用于运行具有整流器的机电式系统的方法和设备

申请号 CN202111040923.6 申请日 2021-09-07 公开(公告)号 CN114157216A 公开(公告)日 2022-03-08
申请人 汽车交通工程有限公司; 发明人 H·拉姆; M·霍曼; A·朱斯;
摘要 本 发明 的任务是,更有利地和更灵活地在电磁的干扰发射 和声 学方面设计具有 整流器 的机电式系统的运行。根据本发明,提出闭环控制瞬时 开关 频率 ,其中,相对于 现有技术 ,尤其是考虑Delta‑Sigma脉宽 调制器 的开关频率在 电压 基波振荡的周期中的自然变化,这能够实现在电磁兼容性、声学和 开关损耗 方面的优点。根据按照本发明的方案的对瞬时开关频率的闭环控制尤其是提供了利用 基础 性的 驱动器 产生特定的、可校准的噪声的可能性。这可以用于以品牌特定的方式产生车辆的可再识别的噪声,也可用于满足对纯 电动车 辆(BEV)的声学 感知 的规范标准。
权利要求

1.一种用于运行具有整流器的机电式系统的方法,其中,
借助于基于滞后的脉宽调制器提供具有可变的开关频率脉宽调制信号
借助于控制器,根据瞬时开关频率的实际值和根据在所述机电式系统的声学方面预设的要求来影响滞后极限。
2.根据权利要求1所述的方法,其中,所述控制器对应于利用多谐振积分器对谐波信号进行加入的谐波谐振器并且因此对应于多谐振控制器。
3.根据权利要求1或2所述的方法,其中,对滞后极限的影响通过如下方式来进行,即控制器的调节变量接入到滞后极限,或滞后极限接入到控制器的调节变量。
4.根据权利要求1、2或3所述的方法,其中,所述滞后极限是用于设定平均开关频率的另一个控制器的调节变量。
5.根据权利要求4所述的方法,其中,控制器的调节变量以倒数的方式接入到滞后极限,或滞后极限以倒数的方式接入到控制器的调节变量。
6.根据权利要求1至5所述的方法,其中,在机电式系统的运行期间通过如下方式来预设在机电式系统的声学方面的要求:
对多谐振控制器预设谐波;
将一个多谐振控制器用另一个多谐振控制器来替代;
除了激活的多谐振控制器之外还激活一个另外的或多个另外的多谐振控制器;和/或借助于开环控制来提供在机电式系统的声学方面的要求;
其中,由此预设的在该机电式系统的声学方面的要求能够根据机电式系统的运行条件和/或根据该机电式系统的环境条件进行影响。
7.根据权利要求1至5所述的方法,其中,对在所述机电式系统的声学方面的要求的预设在于,在机电式系统的开发的范围中,在批量使用之前,所述机电式系统设有特定的声学性能。
8.一种设备,所述设备设立成用于,实施根据权利要求1至7所述的方法。
9.根据权利要求8所述的方法,其中,所述机电式系统具有电机
10.一种车辆,所述车辆包括根据权利要求8或9所述的设备。

说明书全文

用于运行具有整流器的机电式系统的方法和设备

技术领域

[0001] 本发明涉及具有权利要求的特征的用于运行具有整流器的机电式系统的方法和设备。

背景技术

[0002] 根据Michael  Homann于2016年发表的Hochdynamische  Strom‑und Spannungsregelung von permanenterregten Synchronmaschinen auf Basis von Delta‑Sigma  已知的是,通过如下方式来运行包括整流器/变流器和电机的机电式系统,即借助于Delta‑Sigma脉宽调制器来进行对所述机电式系统的开环控制/闭环控制,所述Delta‑Sigma脉宽调制器提供具有可变的开关频率的脉宽调制信号。在此,借助于Delta‑Sigma调制器检测实际变量并且将其转换为位流信号以及将额定变量预设为位流信号,该基于滞后的Delta‑Sigma脉宽调制器的主要特征是可变的开关频率。
[0003] 根据A.Klein;M.Thielmann,;W.Schumacher于2018年在International Exhibition and Conference for Power Electronics,Intelligent Motion,Renewable Energy and Energy Management(PCIM)的第141‑148页发表的Switching Frequency Control for a DS‑PWM或Axel Klein于2019年发表的Delta‑Sigma Signalverarbeitung in der Regelungstechnik,对瞬时开关频率的闭环控制是现有技术。据此,实施如下的闭环控制法则,该闭环控制法则既包含开关频率的额定值又包含开关频率的实际值并且使用滞后极限作为闭环控制回路的控制环节。所述闭环控制法则对应于三分率(Dreisatz)。上一个脉宽调制周期的瞬时开关频率的实际值与当前脉宽调制周期的瞬时开关频率的额定值的比值对应于需要被设定以实现所期望的瞬时开关频率的滞后限制与已实际设置的滞后极限的比值。
[0004] 如所描述的那样,基于滞后的脉冲模式方法、例如Delta‑Sigma脉宽调制根据工作点和机器参数自动地生成瞬时开关频率的变化。瞬时开关频率与电压空间矢量的度的示例性的变化曲线在Axel Klein与2019年发表的Delta‑Sigma Signalverarbeitung in der Regelungstechnik第75页图4.8中或在Michael Homann于2016年发表的Hochdynamische Strom‑und Spannungsregelung von permanenterregten Synchronmaschinen auf Basis von Delta‑Sigma 第145页图6.11中被示出,其中,根据最后提到的现有技术还阐述瞬时开关频率的变化的原因的更详细的信息。
[0005] 这样变化的瞬时开关频率在运行中在电磁的干扰发射和声学方面是不利的。为此,所提及的现有技术没有提供对策的可行性。

发明内容

[0006] 本发明的任务是,在电磁的干扰发射和声学方面更有利地并且更灵活地设计具有整流器的机电式系统的运行。
[0007] 根据本发明,该任务通过具有权利要求的特征的方法和设备来解决。
[0008] 根据本发明,提出对瞬时开关频率的闭环控制,其中,相对于现有技术,尤其是考虑Delta‑Sigma脉宽调制器的开关频率在电压基波振荡的周期中的自然变化,这可以实现在电磁兼容性(EMV)、声学和开关损耗方面的优点。根据按照本发明的方案的对瞬时开关频率的闭环控制,尤其是创造了利用基础性的驱动器产生特定的、可校准的噪声的可能性。这可用于以品牌特定的方式产生车辆的可再识别的噪声,也可用于满足对纯电动车辆(BEV)的声学感知的规范标准。
[0009] 在下面的实施例以及从属权利要求中可以找到本发明的其他设计方案和对实现的优点的说明。
[0010] 为了运行具有整流器/变流器并且尤其是具有电机的机电式系统(所述电机优选用于驱动车辆),借助于基于滞后的脉宽调制器、尤其是Delta‑Sigma脉宽调制器来进行对所述机电式系统的开环控制和/或闭环控制,所述基于滞后的脉宽调制器提供具有可变的开关频率的脉宽调制信号,关于基于滞后的Delta‑Sigma脉宽调制器的细节参见Axel Klein于2019年发表的Delta‑Sigma Signalverarbeitung in der Regelungstechnik第61页。在此,优选借助于Delta‑Sigma调制器来检测实际变量并且将其转换为位流信号以及将额定变量预设为位流信号。也就是说,尤其是对电驱动器的开环控制和/或闭环控制需要测量状态变量,如电流、角度以及需要预设具有可设定的振幅和频率的电压。Delta‑Sigma脉宽调制器的信号处理以高频的时间周期(例如10MHz)中进行,并且所导致的开关频率在例如在4kHz至40kHz的范围中变化。根据Delta‑Sigma脉宽调制器的工作点和参数,不仅产生不同的平均开关频率,而且也产生瞬时开关频率围绕该平均值的不同的数值分散。因此,瞬时开关频率作为在部件功率电子装置中的附加自由度被获得,其可以在例如功率损耗或声学的标准方面来设计,而不需要改变数字逻辑的采样频率。为了优化地使用该优点,将瞬时开关频率设定到预设的额定值的装置是必要的。
[0011] 关于到目前为止的说明和下面的说明,在瞬时开关频率(脉宽调制周期的频率,该频率指的是从整流器的开关器的位置开始回到该位置所需时间的倒数,为此,在下面使用循环位,参见下面的定义)和平均开关频率(在一个电压周期上取平均,即关于空间矢量调制在空间矢量旋转360度一周上取平均)之间进行区分,另见上面的开头部分。
[0012] 目的首先是:有针对性地影响脉宽调制信号的、功率半导体兼容的瞬时开关频率,所述瞬时开关频率借助于基于滞后的脉宽调制器、尤其是Delta‑Sigma脉宽调制器(其尤其是控制具有两个零矢量(未示出)的(实)空间矢量调制)而在工作点中提供。关于开关频率的基本定义,可以参考例如开头已经提到的现有技术Axel Klein于2019年发表的Delta‑Sigma Signalverarbeitung in der Regelungstechnik第70页倒数第2段。在任何情况下,都需要闭环控制瞬时开关频率,因为这显著影响整个系统或驱动器的声学性能,请尤其是参阅Axel Klein于2019年发表的Delta‑Sigma Signalverarbeitung in der Regelungstechnik第72至78页,其中,在控制器输出端处的结果中得出以滞后极限N1形式的调节变量,所述调节变量影响开关频率fsw,因为通过超过该滞后极限N1触发开关事件。如已知的那样,滞后极限N0和N2也可以由第一滞后极限N1计算。
[0013] 也就是说,适宜的和需要的是,闭环控制瞬时开关频率,因为瞬时开关频率决定性地影响由整流器或逆变器产生的相电流的频谱。这又会有助于电磁的干扰发射并且这在电机的声学性能方面占重要份额。
[0014] 例如,在具有三个相位的整流器中,瞬时开关频率具有电机的电的基波振荡的6倍的频率和其他谐波。另外,来自非遍历随机过程的随机分量被叠加,也就是说,特征随机变量是时变的。因此,根据本发明,在这里首先尤其是考虑负载/机器的电的基波振荡的6倍的频率并且对于闭环控制忽略随机分量。附图说明
[0015] 因此,如图1所示,根据本发明的对瞬时开关频率的闭环控制的一个主要方面是:利用谐波谐振器调节n倍或尤其是6倍的瞬时开关频率,以及随后用多谐振积分器/多谐振控制器对任意的谐波信号的加入。

具体实施方式

[0016] 在此,目的是:预设的谐波fsw,harm,soll叠加平均开关频率,其中,在图1中,除了电角度εelec之外,在多谐振控制器的输入端处还提供瞬时开关频率fsw,ist。平均开关频率由单独的控制器闭环控制。这样的控制器例如根据DE102014108667A1是现有技术。预设的谐波fsw,harm,soll在这里表示/是根据本发明预设的在机电式系统的声学方面的要求。
[0017] 瞬时开关频率fsw,ist例如从循环位ZB的上升沿得出。为此,积分器(未示出)对每个采样周期的采样步骤的时间值进行计数。循环位ZB的上升沿触发积分器和存储器(两者都未在图1中示出)的复位,积分器的最后的输出值被写入到所述存储器中。因此,在一个脉宽调制周期期间,输出前一个脉宽调制循环的瞬时开关频率fsw,ist。
[0018] 关于循环位ZB,参考在DE102014108667A1中对该循环位的定义,即循环位ZB说明,空间矢量调制是在脉宽调制循环的第一半周期还是在脉宽调制循环的第二半周期。尤其地,即使在部分或完全过调制的情况下,循环位ZB也提供关于当前(瞬时)开关频率的有效结论。
[0019] 电角度εelec(在电机中的旋转电流场的角度或空间电压矢量的角度或标称电压矢量的角度)通常经由转子位置传感器确定。在现有技术中也存在,在没有转子位置传感器的情况下确定电角度的可行性。
[0020] 然而,根据本发明,参见图1,多谐振控制器的输出或调节变量不直接接入要影响的(调节)变量,即(第一)滞后极限N1。也就是说,首先应当指出的是,对于根据本发明的对瞬时开关频率fsw的闭环控制,需要附加地(经由另一个未示出的控制器)来设定用于平均开关频率的固定工作点,并且更确切地说尤其是借助于调节变量(滞后极限)N1。如已经描述的那样,对用于平均开关频率的固定工作点的这样的设定或者说闭环控制例如根据DE102014108667A1是现有技术。
[0021] 现在,在这里,重要的是,在瞬时开关频率与滞后极限N1之间的关系是倒数的并且因此是非线性的,从而阻碍多谐振控制器的有意义的运行。
[0022] 因此,需要将来自(未示出的)附加的控制器的与平均开关频率相关的调节变量N1(滞后极限)以倒数(1/x)的方式接入到多谐振控制器的调节变量(在图1中未更确切地示出)。参见图1,多谐振控制器的调节变量和倒数式的调节变量N1的总和又需要进行倒数计算(1/x)或进一步处理,以便使原始非线性关系合理,其中,在结果中得出校正的或新的滞后极限N1,a。
[0023] 现在,这样求取的(新的)滞后极限N1,a引起具有期望的(谐波的)振荡的瞬时开关频率,这正面地作用于声学并且尤其是通过有针对性地选择多个/一个多谐振控制器来尤其是在机电式系统的开发阶段中、即在该系统的批量制造之前是可校准的。
[0024] 利用对瞬时开关频率的这样的闭环控制,如结合对平均开关频率的闭环控制所描述的那样,可以(任意地)设定瞬时开关频率的数值分散。这是在声学和电磁兼容性方面的附加的自由度。也就是说,通过一个多谐振控制器/多个多谐振控制器的倒数式的接入,产生瞬时开关频率的正弦形变化曲线。总之,这样的倒数式的接入对于用于设定正弦形变化曲线的基于滞后的脉宽调制方法的开关频率闭环控制的每种方法都是有利的。
[0025] 在涉及机电式系统的声学特性的期望的尽可能大的灵活性方面,根据本发明规定,在机电式系统的运行期间,一方面实行或者说执行多谐振控制器的(调节变量)以倒数的方式接入到另一个控制器(所述另一个控制器设置用于设定平均开关频率)的调节变量,并且此外影响多谐振控制器的调节变量的形成,尤其是通过改变多谐振控制器的特性或参数、即尤其是通过改变预设的谐波fsw,harm,soll或通过以另一个多谐振控制器来替代所述多谐振控制器、或通过将一个另外的或多个另外的多谐振控制器添加至已经激活的多谐振控制器,从而在结果中将一个(或多个)多谐振控制器(的一个调节变量或多个调节变量)到另外的(用于设定平均开关频率的)控制器的调节变量的倒数式的接入改变成,使得得出机电式系统的期望的特定的声学性能。
[0026] 根据本发明,尤其是在机电式系统的运行期间根据在机电式系统的声学方面、即在从机电式系统向环境释放的声音方面的预设的要求(例如至少一个对应的额定值或至少一个对应的输入变量)来影响一个调节变量/多个调节变量或者说影响一个/多个多谐振控制器的一个调节变量/多个调节变量的形成或者说选择用于生成一个/多个调节变量的一个或多个多谐振控制器,所述一个或多个调节变量在接着的进程中以倒数的方式接入到来自与平均开关频率相关的附加的控制器的调节变量N1(滞后极限)。其中,这样的预设的要求也可以(间接地)尤其是根据机电式系统的运行条件或根据具有该机电式系统的车辆的运行条件或替代性地或附加地根据机电式系统/车辆的环境条件、例如根据传感器的信号(所述信号涉及机电式系统/车辆的周围环境)得出,使得能够尤其是通过改变声学来警告交通参与者。当然,也可以进行开环控制,例如,在电机的较低的转速(输入变量)情况下,得出更独特或更易感知的声音,并在较高的转速情况下最大化地衰减由瞬时开关频率的变化引起的声学事件。即使在开发机电式系统的范围中在一定程度上一次性地预设这样的在声学方面的要求,即所述机电式系统在批量应用之前设有或者说校准有特定的、然后在运行期间不可再改变的声学性能,在本发明的意义上也存在对在机电式系统的声学方面的预设的要求的相关性。
QQ群二维码
意见反馈