subtracting a minimum resolution voltage to or from the first reference voltage. A digital processing unit averages errors of the first and second converted data by digital processing to detect an A/D conversion error, and feeds back a detection result to the A/D conversion unit as a control value to perform voltage control. |
US08593313B2 |
Parallel-to-serial conversion circuit, information processing apparatus, information processing system, and parallel-to-serial conversion method
A parallel-to-serial conversion circuit includes a plurality of parallel-to-serial conversion units, each being configured to include a dividing circuit configured to divide a clock signal having a second clock cycle to generate a clock signal having a first clock cycle, a parallel input circuit configured to input a signal having a plurality of bits parallel to one another in the first clock cycle, and a serial output circuit configured to serially output the signal having the plurality of bits input to the parallel input circuit bit-by-bit in the second clock cycle, wherein, among the plurality of parallel-to-serial conversion units, one of the dividing circuits has a synchronization signal interface that causes an output clock signal to synchronize with a clock signal output from the other dividing circuit in another parallel-to-serial conversion unit. |
US08593309B2 |
Method for efficient decoding of variable length codes
A method, system, and computer program product for decoding a variable length code. A decoding module is configured to receive the variable length code. The variable length code is a plurality of bits. The decoding module is also configured to identify a number of times the lead bit is repeated consecutively at the beginning of the plurality of bits. The lead bit is predetermined to be one of a 1 or 0. The decoding module is also configured to identify a code word in a table of code words by using the number of times the lead bit is repeated. |
US08593306B2 |
Huffman decoder and decoding method thereof
A Huffman decoder includes a storage module, a receiving module, and a determining module. The storage module stores a target path corresponding to a rare path. The receiving module receives a codeword in a source data stream and acquires corresponding path data for the codeword. The determining module compares the path data and the target path, and determines the codeword as the rare code when the path data and the target path are the same. |
US08593304B2 |
Installation for detecting and displaying the failures of the functional systems of an aircraft
An installation for detecting and displaying the failures of the functional systems of an aircraft is described. The installation can include both a general alarm system (4) connected to said functional systems (2) and to the auxiliary alarm detection means (5) originated from said functional systems, and a complementary alarm system (6), connected to said functional systems (2), independently from the general system (4), and able to indicate a breakdown not detected by the general system on the instrument panel of the cockpit. |
US08593303B2 |
Reflector pole
The invention relates to a Reflector pole (1), which is used as a road marker, a road boundary, a sign pole or for similar applications related to road or pedestrian traffic, comprising a main body (2), featuring at least one light active field (3). According to the invention the light active field (3) comprises an organic light emitting diode (OLED) (4). |
US08593299B2 |
LED light global positioning and routing communication system
An LED light and communication system includes at least one optical transceiver, the optical transceiver including a light support and a processor. The light support has a plurality of light emitting diodes and at least one photodetector attached thereto. The processor is in communication with the light emitting diodes and the at least one photodetector, where the processor is constructed and arranged to illuminate at least one of the light emitting diodes to generate a light signal which in turn includes at least one embedded data packet. The at least one embedded data packet communicates global positioning system (GPS) location information. |
US08593297B2 |
Walking guidance apparatus using human body communication
A walking guidance apparatus using human body communication, including: a first human body communication device acquiring a walking guidance information signal, converting the acquired walking guidance information signal into a signal available for human body communication, and transmitting the converted signal through a user's body; and a second human body communication device receiving the signal transmitted through the user's body from the first human body communication device, converting the received signal into a signal that can be recognized by the user, and outputting the converted signal. Walking guidance information having a high privacy function and high stability and accuracy can be provided to enhance user convenience. |
US08593293B2 |
Tension indicator
The present invention concerns a tension indicator for indicating when a strap (2) has reached a predetermined tension level, comprising an audible signal producing member (7) having an abutment surface for engagement with said strap, said audible signal producing member altering its physical configuration in reaction to tension in said strap reaching a predetermined value, wherein the change in physical configuration creates an audible signal. |
US08593292B2 |
Household electrical appliance
Herein disclosed is a household electrical appliance easily to know whether electricity rates are high or low when using the household electrical appliance, even in the variable rate system. The household electrical appliance includes, a receiving unit that receives information of electricity rates which are changed based on power generation capacity and power consumption amount and charged for power consumption as instantaneous electricity rate information; an electricity rate information accumulating unit that accumulates the received instantaneous electricity rate information; a determination unit that outputs a result obtained by statistically calculating a plurality of the accumulated instantaneous electricity rate information items as reference electricity rate information, and compares the latest received instantaneous electricity rate information with the output reference electricity rate information; and a numerical value display unit that notifies whether the latest instantaneous electricity rate information is higher than the reference electricity rate information. |
US08593286B2 |
System and method for wireless monitoring of sports activities
The subject disclosure provides a system and method for wireless monitoring of sports activities. A subject participating in a sports activity is associated with biometric sensors which measure the subject's body movements. In one aspect, the system includes a sensor for continuously gathering biometric data from a subject performing a sports activity where the biometric data associated with the body movements of the subject. A wireless transceiver coupled to the sensor transmits the biometric data and a database engine receives the biometric data from the wireless transceiver and providing real-time feedback. The real-time feedback associated with the biometric data from the subject is characterized by instructions associated with the sports activity. |
US08593285B2 |
Safety-determination information generating apparatus and safety confirmation system
A safety-determination information generating apparatus detects that a toilet equipment used for excretion, which is a regular behavior in the daily life of a monitoring subject, is used. Once the flushing operation unit is touched by the monitoring subject who flushes the toilet after relieving himself/herself, the safety-determination information generating apparatus detects, using the contact sensor, the touching as the use of the equipment, and sends as the safety-determination information the equipment-use information representing that the toilet is used to a remote monitoring apparatus. The remote monitoring apparatus receives the safety-determination information sent by the safety-determination information generating apparatus and displays on the display that the monitoring subject has used the equipment on the basis of the safety-determination information. |
US08593282B2 |
RTLS-enabled tag reclamation receptacle
Techniques are provided for reducing the transmission of infrared (IR) signals outside of a reclamation receptacle. Techniques include using a reclamation receptacle having an IR transmitter configured to transmit IR signals when the reclamation receptacle is in a closed configuration and configured to cease transmission of the IR signals when the reclamation receptacle is in an open configuration. A radio frequency identification (RFID) tag may be deposited in the reclamation receptacle. The RFID tag may receive the IR signals and generate a radio frequency (RF) signal in response to the IR signals, wherein the RF signal indicates that the RFID tag is in the reclamation receptacle. |
US08593277B2 |
System and method for proximity detection
The present invention is for a system and method for determining the proximity of a mobile device to a location without the use of a satellite based or other location awareness system, nor a stationary beacon of any kind. Instead, the mobile device monitors radio frequency broadcast identification codes from nearby mobile devices, and determines if the set of detected identification codes is sufficiently similar to a weighted set of identification codes attributed to specified location. If the calculation of similarity meets the confidence conditions of the system, notification is made that the customer or visitor has arrived. The invention utilizes a combination of confidence interval computation, machine learning, and fault tolerance mechanisms to optimize the success of correctly detecting that the device is near the relevant location. |
US08593275B2 |
Wireless monitoring system and method with dual mode alarming
A patient monitoring system and method for reliably communicating alarm conditions detected by an acquisition device that receives physiological data from the patient. The acquisition device includes a control unit that detects alarm conditions based upon the physiological data received from the patient. A primary transmitter and a secondary transmitter are coupled to the control unit and are each capable of transmitting the alarm condition. The primary transmitter is configured to connect to a wireless network and communicate over a first frequency range. The secondary transmitter is configured to transmit over a secondary wireless network using a second frequency range different from the first frequency range. When the primary transmitter is not able to communicate with the primary wireless network, the control unit activates the secondary transmitter to transmit the alarm condition. The secondary transmitter remains active until the primary transmitter reconnects with the primary wireless network. |
US08593274B2 |
Digital telephony distressed sound detection
A system and method for monitoring for a distressed sound is disclosed. The system comprises a noise detection module configured to monitor ambient noise through a microphone on a digital telephony device operating in an idle state and determine an ambient noise level. A sound processing module is configured to process sounds received from the microphone that have an amplitude a selected amount greater than an amplitude of the ambient noise and determine if the processed sounds match a predetermined statistical model of a distressed sound. An assistance request module is configured to send a request for assistance via the digital telephony device for processed sounds that match the predetermined statistical model of the distressed sound. |
US08593270B2 |
Tester for testing signal lines of a flight control system for a THS motor of an aircraft
The present invention relates to a tester, its use and a method for testing signal lines of a flight control system for a trimmable horizontal stabilizer (THS) motor of an aircraft. The tester comprises at least one test-relay (52, 54) to be connected with a relay socket of the flight control system, when the signal lines of the flight control system are to be tested, and at least one indicator (60, 70, 80, 90) being electrically connected with the at least one test-relay (52, 54) for indicating whether a voltage being applied to the test-relay (52, 54) is equal to or larger than a predetermined voltage. The method according to the invention comprises the steps of connecting at least one test-relay (52, 54) of a tester (1), in place of the original relay, with the relay socket of the flight control system, applying a voltage to the at least one test-relay (52, 54) and determining whether a voltage being applied to the at least one test-relay (52, 54) is equal to or larger than a predetermined voltage. |
US08593268B2 |
Time clock control for outside lighting
A device and method to automatically control timing of outside lighting are achieved. An ephemeris program and a calendar are loaded into memory on a timing device. Power is applied to the device wherein a GPS circuit on the device is energized, and Greenwich Mean Time (GMT), Current Day (CD), and physical location of the device are determined from satellite signals through an antenna or alternately from a repeater circuit or a key fob type device. GMT and CD that are retrieved are stored in memory. Lighting on and off times are calculated by the ephemeris program based on physical location, the calendar, GMT, CD, and the user selected distance of the sun below the horizon. Lights are turned on and off based on the calculated on and off times. |
US08593265B1 |
Motorized wheel system with wireless remote control unit for ladders
A motorized wheel system with wireless remote for portable support structure such as ladders and scaffolds to enable a user to relocate the ladder without dismounting by attaching wheels to the portable structure's legs wherein the wheels are remotely controllable. The motorized wheel system with a remote control mechanism comprises a remote motorized wheel device associated with each leg, each having a power supply for driving a motor and a receiver that is in radio communication with a transmitter on a remote control mechanism used to remotely engage the power supply and steer the wheels. |
US08593256B2 |
Washable RFID device for apparel tracking
A radio frequency identification (RFID) device including: a circuit provisioned to communicate an identification code to an RFID reader; a first antenna operatively connected to the circuit; and a radiating structure inductive coupled to the first antenna. |
US08593254B2 |
Semiconductor integrated circuit, card comprising the same, and operating method of semiconductor integrated circuit
A semiconductor integrated circuit has a rectifying circuit, a switched capacitor, a switched-capacitor drive circuit, a demodulator, and an internal circuit. The switched capacitor executes series charging and parallel discharging to/from a plurality of capacitors using an output rectified voltage. When the current driving performance at the time of supplying a power source voltage is set to a high state, so that a receiving operation in a card is executed reliably even at a long communication distance. Transmission signal data from a card is supplied to a switched-capacitor current driving performance increase disable circuit, and the current driving performance at the time of supplying the power source voltage in the switched capacitor is changed to be low. The change is detected as a magnetic field change in an antenna by an apparatus. |
US08593252B2 |
Electronic lock box proximity access control
An electronic lock box system includes a wireless portable transponder that communicates with an electronic lock box using a low power radio link. The portable transponder includes: a wide area network radio to communicate to a central clearinghouse computer, a motion sensor to activate its wide area network radio, and a connector to communicate with a secure memory device. The electronic lock box sends a hail message that is intercepted by the portable transponder; the hail message includes identification information. The portable transponder responds with a message that includes a time sensitive encryption key; the lock box authenticates this response message using its own time sensitive encryption key. If the messages are authenticated, the lock box sends an access event record to the portable transponder, and this access event record is stored in the secure memory device. If a wide area network is available, the portable transponder sends the access event record to the central clearinghouse computer. |
US08593247B2 |
Chip-type coil component
There is provided a chip-type coil component, including: a body formed by laminating a plurality of magnetic layers, and having a lower surface provided as a mounting area, an upper surface corresponding thereto, two end surfaces, and two lateral surfaces; conductor patterns formed on the magnetic layers, respectively, and connected to each other to have a coil structure; and external electrodes formed on at least one external surface of the body, and electrically connected to the conductor patterns, the external electrodes each being formed on the lower surface and spaced apart from edges thereof. Short circuits between electronic components may be prevented and sticking strength between the chip-type coil component and a substrate may be increased. |
US08593246B2 |
Reactor and production method thereof
A reactor which may be employed in an inverter for automotive vehicles. The reactor includes a coil, a core, a casing, and a positioning member. The core is made of a solidified magnetic powder/resin mixture and has the coil embedded therein. The positioning member is disposed in the casing to position the coil relative to the casing and equipped with fins configured to stir the magnetic powder/resin mixture before solidified. Specifically, the positioning member is designed to perform two functions: one is to fix the location of the coil within the casing, and the other is to stir the magnetic powder/resin mixture through the fins, thus eliminating the need for removing a portion of the magnetic powder/resin mixture adhered to the fins, which leads to improved productivity of the reactor. |
US08593245B2 |
Coil assembly and magnetic element with shielding function
A coil assembly includes at least one insulated wire and an electromagnetic interference shielding layer. The insulated wire is wound into a winding coil part. The winding coil part includes a first wire-outlet segment, a second wire-outlet segment and a central through-hole. The electromagnetic interference shielding layer is formed on the winding coil part for shielding the insulated wire. The electromagnetic interference shielding layer has lateral projection profile on the winding coil part. The electromagnetic interference shielding layer has a radial gap such that the electromagnetic interference shielding layer is a non-conducting loop. |
US08593238B2 |
Technique for conveying a wireless-standard signal through a barrier
The RF signal generated by a ZigBee radio on the outside of a building structure is conveyed to the interior of the building by guiding it along an electric cable bundle that passes through the building's wall to supply domestic electric power to the interior of the structure. The RF signal is launched by a unique coupler comprising a pair of insulated foil conductors. |
US08593236B2 |
Microwave waveguide filter with non-parallel walls
The invention concerns a waveguide filter (200NP) for microwaves, characterized in that it has, at least on part of its length, a cross-section having two mutually non-parallel opposite sides (111, 111′), for example trapezoid. The use of such a shape enables the power threshold for forming self-maintained electron avalanche discharges to substantially increased and satisfactory filtering properties to be obtained. The invention also concerns the use of such a filter in a high-power microwave transmitter operating in X and Ka bands, in particular for space applications. |
US08593232B2 |
Multi-band frequency oscillating device
An oscillating device is provided that has several oscillators. Each oscillator has a capacitive inductive resonant circuit and a flow-through conduction circuit having a negative flow-through conduction. The inductive elements of the oscillators are mutually coupled. Each oscillator also has short-circuit or not short-circuit the capacitive element of the oscillator. The oscillating device also has a controllable commutating means arranged to activate one oscillator at a time. |
US08593230B2 |
Circuit and method for correcting temperature dependence of frequency for piezoresistive oscillators
MEMS oscillators, which include a silicon-type, in particular piezoresistive resonators, can be used to provide a fixed, stable output frequency. Silicon has a natural temperature dependence of Young's modulus, therefore, as ambient temperature changes and/or the piezoresistive resonator is powered, the resonator temperature changes, and the resonance frequency of the resonator drifts. In order to account for the temperature drift of the piezoresistive resonator, the piezoresistive resonator itself is used as a temperature sensor. The relative resistance change of the piezoresistive resonator depends only on the relative temperature change and material property of the resonator. Therefore, an accurate temperature can be sensed directly on the piezoresistive resonator. The temperature drift information is provided to a frequency adjuster, which corrects the output frequency of the circuit. |
US08593224B1 |
Regulator and temperature compensation bias circuit for linearized power amplifier
An improved regulator circuit, temperature compensation bias circuit, and amplifier circuit are disclosed. |
US08593222B2 |
Amplifier
An amplifier includes an output stage circuit, a current source, a PMOS input pair, an NMOS input pair and a current transferring circuit. The output stage circuit is electrically coupled to a supply voltage and a ground voltage. The current source has a node to provide a current. The PMOS input pair is coupled to the node and the ground voltage and controlled by an input voltage. The NMOS input pair coupled to the supply voltage is controlled by the input voltage. The current transferring circuit is coupled to the node and the NMOS input pair. When the input voltage is less than a specific value, the current flows into the PMOS input pair through the node. When the input voltage is larger than or equal to the specific value, the current flows into the NMOS input pair through the node and the current transferring circuit. |
US08593220B2 |
Power MOSFETs with improved efficiency for multi-channel class D audio amplifiers and packaging therefor
A stereo class-D audio system includes a first die including four monolithically integrated NMOS high-side devices and a second a second die including four monolithically integrated PMOS low-side devices. The audio system also includes a set of electrical contacts for connecting the high and low-side devices to components within the a stereo class-D audio system, the set of electrical contacts including at least one supply contact for connecting the drains of the high-side devices to a supply voltage (Vcc) and at least one ground contact for connecting the drains of the low-side devices to ground, the electrical contacts also including respective contacts for each source of the high and low-side devices allowing the source of each high-side device to be connected to the source of a respective low-side device to form two H-bridge circuits. |
US08593212B2 |
Signal noise ratio control system and method thereof
A signal-noise ratio control system which reduces noise interference includes a touch sensor, a touch controller, and a level shifter. The touch sensor is driven by a driving signal and outputs an analog signal based on a touch situation. The touch controller generates the driving signal and provides a divided voltage based on the analog signal. The level shifter adjusts a voltage level of the driving signal based on a voltage level of the divided voltage. |
US08593211B2 |
System and apparatus for driver circuit for protection of gates of GaN FETs
A half-bridge power circuit comprises a first gallium nitride field effect transistor (GaN FET); a first driver coupled to a gate of the first GaN FET; an anode of a capacitor coupled to an output of the driver and a source of the first GaN FET; a diode having a cathode coupled to the cathode of the capacitor; and a bootstrap capacitor clamp (BCC) controller, including: a field effect transistor (FET) coupled to an anode of the diode, and a comparator coupled to a gate of the FET, the comparator configured to receive as inputs: a) a signal representative of an input voltage (VDRV) applied to the FET; b) a ground; c) a boot signal representative of a voltage at the anode of the capacitor (Boot); and d) a signal representative of a voltage at the source of the first GaN FET (SW). |
US08593210B2 |
Signal distribution device and display device
A peripheral region of a display panel includes a signal distribution device (4) for time-dividing and distributing, to output terminals (7), an output signal from a source driver. The signal distribution device (4) includes switching elements (20) for the output terminals (7). Each switching element (20) is controlled by a selection signal supplied to a control line (9) connected with a gate electrode. Each switching element (20) includes a source electrode and the drain electrode each having a comb-like shape having a stem part and branch parts extending therefrom. In at least one switching element (20), only all of or part of the branch parts overlap the control line (9) and a semiconductor layer (10). This suppresses abnormal heat generation of a source driver in a display device including the signal distribution circuit by which an output signal from the source driver is distributed to pixels in time series. |
US08593208B2 |
Phase mixer and delay locked loop including the same
A phase mixer includes a first driver configured to drive a first input signal to a mixing node with a driving force determined by a first setting value, a second driver configured to drive a second input signal to the mixing node with a driving force determined by a second setting value, and a slew rate control unit configured to control a slew rate at the mixing node. |
US08593207B2 |
Limiting amplifiers
A limiting amplifier with an input stage with dc offset cancellation, identical gain stages, an output buffer and a feedback filter. The input stage receives a differential input signal and outputs a first intermediate differential signal. The gain stages are cascaded to amplify the first intermediate differential signal and generate a second intermediate differential signal, amplified by the output buffer to produce an output signal. The feedback filter provides a dc offset voltage of the output signal to the input stage for the dc offset cancellation. The input stage comprises a resistor network coupled between a pair of input nodes and a power line and comprising a common resistor, a pair of load resistors and a shunt resistor. The load resistors share a common terminal connected to the common resistor that is connected to the power line. The shunt resistor has two terminals respectively connected to the load resistors. |
US08593206B2 |
Up-conversion mixer having a reduced third order harmonic
According to some embodiments, an up-conversion mixer includes a mixer cell having an output node arranged to provide an output. An input stage is coupled to the mixer cell and arranged to receive an input signal. The mixer cell is configured to generate the output with an up-converted frequency compared to an input frequency of the input signal. The input stage is configured to reduce a third order harmonic term of the output so that an output power plot of the third order harmonic term with respect to an input power has a notch with a local minimum. |
US08593199B2 |
Clock generation method and system
The clock generation method contains the following steps. In a pulse recognition step, an input pulse signal is first filtered to remove a shorter signal. Then, a width digitization calculation is conducted on the remaining pulse signal. Based on the width digitization calculation, a signal is recorded and a period of the recorded signal is determined. The value of the period is delivered to a gain module. In a step for verifying the input value to D/A converter, two values are input to a D/A converter from the gain module, and the output from the D/A converter is delivered to an oscillator. The gain module determines a desired input value from the gain module to the D/A converter. In a pulse generation step, the gain module inputs the desired input value to the D/A converter which in turn delivers to the oscillator for the generation of a corresponding clock. |
US08593197B1 |
Delay line circuit, delay locked loop and tester system including the same
The invention provides a delay line circuit. The delay line circuit includes a delay line section and a feedback selection section. The delay line section receives an input clock signal and a feedback clock signal and delays one of the input clock signal and the feedback clock signal to generate an output clock signal, wherein the delay line section includes a plurality of delay units coupled in series. The feedback selection section is coupled to the delay line section and feedbacks the output clock signal to one of the delay units to serve as the feedback clock signal based on a selection signal. Wherein, one of the input clock signal and the feedback clock signal is delayed by a specific number of the delay units based on the selection signal to changes the frequency of the output clock signal. |
US08593186B2 |
Control signal generator for use with a command decoder
A semiconductor device includes a control signal generator configured to generate a control signal that is enabled in a predetermined duration in response to an enabling of a chip selection signal, a clock controller configured to transfer a clock as a decoding clock in a duration for enabling of the control signal and disable the decoding clock in a duration for disabling of the control signal, and a command decoder configured to generate an internal command by decoding the chip selection signal and one or more command signals in synchronization with the decoding clock. |
US08593183B2 |
Architecture for controlling clock characteristics
An architecture for controlling the clock waveform characteristics, including but not limited to the clock amplitude and clock rise and/or fall times, of resonant clock distribution networks is proposed. This architecture relies on controlling the size of clock drivers and the duty cycles of reference clocks. It is targeted at resonant clock distribution networks and allows for the adjustment of resonant clock waveform characteristics with no need to route an additional power grid. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs. |
US08593179B2 |
Delay circuit and inverter for semiconductor integrated device
An inverter of a delay circuit in a semiconductor integrated device that has a high resistance to an electrostatic discharge. The delay circuit includes at least one inverter. Each inverter has high and low potential parts. The low potential part includes a pair of FETs. A source terminal of one FET is connected to a drain terminal of the other FET at a first common node. The high potential part includes another pair of FETs, with a source terminal of one FET being connected to a drain terminal of the other FET at a second common node. A power supply potential is applied to the first common node when the inverter output becomes a high potential. A ground potential is applied to the second common node when the inverter output becomes a low potential. |
US08593173B2 |
Programmable logic sensing in magnetic random access memory
A Magnetic Random Access Memory (MRAM) logic circuit includes read sensing circuitry having a first level corresponding to a first category of logic circuitry and a second logic level corresponding to a second category of logic circuitry. The logic circuitry may be switchable between circuitry having the first logic level and circuitry having the second logic level according to the category of the logic circuit being implemented. |
US08593167B2 |
Semiconductor device test method and apparatus, and semiconductor device
A method of testing a semiconductor device includes a conductive foreign matter test step of measuring the resistance value between the first and second conductive patterns to determine whether conductive foreign matter is present between the first and second conductive patterns, a first open circuit test step of measuring the resistance value between two points on the first conductive pattern to determine whether there is an open circuit in the first conductive pattern, and a second open circuit test step of measuring the resistance value between two points on the second conductive pattern to determine whether there is an open circuit in the second conductive pattern. The measurement of the resistance value in each of the test steps is accomplished by pressing probes vertically against the first conductive pattern or the second conductive pattern or both. |
US08593165B2 |
Solar generator
A solar generator for spacecraft or satellites, including a solar panel, a detector layer, a first evaluation means and a second evaluation means. The solar panel includes a plurality of solar cells. The detector layer includes first conductors substantially in parallel in a first plane and second conductors substantially in parallel in a second plane. The second plane is substantially in parallel to the first plane such that the first conductors are at an angle to the second conductors. The first evaluation means is for detecting a failure of one or more of the plurality of solar cells. The second evaluation means is for testing electrical status of the first conductors and the second conductors to determine whether the failure detected by the first evaluation means was caused by a space object damaging or severing one or more of the first conductors and the second conductors. |
US08593163B2 |
Surface-conforming obscured feature detector
A surface-conforming obscured feature detector includes a plurality of sensor plates flexibly connected together, each having a capacitance that varies based on the dielectric constant of the materials that compose the surrounding objects and the proximity of those objects. A sensing circuit is coupled to the sensor plates to measure the capacitances of the sensor plates. A controller is coupled to the sensing circuit to analyze the capacitances measured by the sensing circuit. One or a plurality of indicators are coupled to the controller, and are selectively activated to identify the location of a relative high capacitance, which can be indicative of an obscured feature behind a surface. |
US08593159B2 |
Switching configuration for determining the capacitance of a capacitive sensor element
A circuit arrangement for determining a capacitance of a capacitive sensor element (C1) includes a square-wave voltage source (10) which is designed to output a square-wave voltage (UR) at an output connection (11), a sensor branch via which the square-wave voltage is applied to the sensor element, and an amplifier branch including a negative feedback resistor (R1), a transistor (T1) and an evaluation capacitor (C2), the negative feedback resistor, the transistor and the evaluation capacitor being looped-in in series between the output connection of the square-wave voltage source and a reference potential (GND), and a voltage (UOUT), which is a measure of the capacitance of the sensor element, being applied to the evaluation capacitor. |
US08593155B2 |
MEMS in-plane resonators
MEMS in-plane resonators include a substrate wafer, at least one resonant mass supported by the substrate wafer and configured to resonate substantially in-plane, and at least one transducer coupled to the at least one resonant mass for at least one of driving and sensing in-plane movement of the at least one resonant mass, wherein at least part of one surface of the resonant mass is configured for exposure to an external environment and wherein the at least one transducer is isolated from the external environment. Such MEMS in-plane resonators may be fabricated using conventional surface micromachining techniques and high-volume wafer fabrication processes and may be configured for liquid applications (e.g., viscometry, densitometry, chemical/biological sensing), gas sensing (e.g., where a polymer film is added to the sensor surface, further degrading the damping performance), or other applications. |
US08593151B2 |
Inductive monitoring of a power transmission line of an electrical network
A method includes inductively coupling an electrical sensor to a transmission line associated with a node of an electrical network, and capturing power transmission information associated with the node through the electrical sensor. The method also includes communicating, through an electrical sensing device including the electrical sensor, information associated with a location of a power outage and/or a sub-optimal performance in the node to a processing node and/or a central control node associated with the electrical network. |
US08593150B2 |
Method and apparatus for detecting a location of ground faults in a motor/motor drive combination
A motor drive system provides for analysis of current flow in the DC bus to identify ground faults and their locations. Low-frequency positive polarity and negative polarity current differences indicate ground faults from the positive DC bus and negative DC bus respectively. High-frequency signals indicate ground faults in the motor windings and connecting leads. |
US08593149B2 |
Method and circuits for short-circuit protection of LED systems
An embodiment of the present invention relates to a method for detection of short circuit conditions in an LED array having one or more LED strings, each of which includes one or more LED devices. The method includes determining a minimum voltage that is the lowest of voltages associated with cathode terminals of the one or more LED strings. The method also includes determining if said minimum voltage is between a lower limit voltage and an upper voltage limit. If said minimum voltage is between the lower limit voltage and the upper voltage limit, then a result of a short circuit testing can be considered valid. Here, the short circuit testing includes comparing a sampled voltage associated with a cathode voltage of one of the LED strings with a short-circuit reference voltage. |
US08593148B2 |
System and method of testing high brightness LED (HBLED)
A system and method of testing High Brightness LED (HBLED) is provided, and more particularly, a system and method of Controlled Energy Testing of HBLED with improved accuracy and repeatability is provided. |
US08593145B2 |
Magnetic resonance system with cooling system and monitoring of helium pressure
A magnetic resonance examination system includes a main magnet with superconducting coils to generate a main magnetic field and a gradient system to apply a gradient magnetic field superposed on the main magnetic field. A cooling system cools the superconducting coils to below their critical superconductivity temperature. A transfer monitor assesses the transfer of energy from the gradient system to the cooling system. The transfer monitor is configured to measure pressure changes in the cooling system. This leads to a simple manner of evaluating the transfer of energy from the gradient coils into the cooling system. |
US08593144B2 |
Magnet array
A magnet array is disclosed which is suitable for inter alia producing a remote field for use in unilateral magnetic resonance. In the “Magnet Array”, two separated magnets, which are magnetized along a substantially same collinear magnetization direction, produce a field with a local maximum centered above and between them. The field produced by the two separated magnets is substantially parallel to the collinear magnetization direction of the two separated magnets. A third magnet is centered between the two separated magnets. The third magnet has a magnetization direction which is substantially parallel to the collinear magnetization direction of the two separated magnets. The third magnet produces a field which is substantially parallel to the collinear magnetization direction of the two separated magnets, and adds to the increasing field below the local maximum point produced by the two separated magnets. The field of the third magnet, which decays with distance, adds to the increasing field below the local maximum point. The position of the third magnet is selected in order to generate a total field which has at least one of its first and second spatial derivatives with respect to the distance above the magnet array substantially equal to zero. |
US08593143B2 |
MRI apparatus
An MRI apparatus including a magnetic structure defining a cavity for receiving a body under examination or a part thereof, a mechanism for generating a magnetic field inside the cavity, a mechanism for causing the body under examination or a part thereof to emit nuclear magnetic resonance signals, and a mechanism for receiving the nuclear magnetic resonance signals. The mechanism for generating the magnetic field includes one or more elements made of permanently magnetized material of the so-called superconducting bulk material type and, in combination therewith, a mechanism for keeping the magnetization condition of the superconducting bulk material which includes mechanisms for maintaining the temperature of the permanently magnetized material below the critical temperature thereof and for restoring the magnetization of the superconducting bulk material upon a complete or partial demagnetization. |
US08593142B2 |
Automated fiber tracking of human brain white matter using diffusion tensor imaging
A magnetic resonance imaging (MRI) system, comprising: a MRI scanner; a signal processing system in communication with the magnetic resonance imaging scanner to receive magnetic resonance (MR) signals for forming magnetic resonance images of a subject under observations; a data storage unit in communication with the signal processing system, wherein the data storage unit contains database data corresponding to a soft tissue region of the subject under observation. The database data includes information identifying at least one soft tissue substructure encompassed by the soft tissue region of the subject under observation. The signal processing system is adapted to process MR signals received from the MRI scanner to automatically identify at least one soft tissue substructure encompassed by the soft tissue region of the subject under observation. |
US08593140B2 |
Formation testing and evaluation using localized injection
Evaluating a formation by lowering a downhole tool in a wellbore penetrating the formation, injecting a fluid into the formation at an injection zone via the downhole tool, and using a formation evaluation sensor to perform a measurement at each of a plurality of locations in the wellbore each proximate the injection zone. At least two of the plurality of measurements are compared, and a formation property is determined based on the comparison. |
US08593139B2 |
Magnetic sensor
A magnetic sensor includes a spin valve-type magneto-resistive element, a voltage detection part, a coil, and a current control part, the coil being configured to apply a measuring magnetic field to the spin valve-type magneto-resistive element upon application of a current, the voltage detection part being configured to output a detection signal to the current control part upon detecting an output voltage of the spin valve-type magneto-resistive element reaching a predetermined voltage value, the current control part being configured to control the current to unidirectionally increase or unidirectionally decrease a strength of the measuring magnetic field from an initial value, but upon input of the detection signal, control the current to return the strength of the measuring magnetic field to the initial value, the initial value being a magnetic field strength where the spin valve-type magneto-resistive element reaches saturation magnetization. |
US08593137B2 |
Eddy current sensor and eddy current measurement method
An eddy current sensor that includes: a probe and a computing unit. The probe has an exciting portion and a detecting portion. The exciting portion includes a first excitation coil that is wound around a non-magnetic bobbin so that a center axis direction is oriented in an x-axis direction and a second excitation coil that is wound around the non-magnetic bobbin to intersect with the first excitation coil so that a center axis direction is oriented in a y-axis direction. The detecting portion includes a detection coil that is arranged at the lower one of two intersecting portions of the first excitation coil and the second excitation coil. An eddy current measurement method for determining the thickness of a hardened layer. |
US08593134B2 |
Current sensor
A current sensor includes first to fourth magneto-resistive elements each having a resistance value; and a compensation current line applying a compensation magnetic field to the magneto-resistive elements. A bridge circuit is formed by the magneto-resistive elements. Resistance values of the first and third magneto-resistive elements change together in one increasing/decreasing direction. Resistance values of the second and fourth magneto-resistive elements change together in the other increasing/decreasing direction. The compensation current is generated by a potential difference between the first and second junctions in response to application of voltage between the third and fourth junctions. The compensation current line includes first to fourth line portions. Each line portion extends in the same direction as the extending direction of the magneto-resistive elements, overlaps the corresponding magneto-resistive elements, and. The current-to-be-detected is detected based on the compensation current. |
US08593132B2 |
Parameter calculating apparatus and simulation apparatus
A parameter calculating apparatus includes a signal generator that generates at least two input signals which each contain different frequency components; a signal inputting unit that inputs the input signals generated by the signal generator to respective ports of a test object at the same time; a frequency component deconstructing unit that deconstructs an output signal which is obtained by synthesizing the input signals input by the signal inputting unit and output from an output port into the frequency components; and a parameter calculator that calculates parameters which indicate transfer coefficients among ports of the test object based on output values of the frequency components obtained via the deconstruction performed by the frequency component deconstructing unit and on input values of the frequency components of the input signals input at the same time to a plurality of ports. |
US08593130B2 |
Detector, physical quantity measuring device, and electronic apparatus
A detector is provided that detects a detection signal corresponding to a driving vibration, which excites a vibrator in an oscillation loop, and a physical quantity to be measured. The detector includes an amplifying circuit, a synchronous detection circuit, an impedance conversion circuit, a first low pass filter, and a second low pass filter, wherein each of the first and second low pass filters is formed by a switched capacitor filter circuit, a gain of the first low pass filter is different from that of the second low pass filter. |
US08593128B2 |
Stacked NMOS DC-to-DC power conversion
Another embodiment includes a voltage regulator. The voltage regulator includes a series switch element connected between a first voltage supply and a common node, the series switch element comprising an NMOS series switching transistor, a shunt switch element connected between the common node and a second voltage supply, the shunt switch element comprising an NMOS shunt switching transistor. The voltage regulator further includes means for closing the series switch element during a first period by applying a switching gate voltage to a gate of the NMOS series switch transistor of the series switch element, wherein the switching gate voltage has a voltage potential of at least a threshold voltage greater than a voltage potential of the common node, means for closing the shunt switch element during a second period, the shunt switch element comprising an NMOS shunt switching transistor. |
US08593126B2 |
Power supply device, control circuit, electronic device and control method for power supply
A power supply device that includes a switch circuit to which an input voltage is supplied, a coil coupled between the switch circuit and an output terminal from which an output voltage is outputted. A voltage adding circuit adds a slope voltage to a reference voltage. A control unit compares a feedback voltage corresponding to the output voltage and the reference voltage and switches the switch circuit at a timing corresponding to a comparison result of the feedback voltage and the reference voltage. A slope adjustment circuit differentiates a current flowing in the coil and adjusts a slope amount of the slope based on a differentiation result of the current. |
US08593122B2 |
Control method for high efficiency buck-boost power converter
A buck-boost power converter switches the switches thereof with a novel sequence and extends the switching periods of the switches to reduce the switching loss and conduction loss when the input voltage thereof approaches the output voltage thereof. The influence of the load current of the power converter on the duty thereof is taken into account to switch the power converter between modes at correct time points, so as to prevent the output voltage from being affected by the mode switching. |
US08593121B2 |
Circuit and method for voltage regulator output voltage trimming
The present disclosure discloses a voltage regulator including a trimming circuit. The present disclosure also discloses a method for trimming an output voltage of a voltage regulator. In one embodiment the voltage regulator may include a power conversion module, a feedback and trimming module and a control module. The voltage regulator may be able to provide an output voltage that could be regulated to a plurality of output values, the feedback and trimming module may be able to trim the plurality of output values to their desired values successively and independently. |
US08593120B2 |
Voltage regulator
A voltage regulator is capable of continuously and smoothly preventing an inrush current independently of a startup characteristic of a reference voltage circuit. The voltage regulator is provided with an inrush current protection circuit composed of a constant-current circuit, a first transistor having the source thereof connected to the constant-current circuit and the gate thereof controlled by an output voltage detection circuit, a capacitor connected between the first transistor and the gate of an output transistor, a second transistor having the gate thereof connected to the drain of the first transistor and the source thereof connected to a power supply terminal, and a third transistor, which is connected between the second transistor and the output transistor and the gate of which is controlled by the output voltage detection circuit. |
US08593114B2 |
Control device for doubly-fed induction generator in which feedback linearization method is embedded
The present invention relates to a control device for a doubly-fed induction generator in which a feedback linearization method is enabled and further provides a control device for a doubly-fed induction generator in which a feedback linearization method is embedded, characterized in that the control device divides and measures positive sequency components and negative sequency components from stator voltage and current, rotor voltage and current, and signals of stator magnetic flux and rotor magnetic flux of the doubly-fed induction generator. |
US08593106B2 |
Dual-chargeable battery pack in a power supply
A dual-chargeable battery pack in a power supply is disclosed. The dual-chargeable battery pack comprises a main body provided with an electrical energy storage device, a first connecting device and a second connecting device. The first connecting device comprises a first charging terminal set and a first power output terminal set, wherein the first charging terminal set is configured to receive an input of a first power for outputting to the electrical energy storage device. The second connecting device comprises a second charging terminal set which is configured to receive an input of a second power for outputting to the electrical energy storage device. The electrical energy storage device is configured to output the electrical energy accumulated therein as a third power through the first power output terminal set. The second power is different than the first power. |
US08593105B2 |
System and method for inductively charging a battery
An inductive charging system for recharging a battery. The system includes a charger circuit and a secondary circuit. The secondary circuit includes a feedback mechanism to provide feedback to the charger circuit through the inductive coupling of the primary coil and the secondary coil. The charger circuit includes a frequency control mechanism for controlling the frequency of the power applied to the primary coil at least partly in response to the feedback from the feedback mechanism. |
US08593104B2 |
Power source for starting engines of vehicles and the like
A reserve power source for charging a device, such as a depleted power source or a vehicle. The reserve power source including: a reserve battery which requires activation to produce power, such as a thermal battery or a liquid reserve battery; an activator for activating the reserve power upon one of an electrical or mechanical activation; and a pair of terminals operatively connected to the reserve battery for outputting the produced power. The reserve power source can also include a cable connected to each of the pair of terminals for connecting outputting the produced power to the depleted power source and/or conditioning circuitry for conditioning the produced power prior to output at the terminals. The reserve battery can also include a stop for preventing the activator from activating the reserve power source, where the stop is selectively removable when activation is desired. |
US08593102B2 |
Portable, self-sustaining power station
A self-sustaining, portable, power station that may be moved by land, air, or sea to an area that has no utilities. The station is provided with solar panel arrays in communication with at least one electrical distribution and storage means. The derived electricity is used to power various systems including, albeit not limited to, a communications system, a water filtration system, a water distribution system to allow the public to draw potable water and provide basic hygiene. The electricity derived may also be used to run outside systems, such as schools, hospitals, or the like. The solar panel arrays are mounted on roller assemblies that can be easily slide between a stowed and deployed condition. The solar arrays include a plurality of solar panels that are supported by one or more hydraulic actuators to counter balance the weight of the solar panel whereby the solar panel can be easily positioned into the desired tilted orientation. |
US08593097B2 |
Seat adjusting device
A seat adjusting device for an automobile seat (1) having an electric motor (11) for generating a drive motion, wherein the electric motor is operationally coupled to a gearbox (13) for transmitting the drive motion thereof, the gearbox having a gearbox housing (19) in which gearbox elements are disposed for a step-up or step-down transmission of the motor drive motion, by means of which electric motors of lesser technical complexity can be used than previously. To this end, the invention proposes that the gearbox (13) has detection device for detecting information about the speed of at least one of the gearbox elements or detecting a variable dependent on the speed. |
US08593093B2 |
Electric motor control apparatus
An electric motor control apparatus capable of controlling a motor normally regardless of failures is obtained without increased cost. The apparatus includes a position sensor failure determination unit which outputs a failure determination signal, and generates a first phase; a motor rotation speed calculator which operates based on the failure determination signal and position sensor signals; a phase command generator producing a phase command based on the first phase, the failure determination signal and rotation speed; an amplitude command generator that generates an amplitude command indicating magnitude of a driving signal for the motor, and an electrical energization unit that applies the driving signal to the motor based on the phase command and the amplitude command. Upon failure of a position sensor, the phase command generator generates the phase command using the first phase, and a second phase obtained based on the first phase and the rotation speed. |
US08593092B2 |
Control system for multiphase electric rotating machine
A control system controls a multiphase rotating machine by a 120° energization process and a PWM process. In the 120° energization process, respective ones of switching elements of a high side arm and switching elements of a low side arm of a power conversion circuit are turned on. In the PWM process, the switching elements of the power conversion circuit turn on/off so that two phases that are connected to the switching elements that are in the on-state are alternately rendered conductive to the high potential side input terminal and the low potential side input terminal of the power conversion circuit. |
US08593089B2 |
Motor driving apparatus and method
There are provided a motor driving apparatus and method. The motor driving apparatus includes: a speed detecting unit detecting a rotation speed of a motor according to an edge of a hall signal, and counting a preset clock signal while allocating a weighted value thereto according to a preset reference count value at the time of counting the clock signal based on the detected speed; a position calculating unit calculating a rotation position of the motor according to a count value of the speed detecting unit; and a driving unit driving the motor according to position information of the motor calculated by the position calculating unit. |
US08593088B2 |
Method and system for controlling an electric motor for a vehicle
A system and method for calibrating an interior permanent magnet (IPM) motor with an optimized maximum torque per ampere trajectory curve. The system and method use a real-time particle swarm technique that requires less known parameters than standard maximum torque per ampere trajectory techniques. |
US08593085B2 |
Device for charging accumulator means
The present invention relates to an electrical device for charging accumulator means (5), said electrical device comprising: a motor (6) connected to an external mains (11); an inverter (2) connected to the phases of said motor (6); and switching means (4) integrated into the inverter (2), said switching means (4) being configured to permit said motor (6) to be supplied and to permit the accumulator means (5) to be charged by the inverter (2). According to the invention, said electrical device further includes, for each phase of said motor (6), an RLC low-pass filter (18) connected, on the one hand, to the mid-point (16) of the phase of said motor (6) and, on the other hand, to ground. |
US08593084B2 |
Auxiliary power supply device and electric power steering device
An auxiliary power supply device that can always supply stable auxiliary power at the time of using an auxiliary power source and an electric power steering device employing the auxiliary power supply device are provided. In the auxiliary power supply device including a discharge circuit selectively constituting a state where a motor is supplied with power from only a battery and a state where the motor is supplied with power from a power source in which an auxiliary power source is connected in series to the battery by PWM control, when the power consumption of the battery is greater than an upper limit, a control circuit is provided which controls the power consumption to return to the upper limit by performing an electric power feedback control using a duty as an amount of operation at the time of turning on and off switching elements by a PWM control on the basis of the difference. |
US08593083B2 |
System, method and portable controller for programming and calibration of a plurality of light source units for photo-reactive/curing applications
A system, method, and portable or mobile controller are provided for network management of functions such as monitoring, control, programming, and calibration of a plurality of (UV) light sources, for photo-reactive and photo-curing applications. Beneficially, a reliable and controlled closed-loop feedback network is provided in which a dose of light, or exposure profile, for e.g. spot curing, can be programmed into a light source unit to perform a highly repeatable operation across a single or multiple work stations. The system is scalable up to 1000's of workstations. |
US08593082B2 |
System and method for adjusting color temperature
A color temperature adjusting system includes a processing unit, a constant-current drive unit, and an light emitting unit (LED) unit including two unmatched LED modules with different basic color temperatures. A table records a relationship between coefficient values and current values for the current(s) flowing through the two LED modules. The processing unit selects one of a number of predetermined formulas to calculate the coefficient value by comparing a desired value with a threshold value, and further determines the current values according to the calculated coefficient value listed in a table. The constant-current drive unit includes two drive module generating modulating signals to adjust the respective values of the current flowing through the two LED modules to match the determined current values, thereby adjusting the color temperature value of the LED unit to the desired level. A related method is also provided. |
US08593080B2 |
Ignition control apparatus used in electronic ballast and method thereof
The present invention is generally related to an electronic ballast, an ignition control apparatus used therein and associated method of operation. In one embodiment, an electronic ballast comprising an inverter and an ignition control apparatus which comprises a stability monitoring circuit and a controlled ignition circuit. The inverter converts a DC input voltage into an AC voltage to drive a gas discharge lamp. The stability monitoring circuit monitors whether the DC input voltage is stable. The controlled ignition circuit is electrically coupled to the stability monitoring circuit and the lamp, ignites the lamp based on the monitoring result. The controlled ignition circuit does not ignite the gas discharge lamp until the DC input voltage becomes stable. |
US08593076B2 |
Electronic dimming ballast having advanced boost converter control
An electronic ballast for driving a gas discharge lamp includes a power converter for generating a DC bus voltage, where the bus voltage is controlled to different magnitudes during different operating modes of the ballast. The ballast comprises a control circuit that is coupled to the power converter for adjusting the magnitude of the bus voltage to a first magnitude when the lamp is off, to a second magnitude when preheating filaments of the lamp, and to a third magnitude when the lamp is on. The control circuit is also operable to preemptively adjust the magnitude of the bus voltage prior to changing modes of operation. For example, when turning the load on, the control circuit first adjusts a power-conversion-drive level of the power converter to begin adjusting the magnitude of the bus voltage towards a predetermined magnitude, and then waits for a predetermined time period before attempting to turn the load on. |
US08593075B1 |
Constant current controller with selectable gain
A power distribution system includes a selectable gain value to generate a duty cycle modulated control signal to control current supplied to a load. In at least one embodiment, the power distribution system includes a controller and a switch, and the controller generates the duty cycle modulated control signal to control conductivity of the switch. The duty cycle modulated control signal has a period and a pulse width. In at least one embodiment, the controller determines the period of the control signal as a function of a peak allowable link current value (also referred to as a peak allowable output current value) of a switching power converter, an inductor flyback time of the switching power converter, and the gain value. The link current provides current to a load, such as a lighting system that includes light emitting diodes. |
US08593073B2 |
Apparatus and methods for interactive illumination
In illustrative implementations of this invention, a lighting system comprises a plurality of LEDs, fluorescent lights, incandescent lights, a processor, a sensor node and a human-computer interface. The sensor is adapted to be moved by a user and placed in the location that a user wants to illumine. The LED lights are adapted to emit pulse-width modulated (PWM) light, controlled by signals from the processor. The lighting system is adapted to optimize parameters (such as efficacy or color rendering index) selected by the user, subject to certain constraints (such as desired illuminance or color temperature). According to principles of this invention, if a sensor is moved, attenuation may be measured and the inverse square law may be used to determine how constraints in an optimization algorithm need to be updated. |
US08593072B2 |
Circuit assembly and method for operating a high pressure discharge lamp
A circuit arrangement for operating a high-pressure discharge lamp with an operating circuit for the high-pressure discharge lamp with an input for receiving a switch-on/switch-off signal for the high-pressure discharge lamp and at least one output for providing an operating signal to the high-pressure discharge lamp, wherein the operating circuit is designed to reduce the power of the operating signal provided at the at least one output once a switch-off signal has been received at its input, wherein the operating circuit furthermore designed to provide the operating signal as an AC signal above a predeterminable power threshold value and as a quasi DC signal below the predeterminable power threshold value. |
US08593070B2 |
Three-phase LED power supply
A three phase rectifier rectifies received three phase a.c. power to generate a ripple d.e. voltage. A power distribution bus conveys distribution power comprising the ripple d.c. voltage or an a.c. voltage derived therefrom to a location of an LED based lamp that is distal from the three phase rectifier. Additional circuitry disposed with the LED based lamp drives the LED based lamp using the distribution power. |
US08593062B2 |
Color stable phosphors for LED lamps and methods for preparing them
An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x−w)F1-y-3(x−w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, Na, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0 |
US08593058B2 |
Organic light-emitting display device
An organic light-emitting display device includes an anode electrode, an organic layer on the anode electrode, the organic layer having an emission layer, and a cathode electrode on the organic layer through which light emitted from the emission layer of the organic layer passes, wherein a thickness of the cathode electrode in a first region is different from a thickness of the cathode electrode in a second region. |
US08593055B2 |
Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture
A substrate bearing, on one main face, a composite electrode, which includes an electroconductive network formed from strands made of an electroconductive material based on a metal and/or a metal oxide, and having a light transmission of at least 60% at 550 nm, the space between the strands of the network being filled by a material referred to as an insulating fill material. The composite electrode also includes an electroconductive coating covering the electroconductive network, and in electrical connection with the strands and in contact therewith, having a thickness greater than or equal to 40 nm, of resistivity ρ1 less than 105 Ω·cm and greater than the resistivity of the network, the coating forming a smoothed outer surface of the electrode. The composite electrode additionally has a sheet resistance less than or equal to 10Ω/□. |
US08593053B2 |
Display device in which a sub-pixel has a plurality of apertures and electronic apparatus including the display device
A display device includes: plural sub-pixels included in a main pixel, emitting light of different colors respectively; at least three apertures arranged so as to be aligned along one direction in the sub-pixel; and an aperture defining portion defining aperture lengths so that an aperture length of an aperture other than apertures at both edge portions along the one direction is longer than an aperture length of apertures at both edge portions along the one direction in the at least three apertures. |
US08593052B1 |
Microelectrode array and method for modifying carbon nanotube electrode interface of the same array
The present invention discloses a method for modifying a carbon nanotube electrode interface, which modifies carbon nanotubes used as a neuron-electrode interface by performing three stages of modifications and comprises the steps of: carboxylating carbon nanotubes to provide carboxyl functional groups and improve the hydrophilicity of the carbon nanotubes; acyl-chlorinating the carboxylated carbon nanotubes to replace the hydroxyl functional groups of the carboxyl functional groups with chlorine atoms; and aminating the acyl-chlorinated carbon nanotubes to replace the chlorine atoms with a derivative having amine functional groups at the terminal thereof. The modified carbon nanotubes used as the neuron-electrode interface has lower impedance and higher adherence to nerve cells. Thus is improved the quality of neural signal measurement. The present invention also discloses a microelectrode array, wherein the neuron-electrode interface uses carbon nanotubes modified according to the method of the present invention. |
US08593049B2 |
Field electron emitter, field electron emission device including the same, and method of manufacturing the field electron emitter
A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter. |
US08593048B2 |
Electron source having a tungsten single crystal electrode
Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source. |
US08593047B2 |
Field emission unit and pixel tube for field emission display
A pixel tube for field emission display includes a sealed container, an anode, a phosphor, and a cathode. The sealed container has a light permeable portion. The anode is located in the sealed container and spaced from the light permeable portion. The phosphor layer is located on the anode. The cathode is spaced from the anode and includes a cathode emitter. The cathode emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks. |
US08593045B2 |
Spark plug
A spark plug which exhibits improved resistance to high-temperature oxidation of an electrode, and improved resistance to spark-induced erosion of, improved resistance to oxidation of, and improved joining reliability of a tip joined to the electrode. A spark plug has spark members; each of the spark members has a weight of 1.5 mg or more; and a center electrode and a ground electrode contain Ni as a main component, C in an amount of 0.005% by mass to 0.10% by mass, Si in an amount of 1.05% by mass to 3.0% by mass, Mn in an amount of 2.0% by mass or less, Cr in an amount of 20% by mass to 32% by mass, and Fe in an amount of 6% by mass to 16% by mass. |
US08593044B2 |
Modular architecture for sealed LED light engines
Apparatus and associated methods involve an assembly of multiple LED light engines in which a desired number of LED lamps are mounted to a plate that forms a wall of an enclosure. In an illustrative example, three LED light engines may be mounted to a plate that may be slidably installed as a wall of an extruded housing that contains electrical connections from an AC power inlet to each light engine. In various examples, the number and layout arrangement of the LED light engines may be custom selected for a particular application. |
US08593042B1 |
LED lamp and heat dissipation device thereof
The present invention provides a heat dissipation device, which comprises: a base; plural heat dissipation pipes, wherein each heat dissipation pipe is hollow and formed in an L-like shape, one end thereof passes the base, the other end thereof is received at the bottom of the base; and a heat dissipation plate having a main body, the center of the main body is formed with a chamber having its outer periphery formed with plural heat dissipation grooves, the outer side of the main body is formed with plural wavelike shaped heat dissipation fins. With the aforementioned structure, advantages of smaller in volume, lighter in weight and more efficient in heat dissipation can be achieved. |
US08593040B2 |
LED lamp with surface area enhancing fins
A light emitting apparatus comprising an at least substantially omnidirectional light assembly including an LED-based light source within a light-transmissive envelope. Electronics configured to drive the LED-based light source, the electronics being disposed within a base having a blocking angle no larger than 45°. A plurality of heat dissipation elements (such as fins) in thermal communication with the base and extending adjacent the envelope. |
US08593036B2 |
High-efficiency MEMS micro-vibrational energy harvester and process for manufacturing same
The present invention relates generally to a High Efficiency MEMS Micro-Vibrational Energy Harvester (μVEH) having a thick beam bimorph architecture. The disclosed architecture is capable of producing a voltage of sufficient magnitude such that the requirement to connect a plurality of harvesters in series to produce an adequate voltage magnitude is eliminated. |
US08593032B2 |
Frame-shaped MEMS piezoresistive resonator
A novel Si MEMS piezoresistive resonator is described. The resonator has a shape of a frame, such as a ring or a polygon frame, which has two or more anchors. Electrodes located at the outer or inner rim of the resonant structure are used to excite the structure electrostatically into resonance with a desired mode shape. One or plurality of locally doped regions on the structure is used for piezoresistive readout of the signal. In the most preferred embodiments, the structure is a ring, which has four anchors, two electrodes and four piezoresistive regions at different segments of the structure. The piezoresistive regions are alternatively located at the outer rim and inner rim of the structure in such a way that the piezoresistive signals of the same sign from different regions can be collected. Advantages of this device are large readout signal, large electrode area, robustness, suppressed out-of-plane vibration and larger usable linear range. |
US08593029B2 |
Lundell type rotating machine
Provided is a Lundell type rotating machine with high efficiency and high output, which has a rigid and magnetically advantageous magnet retention structure. A rotor iron core includes laminated magnetic-pole members mechanically and magnetically coupled to two laminated magnetic end plates, which extend in an axial direction so as to be brought into meshing engagement with each other to constitute a Lundell type rotor iron core, and permanent magnets provided between the magnetic-pole members. The magnetic-pole members are retained in predetermined positions between the magnetic end plates by dovetail grooves of a non-magnetic retention body over substantially the entire lengths. The permanent magnets are held in direct contact with the magnetic-pole members so as to be interposed therebetween. Thus, the magnet retention structure which is mechanically rigid and magnetically highly efficient even when increased in size can be obtained. |
US08593025B2 |
Driving device, in particular electric motor, for driving a unit
A driving device (10) for driving a unit (11) is specified, with a drive shaft (16) on which a plurality of rolling bearings (19 to 21) serving to drive respective functional elements of the unit (11) are arranged next to one another. The rolling bearings (19 to 21) are designed as unencapsulated needle bearings (22 to 24) and are arranged directly next to one another on the drive shaft (16) in such a manner that the inner ring (25, 26) of a needle bearing (22, 23) is in touching contact by means of its end surface (43, 44), which is located on an axial side, with the facing, axial end surface (46, 47) of the outer sleeve (32, 33) of the needle bearing (23, 24) following next axially. |
US08593020B2 |
Electric motor and electric vehicle having the same
A motor for an electric vehicle includes a frame, a stator disposed in the frame, a rotor disposed to be rotatable with respect to the stator; and an engaging portion that restricts the stator from moving with respect to the frame in a circumferential direction, the engaging portion including at least one rib protruding from one of the surfaces of the frame and the stator, and at least one rib accommodation portion formed at other of the surfaces of the frame and the stator, wherein the at least one rib and the at least one accommodation portion are engaged to allow heat to be transferred therebetween. Under this configuration, a cooling performance may be improved and durability may be enhanced. |
US08593019B2 |
Structure for linear and rotary electric machines
Disclosed herein is a structure for linear and rotary electric machines. The present invention provides a modular mover structure which includes coils that have an electrical phase difference of 180°, so that the path of magnetic flux is shortened, thus reducing the size of the machine and mitigating the back-EMF unbalance. The modular mover structure can be modified into various shapes. For example, when a skew structure is applied to a mover or stator iron core, the force ripples in an electric machine can be reduced. In addition, when a hinge structure is applied to a modular mover iron core, the mover can move in a linear and curved manner. The structure of the present invention can be applied to a rotary electric machine. In this case, because the number of poles is easily increased, a low speed high torque direct drive type rotary electric machine is realized. |
US08593015B2 |
Battery balancing system
A battery system comprises a first battery unit; a DC voltage bus; a second battery unit electrically connected to the DC voltage bus; a current-limiting component; and switching circuitry for connecting the first battery unit to the DC voltage bus, where the switching circuitry is configured to electrically connect the first battery unit to the DC voltage bus either directly or through a current-limiting component, depending on an operating parameter of the first battery unit. |
US08593004B2 |
Apparatus for producing electric or mechanical energy from wave motion
The invention concerns an apparatus for generating power, in particular electric energy, from wave motion in water basins. It comprises at least an operating unit, including gearing provided for unidirectional rotation and to continuously operate at least one power generator in response to the movements of a control element susceptible to alternating linear movements deriving from the wave motion. Each operating unit comprises at least a main or driving shaft (11, 12; 11b) solidly carrying a driving wheel (13, 14; 13b) engaged and placed in rotation by said linear control element (15, 15b) and at least two driven shafts (21, 22; 21b, 22b) operated by the main shaft through a unidirectional drive mechanism (20, 20b) and each connectable to at least a power generator. |
US08593001B2 |
Patterned semiconductor bases
Some embodiments include patterning methods. First and second masking features may be formed over first and second regions of a semiconductor base, respectively. A protective mask may be formed over the second masking features. First and second spacers may be formed along sidewall edges of the first masking features and along lateral edges of the protective mask, respectively. The protective mask and the first masking features may be removed without removing the second masking features, without removing the first spacers, and without removing the second spacers. The first spacers may be third masking features that are at a tighter pitch than the first masking features. Patterns of the second masking features and the third masking features may be transferred into the semiconductor base. Some embodiments include patterned semiconductor bases. |
US08592999B2 |
Semiconductor chip and method for fabricating the same
A semiconductor chip includes a first main face and a second main face opposed to the first main face. Side faces connect the first and second main faces. The side faces are at least partially covered with an anti-EBO compound and/or a surface energy reducing compound. |
US08592998B2 |
Thin film wafer level package
Anchor designs for thin film packages are disclosed that, in a preferred embodiment are a combination of SiGe-filled trenches and Si-oxide-filled spacing. Depending on the release process, additional manufacturing process steps are performed in order to obtain a desired mechanical strength. For aggressive release processes, additional soft sputter etch and a Ti—TiN interlayer in the anchor region may be added. The ratio of the total SiGe—SiGe anchor area to the SiO2—SiGe anchor area determines the mechanical strength of the anchor. If this ratio is larger than 1, the thin film package reaches the MIL-standard requirements. |
US08592995B2 |
Method and structure for adhesion of intermetallic compound (IMC) on Cu pillar bump
A method and structure for good adhesion of Intermetallic Compounds (IMC) on Cu pillar bumps are provided. The method includes depositing Cu to form a Cu pillar layer, depositing a diffusion barrier layer on top of the Cu pillar layer, and depositing a Cu cap layer on top of the diffusion barrier layer, where an intermetallic compound (IMC) is formed among the diffusion barrier layer, the Cu cap layer, and a solder layer placed on top of the Cu cap layer. The IMC has good adhesion on the Cu pillar structure, the thickness of the IMC is controllable by the thickness of the Cu cap layer, and the diffusion barrier layer limits diffusion of Cu from the Cu pillar layer to the solder layer. The method can further include depositing a thin layer for wettability on top of the diffusion barrier layer prior to depositing the Cu cap layer. |
US08592990B2 |
Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes: a first porous layer that is formed over a substrate and includes a SiO2 skeleton; a second porous layer that is formed immediately above the first porous layer and includes a SiO2 skeleton; a via wiring that is provided in the first porous layer; and a trench wiring that is buried in the second porous layer. The first porous layer has a pore density x1 of 40% or below and the second porous layer has a pore density x2 of (x1+5) % or above. |
US08592988B2 |
Semiconductor device
A semiconductor device may include a substrate and a through electrode. The substrate may have a first surface and a second surface opposite to the first surface, the substrate including circuit patterns formed on the first surface. The through electrode penetrates the substrate and may be electrically connected to the circuit pattern, the through electrode including a first plug that extends from the first surface in a thickness direction of the substrate and a second plug that extends from the second surface in the thickness direction of the substrate so as to be connected to the first plug. |
US08592986B2 |
High melting point soldering layer alloyed by transient liquid phase and fabrication method for the same, and semiconductor device
A high melting point soldering layer includes a low melting point metal layer, a first high melting point metal layer disposed on a surface of the low melting point metal layer, and a second high melting point metal layer disposed at a back side of the low melting point metal layer. The low melting point metal layer, the first high melting point metal layer, and the second high melting point metal layer are mutually alloyed by transient liquid phase bonding, by annealing not less than a melting temperature of the low melting point metal layer, diffusing the metal of the low melting point metal layer into an alloy of the first high melting point metal layer and the second high melting point metal layer. The high melting point soldering layer has a higher melting point temperature than that of the low melting point metal layer. It is provided a binary based high melting point soldering layer having TLP bonding of a high melting point according to a low temperature processing, a fabrication method for the high melting point soldering layer and a semiconductor device to which the high melting point soldering layer is applied. |
US08592984B2 |
Semiconductor integrated circuit device and method of manufacturing the same
To suppress peeling of an Au pad for external coupling provided in a rewiring containing Cu as a main component. On the surface of a rewiring including a two-layer film in which a first Ni film is laminated on the top of a Cu film, a pad to which a wire is coupled is formed. The pad includes a two-layer film in which an Au film is laminated on the top of a second Ni film and formed integrally so as to cover the top surface and the side surface of the rewiring. Due to this, the area of contact between the rewiring and the pad increases, and therefore, the pad becomes difficult to be peeled off from the rewiring. |
US08592980B2 |
Carbon nanotube-modified low-K materials
An interconnect structure for use in an integrated circuit is provided. The interconnect structure includes a first low-K dielectric material. The first low-K material may be modified with a first group of carbon nanotubes (CNTs) and disposed on a metal line. The first low-K material is modified by dispersing the first group of CNTs in a solution, spinning the solution onto a silicon wafer and curing the solution to form the first low-K material modified with the first CNTs. The metal line includes a top layer and a bottom layer connected by a metal via. The interconnect structure also includes a second low-K dielectric material modified with a second group of CNTs and disposed on the bottom layer. Accordingly, embodiments the present disclosure could help to increase the mechanical strength of the low-K material or the entire interconnect structure. |
US08592977B2 |
Integrated circuit (IC) chip and method for fabricating the same
A method for fabricating an integrated circuit (IC) chip includes providing a passivation layer over a circuit structure, an opening in the passivation layer exposing a pad of the circuit structure, next forming a first titanium-containing layer over the pad exposed by the opening, next performing an annealing process by heating the titanium-containing layer at a temperature of between 300 and 410° C. for a time of between 20 and 150 minutes in a nitrogen ambient with a nitrogen purity of great than 99%, next forming a second titanium-containing layer on the first titanium-containing layer, and then forming a metal layer on the second titanium-containing layer. |
US08592975B2 |
Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure
A semiconductor device has a first interconnect structure. A first semiconductor die has an active surface oriented towards and mounted to a first surface of the first interconnect structure. A first encapsulant is deposited over the first interconnect structure and first semiconductor die. A second semiconductor die has an active surface oriented towards and mounted to a second surface of the first interconnect structure opposite the first surface. A plurality of first conductive pillars is formed over the second surface of the first interconnect structure and around the second semiconductor die. A second encapsulant is deposited over the second semiconductor die and around the plurality of first conductive pillars. A second interconnect structure including a conductive layer and bumps are formed over the second encapsulant and electrically connect to the plurality of first conductive pillars and the first and second semiconductor die. |
US08592971B2 |
Direct semiconductor contact ebullient cooling package
The semiconductor package as well as a method for making it and using it is disclosed. The semiconductor package comprises a semiconductor chip having at least one heat-generating semiconductor device and a volumetrically expandable chamber disposed to sealingly surround the semiconductor chip, the volumetrically expandable chamber filled entirely with a non-electrically conductive liquid in contact with the semiconductor device and circulated within the volumetrically expandable chamber at least in part by the generated heat of the at least one semiconductor device to cool the at least one semiconductor device. |
US08592964B2 |
Apparatus and method for high density multi-chip structures
Devices and methods are described including a multi-chip assembly. Embodiments of multi-chip assemblies are provided that uses both lateral connection structures and through chip connection structures. One advantage of this design includes an increased number of possible connections. Another advantage of this design includes shorter distances for interconnection pathways, which improves device performance and speed. |
US08592963B2 |
Self-aligning structures and method for integrated chips
A lead frame having a die thereon connects a conductive area on the die to a lead frame contact using a conductive clip that includes a structural portion that is received with a recess-like “tub” formed in the lead frame contact. The end of the clip received in the tub is held in place during subsequent handling by a solder paste deposit until the clip and leadframe undergo solder reflow to effect a reliable electrical connection. The effective surface area between one side of the clip and the other side of the clip within the tub is different so that the surface tension of the liquefied solder formed during the solder reflow step will “draw” the clip into a preferred alignment against a “stop” surface. |
US08592957B2 |
Semiconductor device having shield layer and chip-side power supply terminal capacitively coupled therein
Provided is a semiconductor device including a wiring board having a first surface on which a board-side ground terminal and a board-side power supply terminal are provided; a semiconductor chip arranged so as to face the first surface of the wiring board, where the first surface faces an opposite surface of the semiconductor chip; a shield layer provided at the semiconductor chip so as to cover an outer surface of the semiconductor chip except for the opposite surface; a chip-side power supply terminal which is provided on the opposite surface and is electrically connected to the board-side power supply terminal; a chip-side ground terminal which is provided on the opposite surface and is electrically connected to the board-side ground terminal and the shield layer; and a first capacitively coupled part by which the shield layer and the chip-side power supply terminal are capacitively coupled with each other. |
US08592952B2 |
Semiconductor chip and semiconductor package with stack chip structure
A semiconductor chip and semiconductor package with stack chip structure include align patterns. The align patterns are formed of magnetic materials having opposite polarities on the top and bottom of the semiconductor chip. Thus, when the plurality of chips are stacked on the substrate in order for the packaging, the semiconductor chips may be exactly aligned by the magnetic force between the align patterns of the vertically stacked chips. The semiconductor package includes a plurality of stacked semiconductor chips and a filling material. Each of the stacked semiconductor chips includes a semiconductor substrate having a first surface and a second surface, wherein a circuit pattern such as a bonding pad is formed on the first surface, and a first align pattern formed on the first surface of the semiconductor substrate, wherein the first align pattern is formed of a magnetic material. |
US08592950B2 |
Semiconductor device and method of forming through vias with reflowed conductive material
A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die. |
US08592949B2 |
Method of texturing the surface of a silicon substrate, and textured silicon substrate for a solar cell
The invention relates to a method for texturing the surface of a gaseous phase silicon substrate, and to a textured silicon substrate for a solar cell. The method includes at least a step a) of exposing the surface to an SF6/O2 radiofrequency plasma for a duration of 2 to 30 minutes in order to produce a silicon substrate having a textured surface having pyramidal structures, the SF6/O2 ratio being 2 to 10. During step a) the power density generated using the radiofrequency plasma is greater than or equal to 2500 mW/cm2, and the SF6/O2 pressure in the reaction chamber is lower than or equal to 100 mTorrs, so as to produce a silicon substrate having a textured surface having inverted pyramidal structures. |
US08592948B2 |
Substrate, epitaxial layer provided substrate, method for producing substrate, and method for producing epitaxial layer provided substrate
The present invention provides a substrate formed at a low cost and having a controlled plate shape, an epitaxial layer provided substrate obtained by forming an epitaxial layer on the substrate, and methods for producing them. The method for producing the substrate according to the present invention includes an ingot growing step serving as a step of preparing an ingot formed of gallium nitride (GaN); and a slicing step serving as a step of obtaining a substrate formed of gallium nitride, by slicing the ingot. In the slicing step, the substrate thus obtained by the slicing has a main surface with an arithmetic mean roughness Ra of not less than 0.05 μm and not more than 1 μm on a line of 10 mm. |
US08592945B2 |
Large dimension device and method of manufacturing same in gate last process
An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a capacitor having a doped region disposed in a semiconductor substrate, a dielectric layer disposed over the doped region, and an electrode disposed over the dielectric layer. At least one post feature embedded in the electrode. |
US08592943B2 |
Symmetrical center tap inductor structure
An inductor structure implemented within a semiconductor integrated circuit (IC) can include a coil of conductive material that includes a center terminal located at a midpoint of a length of the coil. The coil can be symmetrical with respect to a centerline bisecting the center terminal. The coil can include a first differential terminal and a second differential terminal each located at an end of the coil and opposite the center terminal. The inductor structure can include an isolation ring surrounding the coil. In some cases, the inductor structure can include a return line of conductive material positioned on the center line. |
US08592941B2 |
Fuse structure having crack stop void, method for forming and programming same, and design structure
The disclosure relates generally to fuse structures, methods of forming and programming the same, and more particularly to fuse structures having crack stop voids. The fuse structure includes a semiconductor substrate having a dielectric layer thereon and a crack stop void. The dielectric layer includes at least one fuse therein and the crack stop void is adjacent to two opposite sides of the fuse, and extends lower than a bottom surface and above a top surface of the fuse. The disclosure also relates to a design structure of the aforementioned. |
US08592940B2 |
Topography based patterning
A mask having features formed by self-organizing material, such as diblock copolymers, is formed on a partially fabricated integrated circuit. A copolymer template, or seed layer, is formed on the surface of the partially fabricated integrated circuit. To form the seed layer, diblock copolymers, composed of two immiscible blocks, are deposited in the space between copolymer alignment guides. The copolymers self-organize, with the guides guiding the self-organization and with each block aggregating with other blocks of the same type, thereby forming the seed layer. Supplemental diblock copolymers are deposited over the seed layer. The copolymers in the seed layer guide self-organization of the supplemental copolymers, thereby vertically extending the pattern formed by the copolymers in the seed layer. Block species are subsequently selectively removed to form a pattern of voids defined by the remaining block species, which form a mask that can be used to pattern an underlying substrate. |
US08592937B2 |
Pyroelectric detector, pyroelectric detection device, and electronic instrument
A pyroelectric detector includes a substrate, a support member and a pyroelectric detection element, which includes a capacitor, first and second reducing gas barrier layers, an insulating layer, a plug and a second electrode wiring layer. The first reducing gas barrier layer covers at least a second electrode and a pyroelectric body of the capacitor, and has a first opening that overlaps the second electrode in plan view. The insulating layer covers at least the first reducing gas barrier layer, and has a second opening that overlaps the first opening in plan view. The plug is disposed in the first and second openings and connected to the second electrode. The second electrode wiring layer is formed on the insulating layer and connected to the plug. The second reducing gas barrier layer is formed on the insulating layer and the second electrode wiring layer and covers at least the plug. |
US08592931B2 |
Photoelectric conversion element and solid-state imaging device
A photoelectric conversion element is provided and includes: a pair of electrodes; a photoelectric conversion layer between the pair of electrodes; and a charge-blocking layer between one of the pair of the electrodes and the photoelectric conversion layer. The charge-blocking layer is capable of suppressing injection of a charge from the one of the pair of electrodes into the photoelectric conversion layer upon application of a voltage across the pair of electrodes, and the charge-blocking layer contains an insulating material and an electrically conductive material. |
US08592928B2 |
Magnetic random access memory and method of manufacturing the same
According to one embodiment, a magnetic random access memory includes a selection element formed on a semiconductor substrate, an interlayer dielectric film formed above the selection element, a contact layer formed in the interlayer dielectric film, and electrically connected to the selection element, a lower electrode layer made of a metal material, and electrically connected to the contact layer, a metal oxide insulating film made of an oxide of the metal material, and surrounding a side surface of the lower electrode layer, a magnetoresistive element formed on the lower electrode layer, an upper electrode layer formed on the magnetoresistive element, a sidewall insulating film formed on a side surface of the magnetoresistive element and a side surface of the upper electrode layer, and a bit line electrically connected to the upper electrode layer. |
US08592927B2 |
Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
A magnetic element is disclosed that has a composite free layer with a FM1/moment diluting/FM2 configuration wherein FM1 and FM2 are magnetic layers made of one or more of Co, Fe, Ni, and B and the moment diluting layer is used to reduce the perpendicular demagnetizing field. As a result, lower resistance x area product and higher thermal stability are realized when perpendicular surface anisotropy dominates shape anisotropy to give a magnetization perpendicular to the planes of the FM1, FM2 layers. The moment diluting layer may be a non-magnetic metal like Ta or a CoFe alloy with a doped non-magnetic metal. A perpendicular Hk enhancing layer interfaces with the FM2 layer and may be an oxide to increase the perpendicular anisotropy field in the FM2 layer. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device. |
US08592919B2 |
Semiconductor device with source and drain fingers
A semiconductor device includes source electrodes having source fingers, drain electrodes having drain fingers, and gate electrodes having bent portions between steps formed in stepwise side portions of source fingers and steps formed in stepwise side portions of drain fingers and being bent in the bent portions along the source fingers and the drain fingers. A shape of the stepwise side portion of one source finger and that of the stepwise portion of the corresponding drain finger are symmetrical about a midpoint of an imaginary line that connects the other end of the source finger and the other end of the corresponding drain finger. |
US08592917B2 |
Semiconductor device and method for manufacturing same
According to an embodiment, a semiconductor device includes a second semiconductor layer provided on a first semiconductor layer and including first pillars and second pillars. A first control electrode is provided in a trench of the second semiconductor layer and a second control electrode is provided on the second semiconductor layer and connected to the first control electrode. A first semiconductor region is provided on a surface of the second semiconductor layer except for a portion under the second control electrode. A second semiconductor region is provided on a surface of the first semiconductor region, the second semiconductor region being apart from the portion under the second control electrode and a third semiconductor region is provided on the first semiconductor region. A first major electrode is connected electrically to the first semiconductor layer and a second major electrode is connected electrically to the second and the third semiconductor region. |
US08592916B2 |
Selectively raised source/drain transistor
A lower raised source/drain region is formed on a planar source/drain region of a planar field effect transistor or a surface of a portion of semiconductor fin adjoining a channel region of a fin field effect transistor. At least one contact-level dielectric material layer is formed and planarized, and a contact via hole extending to the lower raised source/drain region is formed in the at least one contact-level dielectric material layer. An upper raised source/drain region is formed on a top surface of the lower raised source/drain region. A metal semiconductor alloy portion and a contact via structure are formed within the contact via hole. Formation of the upper raised source/drain region is limited to a bottom portion of the contact via hole, thereby preventing formation of, and increase of parasitic capacitance by, any additional raised structure in source/drain regions that are not contacted. |
US08592915B2 |
Doped oxide for shallow trench isolation (STI)
The embodiments described provide methods and structures for doping oxide in the STIs with carbon to make etch rate in the narrow and wide structures equal and also to make corners of wide STIs strong. Such carbon doping can be performed by ion beam (ion implant) or by plasma doping. The hard mask layer can be used to protect the silicon underneath from doping. By using the doping mechanism, the even surface topography of silicon and STI enables patterning of gate structures and ILD0 gapfill for advanced processing technology. |
US08592909B2 |
Transistor including single layer reentrant profile
A transistor includes a substrate. An electrically conductive material layer, having a thickness, is positioned on the substrate. The electrically conductive material layer contains a reentrant profile such that one portion of the electrically conductive material overhangs another portion of the electrically conductive material. An electrically insulating material layer, having a thickness, is conformally positioned over the second electrically conductive material layer, the first electrically conductive material layer, and at least a portion of the substrate. |
US08592903B2 |
Bipolar semiconductor device and manufacturing method
A bipolar semiconductor device and manufacturing method. One embodiment provides a diode structure including a structured emitter coupled to a first metallization is provided. The structured emitter includes a first weakly doped semiconductor region of a first conductivity type which forms a pn-load junction with a weakly doped second semiconductor region of the diode structure. The structured emitter includes at least a highly doped first semiconductor island of the first conductivity type which at least partially surrounds a highly doped second semiconductor island of the second conductivity type. |
US08592901B1 |
Metal oxide semiconductor field transistor and method of fabricating the same
A metal oxide semiconductor field transistor including a gate electrode, a gate dielectric layer, a source region, a drain region, and a top doped region are provided. The drain region of a first conductivity type is located in a substrate. The source region of the first conductivity type is located in the substrate and surrounded the drain region. The gate electrode is located above the substrate between the source region and the drain region. The gate dielectric layer is located between the gate electrode and the substrate. The top doped region of a second conductivity type is located in the substrate between the gate electrode and the drain region. The top doped region includes at least three regions. Each of the three regions has a dopant concentration gradient and a concentration gradually decreased from a region adjacent the gate electrode to a region adjacent the drain region. |
US08592899B2 |
Transistor having vertical channel
A semiconductor device including vertical channel transistor and a method for forming the transistor, which can significantly decrease the resistance of a word line is provided. A vertical channel transistor includes a substrate including pillars each of which has a lower portion corresponding to a channel region. A gate insulation layer is formed over the substrate including the pillars. A metal layer having a low resistance is used for forming a surrounding gate electrode to decrease resistance of a word line. A barrier metal layer is formed between a gate insulation layer and a surrounding gate electrode so that deterioration of characteristics of the insulation layer is prevented. A world line is formed connecting gate electrodes formed over the barrier layer to surround the lower portion of each pillar. |
US08592888B2 |
Field effect transistor for sensing deformation
An apparatus including a first layer configured to enable a flow of charge carriers from a source electrode to a drain electrode, a second layer configured to control the density of charge carriers in the first layer using an electric field formed between the first and second layers, and a third layer positioned between the first and second layers to shield the first layer from the electric field, wherein the third layer includes a layer of electrically conducting nanoparticles and is configured such that when stress is applied to the third layer, the strength of the electric field experienced by the first layer is varied resulting in a change in the charge carrier density and a corresponding change in the conductance of the first layer. |
US08592887B2 |
Semiconductor storage device including a memory cell structure
A semiconductor storage device includes an interlayer insulating film provided between select gate electrodes, a first fill material extending along upper portions of memory cell gate electrodes so as to cover air gaps residing between the memory cell gate electrodes, the first fill material extending along sidewalls of the select gate electrodes and sidewalls of the interlayer insulating film so as to define a recess above the first fill material extending along the sidewalls of the select gate electrodes and the sidewalls of the interlayer insulating film, a second fill material filling the recess above the first fill material, and a plurality of contacts formed through the interlayer insulating film, the contacts physically contacting each of device areas formed in a semiconductor substrate. |
US08592883B2 |
Semiconductor structure and method for making same
An embodiment may be a semiconductor structure, comprising; a workpiece having a front side and a back side; and a capacitor disposed in the workpiece, the capacitor including a bottom electrode electrically coupled to a back side of said workpiece. In an embodiment, the bottom electrode may form a conductive pathway to the front side of the workpiece. In an embodiment, the capacitor may be a trench capacitor. |
US08592882B2 |
Magnetic random access memory and manufacturing method thereof
According to one embodiment, there is disclosed a magnetic random access memory comprising: a semiconductor substrate; a selective transistor formed at the surface region of the semiconductor substrate and having a gate electrode, a gate insulating film, a source and a drain; and a magnetoresistive element formed on the drain including a magnetic storage layer in which a magnetization direction is variable, a magnetic reference layer in which a magnetization direction is fixed, and a nonmagnetic layer sandwiched between the magnetic storage layer and the magnetic reference layer. |
US08592881B2 |
Organic light emitting element and method of manufacturing the same
An organic light emitting element includes an organic light emitting diode formed on a substrate, coupled to a transistor including a gate, a source and a drain and including a first electrode, an organic thin film layer and a second electrode; a photo diode formed on the substrate and having a semiconductor layer including a high-concentration P doping region, a low-concentration P doping region, an intrinsic region and a high-concentration N doping region; and a controller that controls luminance of light emitted from the organic light emitting diode, to a constant level by controlling a voltage applied to the first electrode and the second electrode according to the voltage outputted from the photo diode. |
US08592880B2 |
Solid-state imaging device
In each photosensitive cell, a photodiode 101, a transfer gate 102, a floating diffusion layer section 103, an amplifier transistor 104, and a reset transistor 105 are formed in one active region surrounded by a device isolation region. The floating diffusion layer section 103 included in one photosensitive cell is connected not to the amplifier transistor 104 included in that cell but to the gate of the amplifier transistor 104 included in another photosensitive cell adjacent to the one photosensitive cell in the column direction. A polysilicon wire 111 connects the transfer gates 102 arranged in the same row, and a polysilicon wire 112 connects the reset transistors 105 arranged in the same row. For connection in the row direction, only polysilicon wires are used. |
US08592873B2 |
Semiconductor memory devices and methods of forming the same
Semiconductor devices and methods of forming the same may be provided. The semiconductor devices may include gate patterns and insulation patterns repeatedly and alternatingly stacked on a substrate. The semiconductor devices may also include a through region penetrating the gate patterns and the insulation patterns. The semiconductor devices may further include a channel structure extending from the substrate through the through region. The channel structure may include a first channel pattern having a first shape. The first channel pattern may include a first semiconductor region on a sidewall of a portion of the through region, and a buried pattern dividing the first semiconductor region. The channel structure may also include a second channel pattern having a second shape. The second channel pattern may include a second semiconductor region in the through region. A grain size of the second semiconductor region may be larger than that of the first semiconductor region. |
US08592872B2 |
Integrated circuit including cross-coupled transistors with two transistors of different type having gate electrodes formed by common gate level feature with shared diffusion regions on opposite sides of common gate level feature
A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature, with a centerline of each originating rectangular-shaped layout feature aligned in a parallel manner. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are substantially equal, such that the first and second PMOS transistor devices have substantially equal widths. Widths of the first and second n-type diffusion regions are substantially equal, such that the first and second NMOS transistor devices have substantially equal widths. The first and second PMOS and first and second NMOS transistor devices form a cross-coupled transistor configuration. |
US08592866B2 |
Transistor
A transistor includes a first semiconductor layer formed on a substrate, a second semiconductor layer formed on the first semiconductor layer and has a band gap larger than that of the first semiconductor layer, a control layer formed on the second semiconductor layer and contains p-type impurities, a gate electrode formed in contact with at least part of the control layer and a source electrode and a drain electrode formed on both sides of the control layer, respectively. A third semiconductor layer made of material having a lower etch rate than that of the control layer is formed between the control layer and the second semiconductor layer. |
US08592865B1 |
Overvoltage tolerant HFETs
Design constraints for a self protecting GaN HFET and in general any group III V HFET are described. The design constraints depend on the separation between the gate and the drain and the thickness of the buffer material between the channel layer and the substrate. In one embodiment the buffer region is thinned to provide a preferred breakdown location. |
US08592864B2 |
Semiconductor device and method for forming the same
A semiconductor device and a method for forming the same are provided. The semiconductor device comprises: a substrate (1); an insulating layer (2), formed on the substrate (1) and having a trench (21) to expose an upper surface of the substrate (1); a first buffer layer (3), formed on the substrate (1) and in the trench (21); and a compound semiconductor layer (4), formed on the first buffer layer (3), wherein an aspect ratio of the trench (21) is larger than 1 and smaller than 10, wherein the first buffer layer (3) is formed by a low-temperature reduced pressure chemical vapor deposition process at a temperature between 200° C. and 500° C., and wherein the compound semiconductor layer (4) is formed by a low-temperature metal organic chemical vapor deposition process at a temperature between 200° C. and 600° C. |
US08592861B2 |
Display device and manufacturing method of the display device
It is an object of the present invention to provide a technique to manufacture a highly reliable display device at a low cost with high yield. A display device according to the present invention includes a semiconductor layer including an impurity region of one conductivity type; a gate insulating layer, a gate electrode layer, and a wiring layer in contact with the impurity region of one conductivity type, which are provided over the semiconductor layer; a conductive layer which is formed over the gate insulating layer and in contact with the wiring layer; a first electrode layer in contact with the conductive layer; an electroluminescent layer provided over the first electrode layer; and a second electrode layer, where the wiring layer is electrically connected to the first electrode layer with the conductive layer interposed therebetween. |
US08592860B2 |
Apparatus and method for protection of electronic circuits operating under high stress conditions
Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device. |
US08592859B2 |
Methods and apparatus for antimonide-based backward diode millimeter-wave detectors
Example methods and apparatus for Antimonide-based backward diode millimeter-wave detectors are disclosed. A disclosed example backward diode includes a cathode layer adjacent to a first side of a non-uniform doping profile, and an Antimonide tunnel barrier layer adjacent to a second side of the spacer layer. |
US08592856B2 |
LED lamps
A high power LED lamp has a GaN chip placed over an AlGaInP chip. A reflector is placed between the two chips. Each of the chips has trenches diverting light for output. The chip pair can be arranged to produce white light having a spectral distribution in the red to blue region that is close to that of daylight. Also, the chip pair can be used to provide an RGB lamp or a red-amber-green traffic lamp. The active regions of both chips can be less than 50 microns away from a heat sink. |
US08592854B2 |
Electronic device and a method of manufacturing the same
The invention relates to a substantially transparent electronic device comprising a first contact surface provided with a first pattern of electrically conductive lines and a second contact surface provided with a second pattern of electrically conductive lines, the first contact surface extending parallel to the second contact surface, wherein the first pattern is rotationally displaced with respect to the second pattern by an angle between 15 and 165 degrees. The electrically conductive lines of the said first pattern and the said second pattern are substantially not transparent for visible light and are preferably used as shunting lines. The invention further relates to a method of manufacturing such device. |
US08592852B2 |
Light-emitting device and lighting device
To provide a light-emitting device from which uniform light emission can be obtained by providing an auxiliary wiring; a light-emitting device in which a short circuit between electrodes or between an electrode and an auxiliary wiring, which is attributed to a step caused by the auxiliary wiring, hardly occurs; and a light-emitting device which has high reliability by preventing a short circuit. In an EL light-emitting device including an auxiliary wiring, by covering a step caused by the auxiliary wiring is covered with an insulator, a short circuit between electrodes or between an electrode and the auxiliary wiring, which is attributed to the step caused by the auxiliary wiring, is prevented. Thus, the above objects are achieved. |
US08592849B2 |
LED light source and chromaticity adjustment method for LED light source
There is provided an LED light source whose chromaticity can be adjusted easily without changing its outer shape and suffering damage in the process of chromaticity adjustment. An LED light source includes an LED device, a fluorescent material that absorbs and wavelength-converts a portion of light emitted from the LED device to emit light from itself, a sealing material that includes the fluorescent material and that is disposed around the LED device, and light scattering sections that are formed at a portion of a surface of the sealing material and scatter a portion of the light emitted from the LED device for adjusting chromaticity of the LED light source, and a chromaticity adjustment method for such LED light source. |
US08592848B2 |
Light emitting device
The light emitting device, and corresponding method of manufacture, the light emitting device including a second electrode layer; a second conductive type semiconductor layer formed on the second electrode layer; an active layer formed on the second conductive type semiconductor layer; a first conductive type semiconductor layer formed with a first photonic crystal that includes a mask layer and an air gap formed on the active layer; and a first electrode layer formed on the first conductive type semiconductor layer. |
US08592846B2 |
Diode having vertical structure and method of manufacturing the same
A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode. |
US08592845B2 |
Wire-piercing light-emitting diode lamps
A wire-piercing light-emitting diode (LED) a lead frame having a first lead and a second lead. The first lead has a first transition portion and a first bottom portion with a first cutting member, and the second lead having a second transition portion and a second bottom portion with a second cutting member. |
US08592843B2 |
Light emitting device, light emitting device package and lighting system
Embodiments relate to a light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises: a light emitting structure including a first conductive type semiconductor layer, an active layer over the first conductive type semiconductor layer, and a second conductive type semiconductor layer over the active layer; a dielectric layer formed in each of a plurality of cavities defined by removing a portion of the light emitting structure; and a second electrode layer over the dielectric layer. |
US08592837B2 |
Semiconductor light emitting element, electronic apparatus, and light emitting device
Disclosed is a semiconductor light emitting element (1) which includes: plural n-side columnar conductor portions (183), each of which is provided by penetrating a p-type semiconductor layer (160) and a light emitting layer (150), and is electrically connected to an n-type semiconductor layer (140); an n-side layer-like conductor portion (184), which is disposed on the rear surface side of the p-type semiconductor layer (160) to face the surface of the light emitting layer (150) when viewed from the light emitting layer (150), and is electrically connected to the n-side columnar conductor portions (183); plural p-side columnar conductor portions (173), each of which is electrically connected to the p-type semiconductor layer (160); and a p-side layer-like conductor portion (174), which is disposed on the rear surface side of the p-type semiconductor layer (160) to face the light emitting layer (150) when viewed from the light emitting layer (150), and is electrically connected to the p-side columnar conductor portions (173). Thus, nonuniformity of the quantity of light outputted from the light emitting layer of the semiconductor light emitting element is suppressed, and reduction of the area of the light emitting layer in the semiconductor light emitting element is suppressed. |
US08592825B2 |
Semiconductor device having Si-substrate and process to form the same
A semiconductor device and a process to form the semiconductor device are disclosed. The semiconductor device includes a Si substrate, active devices primarily made of nitride based compound semiconductor material, and passive devices. The Si substrate includes a via hole piercing from the back surface to the primary surface of the Si substrate. The active device is mounted on the primary surface so as to cover at least a portion of the via hole. The metal layer cover the whole back surface, inner surfaces of the via hole, and the back surface of the active device exposed in the via hole. |
US08592821B2 |
Semiconductor element, organic transistor, light-emitting device, and electronic device
It is an object of the present invention to provide an organic transistor having a low drive voltage. It is also another object of the present invention to provide an organic transistor, in which light emission can be obtained, which can be manufactured simply and easily. According to an organic light-emitting transistor, a composite layer containing an organic compound having a hole-transporting property and a metal oxide is used as part of the electrode that injects holes among source and drain electrodes, and a composite layer containing an organic compound having an electron-transporting property and an alkaline metal or an alkaline earth metal is used as part of the electrode that injects electrons, where either composite layer has a structure of being in contact with an organic semiconductor layer. |
US08592820B2 |
Layers and patterns of nanowire or carbon nanotube using chemical self assembly and fabricating method in liquid crystal display device thereby
Disclosed are layers and patterns of nanowire or nanotube using a chemical self assembly for forming a semiconductor layer and a conductive layer of a thin film transistor by using a nanowire and/or nanotube solution and an diamine-based self-assembled monolayer (SAM) material. The Layers and patterns including layers and patterns of nanowire or nanotube using a chemical self assembly include: a substrate having a surface terminated with amine group (—NH2) by using a chemical self-assembled monolayer (SAM) material having at least one end terminated with amine group(—NH2); and a first nanowire or nanotube layer ionically coupled to the amine group (—NH2) of the surface of the substrate. |
US08592818B2 |
Organic light emitting display device and method of manufacturing the same
An organic light-emitting display device includes a plurality of sub-pixels each comprising a light-emitting portion, a thin film transistor (TFT), and a capacitor, each of the sub-pixels emitting a different color, wherein the capacitor of at least one of the plurality of sub-pixels extends into at least one adjacent one of the sub-pixels. |
US08592816B2 |
Thin film transistor matrix device including first and second connection lines
A thin film transistor matrix device including an insulating substrate with a plurality of lines arranged on the substrate, where the lines include first lines and second lines. The device also includes a first connection line extending in a direction transverse to the plurality of lines, where the first connection line and the first lines are configured and arranged to be electrically connected to each other, as well as a second connection line extending in a direction transverse to the plurality of lines, where the second connection line and the second lines are also configured and arranged to be electrically connected to each other. The first and second connection lines are both formed on the same side of an image display region, when considered in plan view. Finally, the plurality of lines are associated, respectively, with drain bus lines and/or gate bus lines. |
US08592812B2 |
Device for analyzing charge and ultraviolet (UV) light
Provided is a device for analyzing at least one of a generated amount of positive charges, a generated amount of negative charges, and a generated amount of ultraviolet (UV) light. The device includes a substrate on which at least one of a first device configured to detect a variation in threshold voltage relative to the generated amount of positive charges, a second device configured to detect a variation in threshold voltage relative to the generated amount of negative charges, and a third device configured to detect a variation in threshold voltage relative to the generated amount of UV light is formed. Each of the first through third devices includes a first isolation region disposed in the substrate which define first and third active regions each of a first conductivity type and second and fourth active regions each of a second conductivity type different from the first conductivity type, first impurity regions disposed in the first active region and spaced apart from each other and having the second conductivity type, a floating gate crossing over the first active region between the first impurity regions and extending over the second active region, a second impurity region disposed in the second active region and having the first conductivity type, and a conductive structure electrically connected to the second impurity region. |
US08592803B2 |
Germanium-based quantum well devices
A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric. |
US08592799B2 |
Graphene electronic device and method of fabricating the same
A graphene electronic device and a method of fabricating the graphene electronic device are provided. The graphene electronic device may include a graphene channel layer formed on a hydrophobic polymer layer, and a passivation layer formed on the graphene channel layer. The hydrophobic polymer layer may prevent or reduce adsorption of impurities to transferred graphene, and a passivation layer may also prevent or reduce adsorption of impurities to a heat-treated graphene channel layer. |
US08592796B2 |
Phase-change random access memory device and method of manufacturing the same
A phase-change random access memory device includes a semiconductor substrate, an interlayer dielectric layer formed over the semiconductor substrate and having contact holes defined therein, metal contacts formed in the contact holes, an ohmic contact layer formed over the metal contacts and having recesses defined therein, and switching elements formed over the recesses of the ohmic contact layer. |
US08592791B2 |
Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein. |
US08592790B2 |
Phase-change random access memory device and method of manufacturing the same
A phase-change random access memory (PCRAM) device includes a semiconductor substrate; switching elements formed on the semiconductor substrate; a plurality of phase-change structures formed on the switching elements; and heat absorption layers buried between the plurality of phase-change structures, wherein the plurality of phase-change structures are insulated from the heat absorption layers. |
US08592788B1 |
Lithium extreme ultraviolet source and operating method
A plasma pinch extreme ultraviolet source using lithium vapor requires surrounding surfaces that are heated or cooled in order to evaporate the desired quantity of lithium, typically setting the vapor pressure of lithium at a pressure of a few torr. Two distinct surfaces within the whole set are designated as the electrodes that emit and receive the high current of the plasma pinch. A method is described whereby the temperature of these designated electrode surfaces is manipulated in order to condense lithium and provide a liquid metal protective layer to absorb both plasma and extreme ultraviolet heat thereby controlling electrode erosion. A further method is described that provides a protective flow of liquid lithium exactly on the axis of the pair of discharge electrodes. |
US08592783B2 |
Titanium diboride coating for plasma processing apparatus
An improved plasma processing chamber is disclosed, wherein some or all of the components which are exposed to the plasma are made of, or coated with, titanium diborane. Titanium diborane has a hardness in excess of 9 mhos, making it less susceptible to sputtering. In addition, titanium diborane is resistant to fluoride and chlorine ions. Finally, titanium diborane is electrically conductive, and therefore the plasma remains more uniform over time, as charge does not build on the surfaces of the titanium diborane components. This results in improved workpiece processing, with less contaminants and greater uniformity. In other embodiments, titanium diborane may be used to line components within a beam line implanter. |
US08592780B2 |
Quantum-yield measurement device
A quantum-yield measurement device 1 comprises a dark box 5; a light generation unit, having a light exit part 7, for generating the pumping light L1; a light detection unit, having a light entrance part 11, for detecting light to be measured L2; an integrating sphere 14, having a light entrance opening 15 for the light L1 to enter and a light exit opening 16 for the light L2 to exit; and a movement mechanism 30 for moving the sphere 14 within the box 5 such that a container 3 attains each of a first state of being located inside of the sphere 14 and a second state of being located outside of the sphere 14 and, causing the opening 15 and opening 16 to oppose the part 7 and part 11, respectively, in the first state. |
US08592779B2 |
Ionizing device
An ionizing device 2 includes an ionization chamber 2a having an ionization space 2b for ionizing sample molecules A, filaments 23a and 23b to have an electron impact on the sample molecules A in the ionization space 2b, to ionize the sample molecules A, and an electric discharge tube 29 to irradiate the sample molecules A in the ionization space 2b with ultraviolet light, to ionize the sample molecules A. |
US08592777B2 |
Integrable magnetic field compensation for use in scanning and transmission electron microscopes
An arrangement and a method for imaging, examining and processing a sample using electrons. The arrangement comprises an electron microscope for providing electrons, a chamber with a sample holder on which a sample is positionable such that it can be imaged, examined and processed using the electrons. A system for magnetic field compensation in at least one spatial direction, including a compensation coil, wherein a wall of the chamber has an accommodation area, in sections thereof, for a portion of the compensation coil. Generally, only the chamber in which the sample is arranged is considered as a compensation volume. It suffice to reduce the compensation volume to the sensitive region of the electron microscope, since it is in the chamber, shortly following a final focusing and filtering, where the electron beam is most sensitive in terms of image quality when subjected to external electromagnetic interference. |
US08592774B2 |
Radiographic apparatus
A radiographic apparatus includes an x-ray detection sensor having a two-dimensional detector plane for detecting an intensity distribution of x-rays, a body internally containing the x-ray detection sensor, a supporting member having a supporting surface for supporting the x-ray detection sensor across the detector plane and which fixes the x-ray detection sensor to an inner bottom surface of the body, and a circuit board on which is mounted a circuit for reading out a detection signal from the x-ray detection sensor. Furthermore, in the radiographic apparatus, the supporting member forms a space between the supporting member and the inner bottom surface of the body in a peripheral portion of the supporting member. At least a part of the circuit board is arranged in the space. |
US08592772B2 |
Method of obtaining a molecular breast image
An integrated tomosynthesis/molecular breast imaging device having improved sensitivity includes tomosynthesis imaging components and molecular breast imaging components. The imaging components may be used individually or in combination to provide a system with improved sensitivity and specificity. Molecular imaging components may be smoothly advanced or withdrawn depending upon the desired imaging mode. The system supports both PET and SPECT imaging and enables SPECT collimation to be modified in accordance with image capture requirements. |
US08592770B2 |
Method and apparatus for DUV transmission mapping
Apparatus and method for transmittance mapping of an object which is at least partially transparent to deep ultraviolet radiation. The method comprises directing a wide-band deep ultraviolet radiation so as to illuminate different areas of an array of successive areas of the object; using an optical detector positioned on an opposite side of the object with respect to the radiation source detecting the wide-band deep ultraviolet radiation that emerges from the object; and processing signals from the optical detector to determine the transmittance of the radiation through the different areas of the array of successive areas of the object. |
US08592769B2 |
Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
An component concentration meter includes an output unit that outputs an electromagnetic wave to an object to be measured and includes a detecting unit that detects the property of the electromagnetic wave passed through the object to be measured under a first condition and under a second condition in which the temperature of the object to be measured is different from that under the first condition. The component concentration meter also includes a concentration determining unit that determines the concentration of a target component contained in the object to be measured, based on a property difference which is a difference between the properties of the electromagnetic wave detected by the detecting unit under the first condition and under the second condition and a difference between the temperatures of the object to be measured under the first condition and under the second condition. |
US08592768B1 |
Angularly partitioned evanescent wave absorption sensor
A fiber optic evanescent absorption sensor. This invention makes use of two sources and one detection system, or one source and two detection systems, or two of each to determine a large range of absorbance with high accuracy for a fixed interaction length. |
US08592753B2 |
Ion mobility spectrometer
This invention refers to an ion mobility spectrometer in a fluid subjected to an electric field and an acoustic wave for the selective detection, classification and quantitative determination of the concentration of charged particles, based on their electrical mobility. The functioning of this device is based on the application of an electric field in a classification region occupied by a fluid. The electric field provokes drift of the charged particles through the classification region. The drifting particles suffer a lateral perturbation in their trajectory due to an oscillatory movement of the fluid in which they are immersed when this is subjected to an acoustic wave. Both the spectrometer and the method of discrimination and detection of the current of charged particles is the object of this invention. |
US08592750B2 |
Multi-electrode ion trap
This invention relates generally to multi-reflection electrostatic systems, and more particularly to improvements in and relating to the Orbitrap electrostatic ion trap. A method of operating an electrostatic ion trapping device having an array of electrodes operable to mimic a single electrode is proposed, the method comprising determining three or more different voltages that, when applied to respective electrodes of the plurality of electrodes, generate an electrostatic trapping field that approximates the field that would be generated by applying a voltage to the single electrode, and applying the three or more so determined voltages to the respective electrodes. Further improvements lie in measuring a plurality of features from peaks with different intensities from one or more collected mass spectra to derive characteristics, and using the measured characteristics to improve the voltages to be applied to the plurality of electrodes. |
US08592748B2 |
Method and arrangement for simulation of high-quality daylight spectra
A method and a multispectral color coordination system simulates high-quality daylight spectra. Light is produced with LEDs disposed in groups. Each group emits light at different wavelengths within the daylight spectrum. The wavelength of the light emitted by each LED at different working temperatures and different PWM values is measured. The measurement results for each LED are stored in memory, with assignment to working temperatures and PWM values. The LEDs are actuated at values selected from the memory content, as a function of the light to be emitted by each group. The working temperature of each individual LED chip is constantly measured and compared with the values stored in memory with regard to the current working temperature, and, in case of deviation compensated for by recalculating the spectrum, taking into consideration the PWM values stored in memory for the working temperature, and actuating with these. |
US08592747B2 |
Programmable filters for improving data fidelity in swept-wavelength interferometry-based systems
A method, system and apparatus for obtaining a parameter of interest from a plurality of sensors in a fiber optic cable deployed in a wellbore are disclosed. Light having variable frequency within a range of frequencies is propagated along the fiber optic cable. Signals are received that are responsive to interaction of the propagated light with the plurality of sensors. The received signals are filtered using a programmable filter. The parameter of interest is obtained from the filtered signals. In one aspect, the fiber optic cable is coupled to a member deployed in the wellbore and the parameter of interest is related to the member. |
US08592746B2 |
Systems and methods for driving an optical modulator
Systems and methods for driving an optical modulator are provided. In one embodiment, a modulation drive circuit comprises: a balanced impedance network having a first and a second output generated from a first input, and a third and a fourth output generated from a second input, wherein the first and second outputs are balanced with one another, and the third and fourth outputs are balanced with one another; a first differential amplifier, wherein an inverting input of the first differential amplifier couples to the first output of the distribution network and a non-inverting input of the first differential amplifier couples to the third output of the distribution network; and a second differential amplifier, wherein an inverting input of the second differential amplifier couples to the fourth output of the distribution network and a non-inverting input of the second differential amplifier couples to the second output of the distribution network. |
US08592743B2 |
Low distortion high bandwidth adaptive transmission line for integrated photonic applications
A transmission line and method for implementing includes a plurality of segments forming an electrical path and a continuous optical path passing through the segments. Discrete inductors are formed between and connect adjacent segments. The inductors are formed in a plurality of metal layers of an integrated circuit to balance capacitance of an optical modulator which includes the transmission line to achieve a characteristic impedance for the transmission line. |
US08592740B2 |
Electron multiplication image sensor and corresponding method
The invention relates to image sensors and more particularly those which are intended to capture images at low luminance levels. An active-pixel image sensor is provided, each pixel comprising, on the surface of a semiconductor active layer, a photodiode region adjacent a transfer gate itself adjacent a charge storage region, the transfer gate permitting, when it receives a transfer pulse, the transfer of charge from the photodiode region to the storage region. The photodiode region is adjacent an accelerating gate isolated from the semiconductor active layer. Switching means are provided so as to apply to the accelerating gate, during an integration phase preceding the transfer pulse, a series of high-potential/low-potential alternations inducing an electric field alternately in one direction and in the other direction between the photodiode region and the active layer region located beneath the accelerating gate. Impacts with atoms of the lattice create secondary electrons, thereby increasing the sensitivity of the sensor. |
US08592733B2 |
Induction weld assembly of closure panels
The present invention provides a method and device for inductively heating a first and second surface to form a closure assembly. A method contemplated by the present invention includes spacing an upper die from a lower die for receipt of the first surface and the second surface configured in an overlying orientation, securing one end of the first surface to an end of the second surface and compressing the first surface toward the second surface to form a compressed arrangement which is inductively heated into a closure assembly. |
US08592732B2 |
Resistive heating device for fabrication of nanostructures
Apparatuses and techniques relating to a resistive heating device are provided. |
US08592729B2 |
Glass-ceramic panel and its manufacturing process
A glass-ceramic panel, which may cover or receive at least one heating element, and may serve as a cook-top The panel is coated, in at least one region of a face, with a coating such that the total color difference delta E*, measured on the opposite face, between said coated region and an uncoated region, is less than about 1 and/or such that this coating has a luminance L* of greater than about 70. A process for manufacturing the panel and a cooking device comprising said panel. |
US08592727B2 |
Heat treatment apparatus emitting flash of light
Flash lamps connected to short-pulse circuits and flash lamps connected to long-pulse circuits are alternately arranged in a line. The duration of light emission from the flash lamps connected to the long-pulse circuits is longer than the duration of light emission from the flash lamps connected to the short-pulse circuits. A superimposing of a flash of light with a high peak intensity from the flash lamps that emit light for a short time and a flash of light with a gentle peak from the flash lamps that emit light for a long time can increase the temperature of even a deep portion of a substrate to an activation temperature or more without heating a shallow portion near the substrate surface more than necessary. This achieves the activation of deep junctions without causing substrate warpage or cracking. |
US08592724B2 |
Remote wire feeder using binary phase shift keying to modulate communications of command/control signals to be transmitted over a weld cable
The present invention is directed to a system and method of remotely controlling a welding machine with command signals transmitted to the welding power source across a weld cable connecting the power source to a remote device, such a wire feeder. A transmitter transmits the control commands containing desired welding operational parameters to a receiver disposed in the power source across a weld cable also designed to carry welding power from the power source to the wire feeder. |
US08592723B2 |
Weld bank data structures for welding applications
A data structure for weld programs associates configuration data for a welding system with a plurality of weld programs and weld sequence data. The data structure allows the welding system to be configured for a particular part, operator, or stage in a welding process, and to be easily reconfigured when the part, operator, or stage changes, providing improved efficiency and flexibility in operation. |
US08592722B2 |
Weld parameter interface
A system and method for determining settings or parameters for a welding-type power source are provided. By presenting an operator with an interface that is positioned along the path of a weld cable and configured to input weld characteristics, an operator is not required to determine electrical parameters for setting a welding-type power source output at the power source. The interface is presented to the operator at a remote welding-type device, such as a wire feeder, a weld robot, a torch, or the like. From the operator-specified weld characteristics, the system and method determine appropriate settings for the power source. In some embodiments, the system and method may automatically set the power source accordingly. |
US08592717B2 |
Method of dividing a workpiece having an uneven surface
A workpiece dividing method for dividing a workpiece having an uneven incident surface upon which a pulsed laser beam falls. The workpiece dividing method includes a coating step of applying a coating member to the incident surface of the workpiece, thereby planarizing the incident surface of the workpiece, the coating member transmitting the pulsed laser beam and having a refractive index close to that of the workpiece for the pulsed laser beam, a modified layer forming step of applying the pulsed laser beam to the workpiece from the side of the incident surface in the condition where a focal point of the pulsed laser beam is set inside the workpiece after performing the coating step, thereby forming a modified layer inside the workpiece, and a dividing step of applying an external force to the workpiece after performing the modified layer forming step, thereby dividing the workpiece as starting from the modified layer formed inside said workpiece as a break start point. |
US08592714B2 |
Gripper device for laser welding and vision inspection
A gripper device for laser welding and vision inspection is provided which includes a frame unit releasably mounted on a front end of an arm of a robot and a clamping unit mounted on the frame unit. Additionally, embodied in this single gripper device is a laser-vision exchange (first) module, a laser-vision sharing (second) module and a laser-vision target (third) module all embodied in a single gripper device to irradiate laser beam for welding a welding object and obtain a vision source of an inspection object. |
US08592711B2 |
Apparatus and method of electronically impregnating a wear-resistant cutting edge
An apparatus and method for treating a cutting edge with a carbide coating to form a high endurance cutting edge that is self sharpening. The cutting edge has one side of its bevel treated with an electronically impregnated coating to create a wear resistant surface employing Tungsten, Titanium or Vanadium Carbide. The coating providing an abrasion resistant cutting edge and creates a differential hardness on the total cutting edge thereby extending its cutting ability through a wear-resistant surface on its treated face and a faster wear on the untreated surface causing the cutting edge to be self sharpening. |
US08592706B2 |
Charging handle apparatus and switchgear apparatus
A charging handle apparatus includes a two-piece support apparatus that is disposed on a handle assembly and that is engaged with a gear. One of the two pieces is movable with respect to the first piece. The second piece of the support apparatus includes a number of engagement structures that are engaged with the gear and that retain the gear in a given position with respect to the handle assembly. The charging handle apparatus thus can be provided as a pre-assembled component that is readily mountable to a shaft of a circuit interrupter. |
US08592705B2 |
Keypad assembly and electronic device using the same
A keypad assembly includes a support member, a key switch, a keycap and a resilient member. The key switch is fixed on the support member, and includes a triggering portion. The keycap is located opposite to the triggering portion. The support member and the key switch are located between the keycap and the resilient member. The resilient member interconnects the keycap and the support member. The resilient member is elastically deformed via resisting the triggering portion when the key switch is not triggered. |
US08592695B2 |
Stackable crucible, a system using a stackable crucible, and a method of using a stackable crucible
A system is provided for analyzing a plurality of samples in a furnace. The system includes an upper holder including at least one opening adapted to engage at least one upper crucible. The system also includes a lower holder including at least one opening adapted to engage at least one lower crucible. The system includes a scale adapted to receive a lower crucible and weigh the lower crucible. The scale is further adapted to receive a combination of an upper crucible stacked on the lower crucible and weigh the combination. The system also includes means for moving the upper holder and the lower holder relative to each other and relative to the scale so that the scale selectively receives the lower crucible and the combination of the upper crucible stacked on the lower crucible. A method of testing samples in a furnace is provided. |
US08592691B2 |
Printed wiring board
A method for manufacturing a printed wiring board includes forming a metal film on a surface of an insulative board, a plating resist on the metal film, and a plated-metal film on the metal film exposed from the plating resist, covering a portion of the plated-metal film with an etching resist, etching to reduce thickness of the plated-metal film exposed from the etching resist, removing the etching and plating resists, and forming a wiring having a pad for wire-bonding an electrode of an electronic component and a conductive circuit thinner than the pad by removing the metal film exposed after the plating resist is removed, a solder-resist layer on the surface of the board and wiring, an opening in the layer exposing the pad and a portion of the circuit contiguous to the pad, and a metal coating on the pad and portion of the circuit exposed through the opening. |
US08592686B2 |
Printed circuit board assembled panel, unit sheet for packaging a printed circuit board, rigid-flexible board and method for manufacturing the same
A method for manufacturing a printed circuit board assembled panel by a simple process with an excellent material yield and a high conforming product rate. Unit printed circuit boards previously manufactured are arranged in a frame in a prescribed relationship. Then, the printed circuit boards are fixed to one another, and the printed circuit board and the frame body are fixed to one another. |
US08592682B1 |
Collapsible in-use cover
An electrical device cover assembly configured for mounting over an electrical device is described. The electrical device cover assembly comprises a base comprising an opening large enough to receive an electrical device. A lid comprising a lid face, a lid ring, and an expansion section between the lid face and the lid ring, the lid coupled to the base and comprising an inside surface and an expansion section, the expansion section expandable from a first depth to a second depth at least twice as deep as the first depth is provided. An expansion arm moveable between a first collapsed position when the expansion section is at its first depth and an second expanded position when the expansion section is at its second depth, wherein in the second position the expansion arm is in contact with and supports the lid at its second depth is also provided. |
US08592681B2 |
Electrical device with removable cover
In one embodiment, a system includes an electrical device and a removable cover, where the electrical device and the removable cover are adapted to enable the removable cover to pivot into an installed position on the electrical device. In another embodiment, a system includes an electrical device having a pushbutton, and a cover adapted to be removably attached to the electrical device, where the cover includes an opening for accessing the pushbutton, and where the pushbutton includes a sub button and a cosmetic cap adapted to be removably attached to the sub button. |
US08592680B2 |
Organic photosensitive devices
The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device. |
US08592679B2 |
Electronic device module comprising polyolefin copolymer
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked. |
US08592677B2 |
Substrate, solar cell including the substrate, and method of manufacturing the same
A substrate includes a semiconductor layer, a plurality of dielectric layers disposed on one side of the semiconductor layer and separated from each other and a photoactive layer disposed between the dielectric layers and including a compound of a Group III element and a Group V element. Also disclosed are a solar cell including the same and a manufacturing method thereof. |
US08592675B2 |
Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
Photovoltaic devices and techniques for enhancing efficiency thereof are provided. In one aspect, a photovoltaic device is provided. The photovoltaic device comprises a photocell having a first photoactive layer and a second photoactive layer adjacent to the first photoactive layer so as to form a heterojunction between the first photoactive layer and the second photoactive layer; and a plurality of high-aspect-ratio nanostructures on one or more surfaces of the second photoactive layer. The plurality of high-aspect-ratio nanostructures are configured to act as a scattering media for incident light. The plurality of high-aspect-ratio nanostructures can also be configured to create an optical resonance effect in the incident light. |
US08592673B2 |
Enclosed, off-axis solar concentrator
A solar concentrator including a housing having a receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall, an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing. |
US08592672B2 |
Foldable solar energy collector
A foldable solar energy collector has a base and a panel body. The base has an elevatable telescopic shaft mounted thereon. The panel body has a bottom board and multiple side panels pivotally mounted around a perimeter of the bottom board. Two foldable panels are respectively and pivotally mounted on two edges of each side panel. A link assembly is pivotally mounted between the panel body and the telescopic shaft and has multiple inside and outside links pivotally connected to each other. One end of each inside link away from a corresponding outside link is pivotally mounted on the telescopic shaft. One end of each outside link away from a corresponding inside link is pivotally mounted between adjacent two of the foldable panels. When the telescopic shaft is elevated, the link assembly is pulled to drive the panel body to unfold or fold, rendering convenience in operation and storage. |
US08592668B1 |
Wolf note elimination device for a stringed instrument
A wolf note elimination device for a stringed instrument utilizing a base member which is attachable to the surface of the stringed instrument. An adjuster in the form of a plate slidingly mounts to the base. The slidable plate terminates on one end with two blades having weights. The blades are cantilevered from the base. The other end of the plate extends from the base and contacts an adjuster which exerts a force on the plate to effect sliding of the same relative to the base. |
US08592665B1 |
Maize inbred PH183H
A novel maize variety designated PH183H and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH183H with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH183H through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH183H or a locus conversion of PH183H with another maize variety. |
US08592663B2 |
Tobacco nicotine demethylase genomic clone and uses thereof
The present invention features tobacco nicotine demethylase nucleic acid and amino acid sequences, tobacco plants and plant components containing such sequences, including tobacco plants and plant components having reduced expression or altered enzymatic activity of nicotine demethylase, methods of use of nicotine demethylase sequences to create plants having altered levels of nornicotine or N′-nitrosonornicotine (“NNN”) or both relative to a control plant, as well as tobacco articles having reduced levels of nornicotine or NNN. |
US08592662B2 |
Capsicum variety exhibiting a hyper-accumulation of zeaxanthin and products derived therefrom
The present invention is concerned with Capsicum plants producing greater than about 0.4% zeaxanthin, by weight in the dried, ripe fruit pod flesh, which plants have been developed from commercially grown Capsicum cultivars by plant breeding techniques. Zeaxanthin is the dominant carotenoid in the dried ripe fruit pod flesh, when measured in non-esterified forms. Alternatively, these plants may be characterized as exhibiting a high pigmentation measured as an ASTA value and further characterized by the predominant presence of zeaxanthin. The zeaxanthin derived from these Capsicum plants can be used in applications that include nutritional supplements, foods, functional foods, cosmetics, animal feeds, aquaculture feeds, and pharmaceuticals. |
US08592659B2 |
Soybean variety XB00N12
A novel soybean variety, designated XB00N12 is provided. Also provided are the seeds of soybean variety XB00N12, cells from soybean variety XB00N12, plants of soybean XB00N12, and plant parts of soybean variety XB00N12. Methods provided include producing a soybean plant by crossing soybean variety XB00N12 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB00N12, methods for producing other soybean varieties or plant parts derived from soybean variety XB00N12, and methods of characterizing soybean variety XB00N12. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB00N12 are further provided. |
US08592653B2 |
Corn event DAS-59122-7 and methods for detection thereof
The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided. |
US08592652B2 |
Use of subtilisin-like RNR9 polynucleotide for achieving pathogen resistance in plants
The invention relates to a method of generating or increasing a pathogen resistance in plants by reducing the expression of at least one subtilisin polypeptide or a functional equivalent thereof. The invention relates to novel nucleic acid sequences coding for a Hordeum vulgare subtilisin (HvRNR9) and Triticum aestivum subtilisin (TaRNR9) polynucleotide and describes homologous sequences (RNR9) thereof, and to their use in methods for obtaining a pathogen resistance in plants, and to nucleic acid constructs, expression cassettes and vectors which comprise these sequences and which are suitable for mediating a fungal resistance in plants. The invention furthermore relates to transgenic organisms, in particular plants, which are transformed with these expression cassettes or vectors, and to cultures, parts or transgenic propagation material derived therefrom. |
US08592649B2 |
Functional expression of shuffled yeast nitrate transporter (YNT1) in maize to improve nitrate uptake under low nitrate environment
The present invention provides methods and compositions relating to altering NT activity, nitrogen utilization efficiency and/or uptake in plants. The invention relates to a method for the production of plants with maintained or increased yield under low nitrogen fertility. The invention provides isolated nitrate transporter variant (NT variant) nucleic acids and their encoded proteins. The invention further provides recombinant expression cassettes, host cells, and transgenic plants. Plants transformed with nucleotide sequences encoding the NT variant enzyme show improved properties, for example, increased yield. |
US08592648B2 |
Seed treatment with combinations of pyrethrins/pyrethroids and thiamethoxam
A method of preventing damage to the seed and/or shoots and foliage of a plant by a pest includes treating the seed from which the plant grows with a composition that includes a combination of thiamethoxam and at least one pyrethrin or synthetic pyrethroid which is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. The treatment is applied to the unsown seed. In another embodiment, the seed is a transgenic seed having at least one heterologous gene encoding for the expression of a protein having pesticidal activity against a first pest and the composition has activity against at least one second pest. Treated seeds are also provided. |
US08592642B2 |
Evaluation/screening method for diseases associated with D-amino acid utilizing DAO1-/-mouse
Disclosed is an evaluation method which can rapidly discriminate a Dao−/− homozygote from a large number of animals produced in a mating experiment between a DAO enzyme deficient mouse and other disease model mice, to rapidly perform a quantitative measurement of the D-amino acids contained in a large number of samples. The invention provides a method for evaluating the effect of a test condition on a mouse tissue, or cultured tissue cells derived from the tissue. The method comprises the steps of: providing a Dao1−/− mouse or the like; exposing the tissue from the Dao1−/− mouse or the like, to the test condition; and analyzing the effect of exposing the tissue from the Dao1−/− mouse or the like, to the test condition. |
US08592636B2 |
Hydrogenation process
The present invention relates to a process of reacting specific compounds, which are defined below with hydrogen in the presence of a structured catalyst based on sintered metal fibers (SMF) coated by a ZnO layer with Pd-nanoparticles, to reactions of these specific compounds with hydrogen in the presence of said catalyst and an organic base as well as to vitamins, carotinoids, perfume ingredients, and/or food or feed ingredients prepared by using this reaction. |
US08592634B2 |
Process for producing phenol
Disclosed is a process for producing phenol or a substituted phenol and a co-product comprising the steps of (i) contacting a first stream comprising an alkylaromatic compound with a second stream comprising an oxygen-containing gas in the presence of a first catalyst comprising a cyclic imide under conditions to convert at least a portion of said alkylaromatic compound to an alkylaromatic hydroperoxide, (ii) producing an effluent stream comprising said cyclic imide, said alkylaromatic hydroperoxide, and said alkylaromatic compound wherein said effluent stream has an alkylaromatic hydroperoxide concentration of from 10 to 40 wt %; and (iii) contacting in a second reactor at least a portion of said effluent stream with a second catalyst to convert said alkylaromatic hydroperoxide to a product stream comprising phenol and said co-product. |
US08592631B2 |
Process for the preparation of 2-methoxymethy1-1,4-benzenediamine, its derivatives thereof and the salts thereof
A process for synthesizing 2-methoxymethyl-1,4-benzenediamine, its derivatives of formula (IV) and the salts thereof, which comprises a reductive amination step. The preferred final product is 2-methoxymethyl-1,4-benzenediamine of formula (IV-a). These compounds may be used as primary intermediates in compositions for dyeing keratin fibers. |
US08592629B2 |
Sulfonamide derivatives as Nav 1.7 inhibitors
This invention relates to sulfonamide derivative of formula (I), to their use in medicine, to compositions containing them, to processes for their preparation, and to intermediates used in such processes. These compounds are inhibitors of Nav1.7. |
US08592628B2 |
Phosphazene additives
An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin or a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, and an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product. |
US08592623B2 |
Method for producing polyester polyols having low amounts of dioxane waste
Polyester polyols are produced from at least one carboxylic acid hydride and diethylene glycol by a process in which the formation of 1,4-dioxane is suppressed. These polyester polyols are useful for producing polyurethane (PUR) and polyisocyanurate (PIR) foams and metal composite elements containing these PUR or PIR foams. |
US08592620B2 |
High shear system and process for the production of acetic anhydride
A method for producing acetic anhydride that includes operating a high shear device at a shear rate of greater than about 20,000 s−1, wherein the high shear device is configured with a rotor and a stator; forming in the high shear device an emulsion having a liquid catalyst dispersed in an acetic acid solution; introducing the emulsion into a reactor at conditions suitable for the production of ketene; and reacting at least some ketene with acetic acid to produce acetic anhydride. |
US08592618B2 |
Highly active metathesis catalysts selective for ROMP and RCM reactions
The present invention relates to a kind of novel carbene ligands and ruthenium catalysts, which is highly active and selective for ROMP and RCM reactions, respectively. It discloses the significant electronic and steric effect of different substituted carbene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes; some of novel ruthenium complexes in the invention can be broadly used as catalysts highly effectively and selective for ROMP and RCM reactions. The invention also relates to preparation of new ruthenium catalysts and the uses in metathesis. Moreover, the invention also provides effective methods of making various functional polymers by ROMP reaction in the presence of new ruthenium catalysts. |
US08592616B2 |
Luminescent hybrid liquid crystal
Embodiments of the present disclosure include compounds including a M6 based cluster core with luminescent properties, methods for producing these compounds, as well as to luminescent materials with liquid crystalline properties including these compounds. |
US08592613B2 |
Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of materials with oil-containing substituents including phospholipids and cellulosic and peptidic content
The present invention relates to a method for producing fatty acid alkyl esters as well as cellulosic simplified sugars, shortened protein polymers, amino acids, or combination thereof resulting from the simultaneous esterification and hydrolysis, alcoholysis, or both of algae and other oil containing materials containing phospholipids, free fatty acids (FFA), glycerides, or combination thereof as well as polysaccharides, cellulose, hemicellulose, lignocellulose, protein polymers, or combination thereof in the presence of an alcohol and an optional acid catalyst. |
US08592608B2 |
Triple reuptake inhibitors and methods of their use
Provided herein are bicyclic compounds and methods of synthesis thereof. The compounds provided herein are useful for the treatment, prevention, and/or management of various neurological disorders. Compounds provided herein inhibit uptake of endogenous monoamines, such as dopamine, serotonin and norepinephrine (e.g., from the synaptic cleft) and modulate one or more monoamine transporter. Pharmaceutical formulations containing the compounds are also provided. |
US08592607B2 |
Crystalline forms of the mono-sodium salt of D-isoglutamyl-D-tryptophan
The present invention relates to crystalline forms of the mono-sodium salt of D-isoglutamyl-D-tryptophan, pharmaceutical compositions comprising them, their use in the treatment of various diseases and conditions, and processes for their preparation. In particular, the present invention relates the crystal modification 1 (polymorphic form F) of the mono-sodium salt of D-isoglutamyl-D-tryptophan. |
US08592605B2 |
Method for the regioselective synthesis of 1-Alkyl-3-haloalkyl-pyrazole-4-carboxylic acid derivatives
The present invention relates to a process for the regioselective synthesis of 1-alkyl-3-halo-alkylpyrazole-4-carboxylic acid derivatives by cyclization of 2,3-disubstituted acrylic acid derivatives, and to the hydrazones formed as intermediates in the process. |
US08592603B2 |
Synthesis of 2-(4-aminophenyl) benzothiazole derivatives and use thereof
The present invention provides a method of preparing a compound of formula 6 comprising: (a) reacting a compound of formula 1 with a compound of formula 2 to form a compound of formula 3 wherein X of formula 2 is Cl or OH; (b) treating the compound formula 3 with Lawesson's reagent to form a compound of formula 4 (c) reacting a compound of formula 4 with potassium ferricyanide to produce a compound of formula 5 and (d) performing catalytic reduction of nitro group of the compound of formula 5 with palladium on charcoal to generate the compound of formula 6, wherein R1 of formulae 1-6 is H, C1-10 alkyl, C1-10 alkoxy or C1-10 haloalkyl, and R2 of formulae 1-6 is H or C1-10 alkyl. The present invention also provides a photodynamic therapy to a patient having at least one tumor comprising the steps of: administering a compound of formula 6 (wherein R1 and R2 are defined as the above) in a pharmaceutically acceptable carrier to the patient; waiting for a sufficient time to allow the administered compound to be taken up by a target tissue having the at least one tumor; and irradiating a region of the patient containing the target tissue; wherein growth of the tumor is inhibited. |
US08592600B2 |
Solid state forms of racemic ilaprazole
The invention relates to crystalline forms of racemic ilaprazole, 2[[(4-methoxy-3-methyl-2-pyridinyl)-methyl]sulfinyl]-5-(1H-pyrrol-1-yl) 1H-Benzimidazole. The invention also relates to a pharmaceutical composition for inhibiting gastric acid secretion comprising a crystalline Form of ilaprazole according to the invention in an amount effective to inhibit gastric acid secretion and a pharmaceutically acceptable carrier. The invention also provides methods of treatment for various acid-related gastrointestinal (GI) disorders. |
US08592598B2 |
Method of producing a crystal of an imidazole compound
The instant invention describes a method of producing a crystal of an imidazole compound or a salt thereof, which comprises suspending a solvate of the imidazole compound into a solution containing water, alcohol, and a basic substance. |
US08592597B2 |
Pyrrole compounds
The present invention relates to a compound represented by the formula: wherein A is pyridyl group having at least one substituent wherein R1, R2 and R3 are each a hydrogen atom, a halogen atom, a C1-6 alkyl group optionally substituted by halogen or a C1-6 alkoxy group optionally substituted by halogen, R4 and R6 are each a hydrogen atom, a halogen atom or a C1-6 alkyl group optionally substituted by halogen, R5 is a hydrogen atom, a halogen atom, a C1-6 alkyl group optionally substituted by halogen or a C1-6 alkoxy group optionally substituted by halogen, and R7 is a hydrogen atom or a C1-6 alkyl group optionally substituted by halogen or a salt thereof, or a pharmaceutical composition containing the same. |
US08592596B2 |
Crystalline form of a 4-[2-(2-fluorophenoxymethyl)phenyl]piperidine compound
The invention provides a crystalline hydrochloride salt of 4-[2-(2,4,6-trifluorophenoxymethyl)phenyl]piperidine. This invention also provides pharmaceutical compositions comprising the crystalline salt, processes and intermediates for preparing the crystalline salt, and methods of using the crystalline salt to treat diseases. |
US08592595B2 |
Preparation of (N-heterocyclyl) aryl ethers
The present invention relates to a process for the preparation of optionally substituted (N-heterocyclyl) aryl ethers. |
US08592593B2 |
Quinolone compound and pharmaceutical composition
The present invention provides a quinolone compound that inhibits the chronic progression of Parkinson's disease or protects dopamine neurons from disease etiology, thereby suppressing the progression of neurological dysfunction, so as to prolong the period of time until L-dopa is administered while also improving neuronal function; the quinolone compound of the invention is represented by Formula (1): wherein: R1 represents hydrogen or the like; R2 represents hydrogen or the like; R3 represents substituted or unsubstituted phenyl or the like; R4 represents halogen or the like; R5 represents hydrogen or the like; R6 represents hydrogen or the like; and R7 represents hydrogen or the like. |
US08592590B2 |
Tetrahydrotriazolopyridine compounds as selective MGLU5 receptor potentiators useful for the treatment of schizophrenia
The present invention provides certain tetrahydrotriazolopyridine derivatives, pharmaceutical compositions thereof, methods of using the same and processes for preparing the same. Formula (I) wherein R1 is hydrogen, fluoro, chloro, or methyl; and R2 is C4-CS branched alkyl. |
US08592588B2 |
Process to prepare camptothecin derivatives
A process is provided for the preparation of camptothecin derivatives, such as irinotecan, in a one-pot operation. |
US08592580B2 |
Substituted triazinone derivatives
Triazinone derivatives represented by formula (I) wherein: Z, R1, R2, R3, R4, and n are as defined in the disclosure. Also disclosed are methods of preparing the compounds of formula (I) and their use in therapeutics. |
US08592579B2 |
Pyrrolotriazine kinase inhibitors
The invention provides compounds of formula I and pharmaceutically acceptable salts thereof. The formula I compounds inhibit tyrosine kinase activity thereby making them useful as anticancer agents and for the treatment of Alzheimer's Disease. |
US08592574B2 |
Beta-glucan-based scaffold for biological tissue engineering using radiation fusion technology, and production method therefor
The present invention relates to a beta-glucan-based scaffold for biological tissue engineering using radiation fusion technology, and to a production method therefor. According to the production method of the present invention for beta-glucan-based scaffold, radiation fusion tissue engineering, a beta-glucan-aqueous solution is cast and is then irradiated in a crosslinking reaction in such a way as to form a gel or solid scaffold, thereby facilitating cell attachment and making it easy to create a biomimetic environment coinductive to the growth and differentiation of stem cells. Consequently, the beta-glucan-based scaffold according to the present invention can be usefully employed as a filler for tissue regeneration, cell culturing and plastic surgery, as a filler for voids in biological tissue, as a scaffold for reconstructive and corrective plastic surgery, and for cell transplantation and drug delivery. |
US08592573B2 |
Thermoplastic heteropolysaccharide derivatives and methods for making same
Thermoplastic heteropolysaccharide derivatives, articles employing such thermoplastic heteropolysaccharide derivatives and methods for making such thermoplastic heteropolysaccharide derivatives are provided. |
US08592569B2 |
Small RNA-dependent translational regulatory system in cell or artificial cell model
An object of the present invention is to construct an mRNA which specifically responds to a short RNA sequence and can activate, repress, and regulate the translation of the desired gene, and to construct an artificial cell model system using a liposome comprising the mRNA and a cell-free translational system encapsulated therein. The present invention provides: an mRNA comprising a target RNA-binding site located immediately 5′ to the ribosome-binding site, and a nucleotide sequence located 5′ to the target RNA-binding site, the nucleotide sequence being complementary to the ribosome-binding site; an mRNA comprising a small RNA-binding site located 3′ to the start codon, and a nucleotide sequence located 3′ to the small RNA-binding site, the nucleotide sequence encoding a protein; and a liposome comprising any of these mRNAs encapsulated therein. |
US08592567B2 |
Vaccines and immunotherapeutics using codon-optimized IL-15 and methods for using the same
Nucleic acid molecules that encode IL-15 or fragments thereof, which express protein at a higher level than nucleic acid molecules with native coding sequences for IL-15 are disclosed. Nucleic acid molecules with additional modifications such as the absence of coding sequences for IL-15 signal sequences and/or the absence of IL-15 untranslated sequences and/or inclusion of non-IL-15 signal sequences are also disclosed. Vectors, including plasmids and viral vectors, comprising such nucleic acid molecules; and to host cells comprising such nucleic acid molecules are disclosed as well as methods of using such nucleic acid molecules alone or in combination with nucleic acid sequences encoding immunogens which are part of the nucleic acid molecules and/or part of a different nucleic acid molecule. Recombinant vaccines and live attenuated pathogens encoding fusion proteins, and methods of using the same, are disclosed. |
US08592564B2 |
Immunoassays for lamotrigine
Generally, the present invention relates to lamotrigine analogs that have substituents at the triazine 3-position and on the benzene 4-position and 5-position. The lamotrigine analogs can include immunogenic moieties that can be used to prepare anti-lamotrigine antibodies, or antigenic moieties that can be used in immunodiagnostic assays for lamotrigine. Also, the lamotrigine analog can include tracer moieties for detecting the presence or amount of the analog during an immunodiagnostic assay. Additionally, the lamotrigine analogs can be used in immunodiagnostic assays to compete with lamotrigine for binding with anti-lamotrigine antibodies. |
US08592562B2 |
Method for making antibody Fc-heterodimeric molecules using electrostatic steering effects
The invention relates to methods of making Fc-heterodimeric proteins or polypeptides. The invention also relates to the Fc-heterodimeric proteins or polypeptides themselves, including the individual polypeptide components that comprise the heterodimer. Nucleic acids encoding such polypeptides, expression vectors, and host cells. Moreover, the invention relates to pharmaceutical compositions comprising one of more Fc-heterodimeric proteins or polypeptides. |
US08592561B2 |
Antibodies for detecting or monitoring a malignant plasma cell disease
The present invention is directed to antibodies having specificity for a heavy chain class at the same time as having specificity for a first light chain. Such antibodies can be used in a method of detecting or monitoring a malignant plasma cell disease comprising determining in a sample the ratio between the relative amounts of immunoglobulins having: (i) a heavy chain class bound to λ light chains; and (ii) immunoglobulins having the same heavy chain class but bound to κ light chains. More particularly, in one embodiment the ratio is determined after measuring the relative amounts of the respective immunoglobulins using: an antibody, or a fragment thereof, having specificity for a heavy chain class at the same time as having specificity for a first light chain in combination with either: (i) an antibody, or a fragment thereof, having specificity for the heavy chain class at the same time as having specificity for the second light chain; or (ii) an antibody, or fragment thereof, having specificity for the heavy chain and a further antibody, or fragment thereof, having specificity for the second light chain. |
US08592557B2 |
Multimeric TNF receptor fusion proteins and nucleic acids encoding same
The present invention refers to fusion proteins comprising a TNF receptor family extracellular domain fused to a trimerization domain, and a nucleic acid molecule encoding the fusion protein. The fusion protein may be present as a trimeric complex. It is suitable for therapeutic, diagnostic and/or research applications. |
US08592553B2 |
Cloned glucagon-like peptide-2 receptors
The invention relates to nucleotides and amino acid sequences encoding Glucagon-like peptide-2 receptors, recombinant host cells transformed with such nucleotides, and methods of using the same in drug screening and related applications. |
US08592551B2 |
Biomolecular recognition of crystal defects
Discrete and diffuse defects in a surface are detected. Discrete defects that may compromise the performance may be repaired. |
US08592547B2 |
Organopolysiloxane, a method of preparing the same and a cosmetic comprising the same
An organopolysiloxane having a main chain composed of the following repeating units (I), 2 to 199 side chain units (II) and 1 to 50 crosslinkage units (III) per 100 SiO units in the main chain, provided that the organopolysiloxane has at least 2, on average, crosslinkage units (III): |
US08592546B2 |
Silicon-containing alicyclic polyimide resin, polyamic acid resin, and manufacturing method for same
A polyimide resin including repeating units represented by formula (1): wherein R is a diamine residue or a diisocyanate residue; m is an integer of 2 to 30; any of silicon atoms bonded to norbornane rings is in exo configuration with respect to the norbornane rings; and any of imide rings bonded to the norbornane rings is in exo configuration with respect to the norbornane rings, and a polyamic acid resin including repeating units represented by formula (2): wherein R is a diamine residue; m is an integer of 2 to 30; any of silicon atoms bonded to norbornane rings is in exo configuration with respect to the norbornane rings; and any of amide groups and carboxyl groups bonded to the norbornane rings is in exo configuration with respect to the norbornane rings. The polyimide resin is soluble in general-purpose solvents, has a good transparency and a high molecular weight, and is excellent in mechanical properties, such as tensile strength and elongation. |
US08592545B2 |
Polymer and polymer compositions
A polyorganosiloxane polyoxyalkylene block copolymer having one or more polyorganosiloxane blocks and one or more polyoxyalkylene blocks linked to each other via divalent radicals which comprises at least two silicon-bonded alkoxy groups, preferably of the form PS (A PO)m (A PS)n, wherein PO is a polyoxyalkylene block, PS represents a polyorganosiloxane block, A is a divalent radical, m and n have independently a value of at least 1, comprising at least one alkoxy-substituted siloxane unit of the formula (R′)q(OR)—SiO3−q/2 ′, wherein R represents an alkyl group having 1 to 4 carbon atoms and each R′ represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, or an alkoxy group of the formula —OR and q has a value of 0, 1 or 2, provided at least two silicon-bonded groups OR are present in the block copolymer. Also provided is a curable composition of the above which may comprise a condensation catalyst and a hydrophilic polymer network made from curing the composition in the presence of moisture, which exhibit interesting reversible hydrophilic properties. |
US08592542B2 |
Porous resin beads and method of producing nucleic acid using the same
The present invention provides porous resin beads containing an aromatic monovinyl compound-divinyl compound-(meth)acrylamide derivative copolymer. Preferably, the copolymer further contains as a structural unit a second aromatic monovinyl compound having a functional group capable of binding to a carboxyl group by a dehydrating condensation reaction. |
US08592540B2 |
Fluorine-containing compound, fluorine-containing polymer compound, resist composition and patterning method using same
There is disclosed a fluorine-containing polymer compound comprising a repeating unit (a) of the following general formula (2) and having a weight-average molecular weight of 1000 to 1000000 where R1 represents a polymerizable double bond-containing group; R2 represents a fluorine atom or a fluorine-containing alkyl group; R3 represents a hydrogen atom, an acid labile group, a cross-linking site or the other monovalent organic group; and W1 represents a linking moiety. When the fluorine-containing polymer compound is used in a resist compound for pattern formation by high energy radiation of 300 nm or less wavelength or electron beam radiation, it is possible to form a resist pattern with a good rectangular profile. |
US08592538B2 |
Azeotropes of methyl chloride with fluorocarbons
Azeotropic or azeotrope-like compositions of the present technology include methyl chloride and at least one hydrofluorocarbon or hydrofluoro-olefin. In some examples, the at least one hydrofluorocarbon or hydrofluoro-olefin can be selected from the group consisting of 1,1,1,2-tetrafluoroethane and 1,3,3,3-tetrafluoropropene. The azeotropic or azeotrope-like compositions can be used as solvents or diluents in polymerization processes, including slurry polymerization processes. |
US08592537B2 |
Catalyst system for the polymerization of olefins
A catalyst system for the polymerization of olefins comprising (A) a catalyst component obtained by reacting a Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with a tetravalent transition metal compound having at least a Metal-halogen bond, used in amounts such that the molar ratio Met-al/Mg is from 0.05 to 10; (B) an aluminum alkyl compound and (C) a linear or branched halogenated alkyl compound. |
US08592531B2 |
Prosthetic devices
A prosthetic device made of a first specific type of polyarylene, taken alone or in combination with a second specific type of polyarylene, featuring some unexpected advantages such as a very high strength and stiffness, good elongation properties, high chemical resistance, good biocompatibility as well as an outstanding impact resistance. |
US08592530B2 |
Copolyester polyols, prepolymers, and polyurethane elastomers formed therefrom and processes for making same
Polyurethane elastomers formed from prepolymers derived from copolyester polyols. The copolyester polyols have segments derived from one or more polyesters and caprolactone or polycaprolactone. The polyurethane elastomers have good hardness stability at temperatures ranging from 0° C. to 30° C. and preferably have good hydrolytic stability. |
US08592529B2 |
Resin composition comprising a cyclic carbodiimide
A resin composition which comprises a polyester and is free from a smell produced from a free isocyanate compound. The resin composition comprises a polyester (component A) whose end is modified and a compound including a cyclic structure having one carbodiimide group whose first nitrogen and second nitrogen are bonded together by a bond group (component B). |
US08592524B2 |
Thermoplastic elastomer compositions
The present invention relates to polymer compositions with improved scratch resistance and no or low gloss change of the finished product during heat ageing, methods for making the compositions and useful articles made thereof. |
US08592522B2 |
Oxygen-absorbing resin composition and laminate
The object of the present invention is to provide an oxygen-absorbing resin composition having a high oxygen absorbability and capable of absorbing oxygen for a long period of time. The present invention provides an oxygen-absorbing resin composition comprising polyolefin resin (A) obtained by polymerizing an olefin having 2 to 8 carbon atoms, resin (B) which is other than resin (A) and which acts as a trigger for the oxidation of resin (A), and transition metal catalyst (C), wherein resin (B) is dispersed in the matrix of resin (A) so that the oxidation reaction of matrix resin (A) is caused and thus oxygen is absorbed when the oxygen-absorbing resin composition is brought into contact with oxygen. This oxygen absorbing resin composition has a high oxygen absorbability and is advantageous in cost because oxygen is absorbed in resin (A). |
US08592521B2 |
Method for preparing a primer composition and coated product
A method for preparing a primer composition adapted to form a polysiloxane hard film on a cured primer layer of the composition comprising processes [1] or [2]: the process [1] comprising the steps of (I) preparing a primer precursor containing a vinyl polymer having a hydrolysable silyl group and an organic UV absorbing group bonded at side chains thereof and silica fine particles dispersed in an organic solvent; (II) adding water to the primer precursor obtained in (I) for hydrolysis; and (III) adding a dehydrating agent to the composition containing the hydrolyzate obtained in (II) to remove moisture from the composition; or the process [2] comprising (IV) hydrolyzing a vinyl polymer having a hydrolysable silyl group and an organic UV absorbing group bonded at side chains thereof by addition of water thereto; (V) adding silica fine particles dispersed in an organic solvent to the resulting hydrolyzate obtained in (IV); and (VI) adding a dehydrating agent to the composition obtained in (V) to remove moisture from the composition. |
US08592520B2 |
Aqueous dispersion containing a complex of poly(3,4-dialkoxythiophene) and a polyanion and method for producing the same
An aqueous dispersion used for producing a conductive film is provided. The dispersion contains a complex of poly(3,4-dialkoxythiophene) and a polyanion, and is produced by polymerizing 3,4-dialkoxythiophene in an aqueous solvent in the presence of the polyanion by using peroxodisulfuric acid as an oxidizing agent or by using an oxidizing agent and an acid that is employed so as to lower pH of the reaction mixture. |
US08592519B2 |
Polyeste powder compositions, methods and articles
Powder compositions and articles and methods of forming articles from powder compositions are provided. In one embodiment the powder compositions include at least one polyester polymer powder and an amount of reinforcing particles having an aspect ratio of preferably at least about 5:1. In another embodiment the powder compositions include at least one medium-high melting temperature, aromatic and crystalline polyester polymer powder. In a preferred embodiment, the powder composition is capable of being formed, via a laser sintering process, into a three-dimensional article that exhibits one or more desirable mechanical properties in an elevated temperature environment. |
US08592518B2 |
Rapid cure thermosets from 5- and 6- membered cyclic enamine compounds made from dialdehydes
The present invention provides thermosetting aqueous binder compositions of one or more cyclic enamine, including bis-enamines and di- or higher functional enamines, optionally containing a water soluble or dispersible or dispersible primary amine compound. The binders are at least substantially formaldehyde free, need no polycarboxylic or polycarboxylate component, and yet provide excellent hot wet tensile strength when cured for as little time as a minute or less in use. |
US08592515B2 |
Tire with rubber component
Pneumatic rubber tire with a component comprised of a silica reinforced rubber composition comprised of specialized polybutadiene rubber, functionalized styrene/butadiene elastomer and cis 1,4-polyisoprene rubber. |
US08592514B2 |
Urethane (meth) acrylate resin composition and coating material using the same
The present invention aims to provide a urethane (meth)acrylate composition that forms a coating film with excellent surface-drying property at ordinary temperature through four seasons, slidability, and pinhole resistance (formation of a coating film that is free from pinholes), and a coating material using the urethane (meth)acrylate composition. The present invention provides a urethane (meth)acrylate resin composition including a urethane (meth)acrylate resin (A), a polymerizable unsaturated monomer (B), a paraffin wax (C), and an ethylene-α-olefin co-oligomer (D). The mass ratio of the paraffin wax (C) to the ethylene-α-olefin co-oligomer (D) is 0.05 to 50. The present invention also provides a coating material using the urethane (meth)acrylate composition. |
US08592513B2 |
Elastomer composition and storage cover of airbag devices
The present invention provides an elastomer composition comprising a mixture (a) of a hydrogenated block copolymer (a-1) and a hydrogenated block copolymer (a-2); a polypropylene resin (b); and a hydrocarbon oil (c). The hydrogenated block copolymer (a-1) has a specific structure, a specified number average molecular weight and a specified block content. The hydrogenated block copolymer (a-2) has a specific structure, a specified number average molecular weight, a specified block content, a specified vinyl bond content before hydrogenation and a specified MFR. The polypropylene resin (b) has a specified MFR. The present invention also provides a storage cover of airbag devices which is made of the elastomer composition. |
US08592511B2 |
Synthesis, capping and dispersion of nanocrystals
Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films. |
US08592508B2 |
Top coat composition
Disclosed is a top coat composition for photoresist, which is characterized by containing a fluorinated polymer having a repeating unit represented by general formula (5). In the formula, R1 represents a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group; n represents 0 or 1; m represents an integer of 1 to (3+n); and R2 or R3 represents a hydrogen atom or a protecting group. The top coat composition has a proper degree of solubility in a developing solution. |
US08592500B2 |
Optical composition for impressions or replicas of small objects
A composition, apparatus and method for preparing a 3-D impression or replica of small objects. It is particularly aimed at the dental field and provides improved optical texture of an impression or replica of a small object to enable imaging by photogrammetry. The composition comprises a liquid curable polymer; macroparticles having a size greater than about 1 μm in diameter and microparticles present in a size range of less than about 1 μm such that the macroparticles and microparticles are present in a ratio in the range of between 5:1 and 15:1 (by volume); wherein the impression or replica formed from the composition has a surface particle distribution effective to allow imaging by photogrammetry. |
US08592499B2 |
Method for preparing an organopolysiloxane compound and curing composition using the compound
A method for preparing an organopolysiloxane compound by mixing (A) an organopolysiloxane of the formula (1): wherein R1 is a monovalent hydrocarbon group and may be the same or different, R is a divalent hydrocarbon group, and n is an integer of at least 2, with (B) an organic compound of the formula (2) or (3): wherein R2 is H or a monovalent hydrocarbon and R3 is a divalent hydrocarbon and (C) an organic compound of the formula (4): wherein R1 and R3, respectively, have the same meanings as defined above, R4 is a monovalent hydrocarbon group, and p is 0 or 1, wherein components (A), (B) and (C) are reacted with one another under conditions that a ratio between an amino group equivalent PNH in component (A) and an isocyanate group equivalent PNCO in components (B) and (C) is such that 0.8≦(PNCO/PNH) and a molar ratio between component (B) and component (C) is such that 0.6≦[component (B)/component (C)]. |
US08592494B2 |
Styrene-modified linear low-density polyethylene-based resin beads, styrene-modified linear low-density polyethylene-based expandable resin beads, production method therefor, pre-expanded beads and expanded molded article
A method for producing styrene-modified linear low-density polyethylene-based resin particles, which includes the steps of: dispersing 100 parts by weight of non-crosslinked linear low-density polyethylene-based resin particles which are polymerized using a metallocene compound as a catalyst and contain an inorganic nucleating agent, 50 to 800 parts by weight of a styrene-based monomer and 0.1 to 0.9 parts by weight of a polymerization initiator relative to 100 parts by weight of the styrene-based monomer into an aqueous suspension containing a dispersant; impregnating the polyethylene-based resin particles with the styrene-based monomer under heating the resulting dispersion at such a temperature that the styrene-based monomer does not substantially polymerize; and performing polymerization of the styrene-based monomer at a temperature of (T+10) to (T+35)° C. where T° C. is a crystallization peak temperature of the polyethylene-based resin particles. |
US08592493B2 |
Solid support with a grafted chain
Articles that contain a solid support with a grafted chain extending from the solid support, methods of making these articles, and various uses of the articles are described. More specifically, the grafted chain has a functional group that can react with or interact with target compound. Alternatively, the functional group on the grafted chain can react with a modifying agent to provide another group that can react with or interact with the target compound. The grafted chains are attached to the solid support through a ring-opened azlactone group. The articles can be used to purify the target compound or to separate the target compound from other molecules in a sample. |
US08592490B2 |
Self-microemulsifying drug delivery systems
Self-microemulsifying drug delivery systems and microemulsions used to enhance the solubility of pharmaceutical ingredients comprising a polyoxyethylene sorbitan fatty acid ester emulsifier; a fatty acid ester co-emulsifier and an oil. |
US08592482B2 |
CCR3 inhibition for ocular angiogenesis and macular degeneration
Provided are methods and compositions for the treatment or prevention of ocular angiogenesis and neovascularization. Administration of inhibitors of the CCR3 receptor or its ligands eotaxin (CCL11), eotaxin-2 (CCL24) or eotaxin-3 (CCL26) inhibits ocular angiogenesis. |
US08592481B2 |
Gastric retentive gabapentin dosage forms and methods for using same
Provided is a method of treating a patient suffering from a pain state by administering to the patient a gastric retentive dosage form of gabapentin that is capable of administration in once-daily or twice daily dosing regimens. By reducing the need to administer gabapentin from the thrice-daily administrations characteristic of immediate release gabapentin, the gastric retentive gabapentin dosage forms provided herein have the advantages of improving patient compliance for gabapentin treatment. In addition to the foregoing, the gastric retentive gabapentin dosages forms also exhibit decreased blood plasma concentrations and increased bioavailability throughout the dosing regimen. |
US08592477B2 |
Polymorphic form of rotigotine and process for production
The present invention relates to a novel polymorphic form of Rotigotine characterized by at least one of the following X-ray powder diffraction peaks: 12.04, 13.68, 17.72 and 19.01±0.2 (°2θ), measured with a Cu—Kα irradiation (1.54060), and a process for production thereof, which is useful for the manufacture of a stable medicament for treating or alleviating symptoms of Parkinson's Disease and other dopamine-related disorders. |
US08592475B2 |
Inhibitors of Akt activity
Invented are novel heterocyclic carboxamide compounds, the use of such compounds as inhibitors of protein kinase B activity and in the treatment of cancer and arthritis. |
US08592473B2 |
Triazol compounds for treating biofilm formation
The present invention relates to the use of a Compound of formula I, preferably 4-[3,5-bis(2-hydroxyphenyl)-[1,2,4]triazol-1-yl]benzoic acid or a pharmaceutically acceptable salt thereof for the preparation of a medicament for use in the treatment of biofilm formation, e.g. of P. aeruginosa, e.g. in cystic fibrosis patients. |
US08592472B2 |
Co-crystals
The present invention relates to co-crystals of propiconazole and a co-crystal forming compound. |