原油直接提质为氢和化学品的系统和工艺

申请号 CN202180016811.9 申请日 2021-03-05 公开(公告)号 CN115151625B 公开(公告)日 2023-06-02
申请人 沙特阿拉伯石油公司; 发明人 阿代什·哈拉利; 易卜拉欣·阿巴; 艾哈迈德·胡韦特; 阿卜杜努尔·布朗; 阿基尔·贾迈勒; 穆拉德·尤尼斯;
摘要 用于直接将 原油 提质为氢气和化学品的系统和工艺,包括将入口 烃 流分离成轻馏分和包含柴油沸点 温度 范围材料的重馏分;由轻馏分产生包含H2和CO的 合成气 ;使产生的CO反应;从重馏分中产生并分离CO2、聚合级乙烯、聚合级丙烯、C4化合物、裂化产物、轻循环油和重循环油;收集和纯化重馏分产生的CO2;加工C4化合物以产生烯烃低聚物和链烷烃残余液;分离裂化产物;低聚轻馏分(light cut)石脑油流;加氢处理芳烃流;对轻循环油进行加氢裂化以产生单芳烃产物流; 气化 重循环油;使重循环油气化产生的CO反应;收集和纯化CO2;将产生的芳烃化合物加工并分离成苯和对二 甲苯 。
权利要求

1.一种分离提质方法,该方法包括以下步骤:
将入口烃流分离成包含石脑油沸点温度范围材料的轻馏分和包含柴油沸点温度范围材料的重馏分;
由所述轻馏分产生包含H2和CO的合成气
使由所述轻馏分产生的CO通过至少一种选自以下的反应进行反应:羰基化、聚合和气变换;
从所述重馏分产生并分离CO2、聚合级乙烯、聚合级丙烯、C4化合物、包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物、轻循环油和重循环油;
收集和纯化所述重馏分产生的CO2;
加工所述C4化合物以产生烯烃低聚物和链烷烃残余液,所述链烷烃残余液用于产生氢气;
将所述包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物分离成包含C5和C6烯烃的轻馏分石脑油流和包含芳烃化合物的芳烃流;
低聚所述轻馏分石脑油流;
对所述芳烃流进行加氢处理;
对所述轻循环油进行加氢裂化以产生单芳烃产物流;
使所述重循环油气化以产生氢气、CO和CO2;
通过至少一种选自以下的反应使所述重循环油气化产生的CO反应:羰基化、聚合和水煤气变换;
收集和纯化由所述重循环油气化产生的CO2;和
将产生的芳烃化合物加工并分离成苯和对二甲苯
2.根据权利要求1所述的方法,其中所述入口烃流包含至少一种选自以下的组分:原油和气体凝析油。
3.根据权利要求1所述的方法,其中汽油和柴油不是所述方法的最终产物。
4.根据权利要求1所述的方法,其中在所述方法中产生的按质量计大于约90重量%的CO2和按质量计大于约90重量%的CO被捕获并进一步加工成其他化合物。
5.根据权利要求1所述的方法,还包括收集和纯化在由所述轻馏分产生包含H2和CO的合成气的步骤期间产生的CO2的步骤。
6.根据权利要求1所述的方法,还包括在选自以下的至少一种工艺中加工至少一部分产生的CO2的步骤:干重整;蒸汽重整和加氢。
7.根据权利要求1所述的方法,还包括以下步骤:加工所产生的CO2的至少一部分以产生至少一种选自以下的产物:合成燃料;包含H2和CO的合成气;和烯烃。
8.根据权利要求1所述的方法,其中分离所述入口烃流的步骤包括使用选自以下中的至少一个单元:闪蒸罐、基于蒸馏的分离单元和旋式汽液分离单元。
9.根据权利要求1所述的方法,其中使由所述轻馏分产生的CO反应和由气化所述重循环油产生的CO反应的步骤包括通过丁二烯的羰基化产生己二酸的步骤。
10.根据权利要求1所述的方法,其中由所述轻馏分产生包含H2和CO的合成气的步骤包括使用选自以下中的至少一个单元:蒸汽重整单元、部分化单元和自热重整单元。
11.根据权利要求1所述的方法,其中从所述重馏分进行生产的步骤使用包括下流式反应器的高苛刻度流化催化裂化系统进行。
12.根据权利要求1所述的方法,其中在所述方法中产生的一部分H2在内部用于加氢处理。
13.根据权利要求1所述的方法,其中将所述轻循环油加氢裂化的步骤包括加氢裂化和重整反应。
14.根据权利要求1所述的方法,还包括通过烷基转移处理所述单芳烃产物流以将甲苯和C9‑C11芳烃转化为苯和混合二甲苯的步骤。
15.根据权利要求1所述的方法,其中由所述重馏分产生的CO2包括由在催化裂化系统的再生器中燃烧的焦炭产生的CO2。
16.根据权利要求1所述的方法,其中由所述重馏分产生的所述重循环油的至少一部分用于为所述方法提供能量
17.根据权利要求1所述的方法,其中从所述轻馏分产生包含H2和CO的合成气的步骤还包括从至少一种包含饱和C1至C4化合物的流中产生氢气。
18.根据权利要求1所述的方法,其中将产生的所述芳烃化合物加工并分离成苯和对二甲苯的步骤还产生重芳烃,所述重芳烃被再循环到对所述轻循环油进行加氢裂化或使所述重循环油气化的步骤中。
19.一种用于烃分离和提质的系统,该系统包括:
入口烃流;
进料入口分流器,其能够将所述入口烃流分离成包含石脑油沸点温度范围材料的轻馏分和包含柴油沸点温度范围材料的重馏分;
氢气产生单元,其能够从所述轻馏分产生包含H2和CO的合成气;
反应单元,其能够使由所述轻馏分产生的CO通过至少一种选自以下的反应进行反应:羰基化、聚合和水煤气变换;
高苛刻度流化催化裂化(HS‑FCC)单元,其能够从所述重馏分中产生CO2、聚合级乙烯、聚合级丙烯、C4化合物、包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物、轻循环油和重循环油;
CO2收集和加工单元,其能够收集和纯化由所述重馏分产生的CO2;
低聚单元,其能够加工所述C4化合物以产生烯烃低聚物和链烷烃残余液,所述链烷烃残余液用于在氢气产生单元中产生氢气;
裂化石脑油分离器,其能够将包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物分离成包含C5和C6烯烃的轻馏分石脑油流和包含芳烃化合物的芳烃流,其中所述低聚单元能够低聚所述轻馏分石脑油流;
重石脑油选择性加氢处理单元,其能够对所述芳烃流进行加氢处理;
循环油加氢裂化单元,其能够对所述轻循环油进行加氢裂化以产生单芳烃产物流;
气化器单元,其能够使所述重循环油气化以产生氢气、CO和CO2,其中所述碳反应单元能够通过至少一种选自以下的反应使由气化所述重循环油产生的CO反应:羰基化、聚合和水煤气变换,其中所述CO2收集和加工单元能够收集和纯化由气化所述重循环油产生的CO2;和芳烃抽提单元,其能够将产生的芳烃化合物加工并分离成苯和对二甲苯。
20.根据权利要求19所述的系统,其中所述入口烃流包含至少一种选自以下的组分:原油和气体凝析油。
21.根据权利要求19所述的系统,其中汽油和柴油不是所述系统的最终产物。
22.根据权利要求19所述的系统,其中该系统中产生的按质量计大于约90重量%的CO2和按质量计大于约90重量%的CO被捕获并进一步加工成其他化合物。
23.根据权利要求19所述的系统,其中所述CO2收集和加工单元能够收集和纯化从所述氢气产生单元产生的CO2。
24.根据权利要求19所述的系统,还包括CO2转化单元,所述CO2转化单元能够在选自以下的至少一种工艺中使CO2反应:干重整;蒸汽重整;和加氢。
25.根据权利要求19所述的系统,还包括CO2转化单元,其能够处理所产生的CO2的至少一部分以产生至少一种选自以下的产物:合成燃料;包含H2和CO的合成气;和烯烃。
26.根据权利要求19所述的系统,其中所述进料入口分流器包括选自以下的至少一个单元:闪蒸罐、基于蒸馏的分离单元和旋风式汽‑液分离单元。
27.根据权利要求19所述的系统,其中所述碳反应单元能够通过丁二烯的羰基化使得CO反应以产生己二酸。
28.根据权利要求19所述的系统,其中所述氢气产生单元包括选自以下中的至少一个单元:蒸汽重整单元、部分氧化单元和自热重整单元。
29.根据权利要求19所述的系统,其中所述HS‑FCC单元包括下流式反应器。
30.根据权利要求19所述的系统,其中在所述系统中产生的一部分H2在内部用于加氢处理。
31.根据权利要求19所述的系统,其中所述循环油加氢裂化单元包括加氢裂化和重整反应。
32.根据权利要求19所述的系统,其中所述芳烃抽提单元包括选自以下中的至少一个单元:苯抽提单元、甲苯加C9‑C11烷基转移单元、二甲苯异构化单元和对二甲苯抽提单元。
33.根据权利要求19所述的系统,还包括催化剂再生器以从催化剂中去除焦炭。
34.根据权利要求19所述的系统,其中由所述重馏分产生的所述重循环油的至少一部分用于向所述系统提供能量。
35.根据权利要求19所述的系统,其中所述氢气产生单元包括包含饱和C1至C4化合物的进料。
36.根据权利要求19所述的系统,其中在所述芳烃抽提单元中产生的重芳烃被再循环至所述循环油加氢裂化单元或所述气化器单元。

说明书全文

原油直接提质为氢和化学品的系统和工艺

技术领域

[0001] 本公开的实施方案涉及用于流体的转化和提质的系统和工艺。特别地,本公开的某些实施方案涉及用于将原油直接转化和提质为不包括汽油或柴油的石油化学产品,并且具有减少或消除的二排放的系统和工艺。

背景技术

[0002] 乙烯、丙烯、丁烯和丁二烯以及芳烃化合物(如苯、甲苯和对二甲苯)代表石油化学工业的许多系统和工艺中所需的一些中间体。通过石油气和馏出物(如石脑油、油和瓦斯油)的热裂化(蒸汽裂解)获得必要的中间化合物。
[0003] 这些中间化合物中的一些也通过炼油厂流化催化裂化(FCC)工艺产生,其中经典的重质原料(如瓦斯油或减压渣油)被转化为更高价值的产物。目前,丙烯生产的一个重要来源是来自FCC单元的炼油厂丙烯。
[0004] 由FCC生产轻质烯烃取决于若干工艺变量,包括烃进料类型、操作条件和催化剂类型。高苛刻度FCC(HS‑FCC)系统包括选择性催化剂和增强型硬件,以使得在一些情况下,产生的丙烯收率高达传统FCC单元的四倍,并且对于一系列烃类进料流具有更高的转化水平。除了丙烯、乙烯和混合丁烯等烯烃流外,其他催化裂化反应产物包括燃料气、LPG、汽油、轻循环油和重循环油。
[0005] 包括氢气和一氧化碳合成气可以由重质渣油流[C1]的气化产生。氢气可以通过多种工艺从较轻的烃流中产生,包括烃蒸汽重整(HSR)、部分氧化(POX)和自热重整(ATR)。烃蒸汽重整涉及蒸汽与烃在催化剂存在下的反应,以产生氢气和一氧化碳。
[0006] 当氧与烃的比率小于完全燃烧成CO2和H2O所需的比率时,部分氧化涉及氧与烃反应以产生氢气和CO。部分氧化可以用催化剂(催化部分氧化)或不用催化剂(非催化部分氧化)进行。部分氧化的反应速率大于蒸汽重整的反应速率,但烃中每份碳的氢气产率较低。非催化部分氧化需要高于约1000℃的反应温度以实现快速反应速率。催化部分氧化在比非催化途径更低的温度下操作。较低的操作温度可以更好地控制反应,从而最大限度地减少焦炭的形成。
[0007] 自热重整涉及氧气、蒸汽和烃的反应以产生氢气和CO,并且应用部分氧化和蒸汽重整这两者的机制。
[0008] 通过处理二氧化碳和一氧化碳可以获得高价值化学品。例如,二氧化碳用作环氧烷烃聚合中的共聚单体,使用例如双金属氰化物(DMC)催化剂来产生多元醇。根据方程式1,一氧化碳可用于丁二烯的羰基化以产生己二酸。也可通过使纯化的一氧化碳和氯气通过多孔活性炭床来产生可用于制备异氰酸酯、聚碳酸酯和聚酯的光气。
[0009] CH2=CH‑CH=CH2+2CO+2H2O→HO2C(CH2)4CO2H方程式1
[0010] 现有的烃转化系统和工艺不允许用于从包含原油的烃原料直接产生石油化学产品(不包括汽油和柴油),同时减少或消除二氧化碳排放的加工单元的协同集成。发明内容
[0011] 申请人已经认识到需要用于从包含原油的烃原料直接产生石油化学产品(不包括作为最终产物的汽油和柴油),同时减少或消除二氧化碳排放的系统和方法。
[0012] 本公开的实施方案涉及用于将原油或类似烃进料(例如气体凝析油)完全转化成提质石油化学产品和氢气的系统和工艺。在一个实施方案中,原油首先被分成轻馏分和重馏分。轻馏分(主要包括石脑油沸点温度范围材料)在重整器中进行加工以产生氢气。重馏分(包括柴油加沸点温度范围的材料)被送入高苛刻度流化催化裂化(HS‑FCC)工艺,以产生轻质烯烃和其他进一步加工用于芳烃生产的液态烃流。产生的重质渣油流在气化器中进行加工以产生合成气,而在与其他烃反应以产生其他有用的化学产物之前,分离和捕获所述工艺中产生的一氧化碳和二氧化碳。
[0013] 本公开的实施方案消除了对用于有意产生烯烃、芳烃和氢气的精炼流的严格原料要求,同时最小化或消除了二氧化碳和一氧化碳排放。烃重整和流化催化裂化的协同组合使原油能够直接裂化和转化,作为其他烃原料(如凝析油)的补充或替代。因此不需要预处理(例如将原油分馏成若干馏分)以获得用于产生烯烃、芳烃和氢气的液态烃进料,例如,预处理如产生石脑油或处理原油馏分如真空瓦斯油以产生蜡油
[0014] 作为其他烃源(如气体凝析油)的补充或替代,本文公开的实施方案有利地使从原油中生产的烯烃、芳香族石油化学产品和氢气产量最大化,而不是产生汽油或柴油作为最终产物、或产生总的产出产物合计小于约10重量%或小于约5重量%的汽油和柴油作为最终产物。集成配置允许将大于约80重量%、或大于约90重量%、或大于约95重量%的原油转化为烯烃、芳香族石油化学产品、氢气和其他有用的提质化学品,同时最小化或消除CO2排放足迹。现有技术的系统和工艺没有解决原油馏分在下流式反应器配置中的直接裂化以产生轻烯烃和H2。
[0015] 因此,本文公开了烃分离和提质的方法,一种方法包括将入口烃流分离成包含石脑油沸点温度范围材料的轻馏分和包含柴油沸点温度范围材料的重馏分;由轻馏分产生包含H2和CO的合成气;使由轻馏分产生的CO通过至少一种选自以下的反应进行反应:羰基化、聚合和水煤气变换;从重馏分产生并分离CO2、聚合级乙烯、聚合级丙烯、C4化合物、包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物、轻循环油和重循环油;收集和纯化重馏分产生的CO2;加工C4化合物以产生烯烃低聚物和链烷烃残余液,链烷烃残余液用于产生氢气;将包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物分离成包含C5和C6烯烃的轻馏分石脑油流和包含芳烃化合物的芳烃流;低聚所述轻馏分石脑油流;对芳烃流进行加氢处理;
对轻循环油进行加氢裂化以产生单芳烃产物流;气化重循环油以产生氢气、CO和CO2;通过至少一种选自以下的反应使重循环油气化产生的CO反应:羰基化、聚合和水煤气变换;收集和纯化重循环油气化产生的CO2;将产生的芳烃化合物加工分离成苯和对二甲苯。
[0016] 在一些实施方案中,入口烃流包含至少一种选自以下的组分:原油和气体凝析油。在其他实施方案中,汽油和柴油不是该方法的最终产物,或者以小于该方法最终产物的10重量%或小于5重量%的量生产。在一些实施方案中,在该方法中产生的按质量计大于约90重量%的CO2和按质量计大于约90重量%的CO被捕获并进一步加工成其他化合物。
[0017] 该方法的其他实施方案还包括收集和纯化在由轻馏分产生包含H2和CO的合成气的步骤期间产生的CO2的步骤。一些实施方案包括在选自以下的至少一种工艺中处理至少一部分产生的CO2的步骤:干重整;蒸汽重整和加氢。其他实施方案包括处理至少一部分产生的CO2以产生至少一种选自以下的产物的步骤:合成燃料;包含H2和CO的合成气;和烯烃。在其他实施方案中,分离入口烃流的步骤包括使用至少一种选自以下的单元:闪蒸罐、基于蒸馏的分离单元和旋式汽‑液分离单元。在某些其他实施方案中,使轻馏分产生的CO反应和使重循环油气化产生的CO反应的步骤包括通过丁二烯的羰基化产生己二酸的步骤。
[0018] 在又一些实施方案中,由轻馏分产生包含H2和CO的合成气的步骤包括使用选自以下的至少一个单元:蒸汽重整单元、部分氧化单元和自热重整单元。在其他实施方案中,由重馏分进行生产的步骤使用包括下流式反应器的高苛刻度流化催化裂化系统进行。在其他实施方案中,在该方法中产生的一部分H2在内部用于加氢处理。在其他实施方案中,轻循环油的加氢裂化步骤包括加氢裂化和重整反应。其他实施方案包括通过烷基转移处理单芳烃产物流以将甲苯和C9‑C11芳烃转化为苯和混合二甲苯的步骤。在一些实施方案中,由重馏分产生的CO2包括由在催化裂化系统的再生器中燃烧的焦炭产生的CO2。在又一些实施方案中,由重馏分产生的重循环油的至少一部分用于为该方法提供能量
[0019] 在该方法的一些实施方案中,由轻馏分产生包含H2和CO的合成气的步骤还包括从至少一种包含饱和C1至C4化合物的流中产生氢气。在又一些实施方案中,将产生的芳烃化合物加工并分离成苯和对二甲苯的步骤还产生重芳烃,其再循环至加氢裂化轻循环油或气化重循环油的步骤。
[0020] 这里还公开了用于烃分离和提质的系统,一个系统包括入口烃流;进料入口分流器,其能够将入口烃流分离成包含石脑油沸点温度范围材料的轻馏分和包含柴油沸点温度范围材料的重馏分;氢气产生单元,其能够从轻馏分产生包含H2和CO的合成气;碳反应单元,其能够地使由轻馏分产生的CO通过至少一种选自以下的反应进行反应:羰基化、聚合和水煤气变换;高苛刻度流化催化裂化(HS‑FCC)单元,其能够从重馏分中产生CO2、聚合级乙烯、聚合级丙烯、C4化合物、包含石脑油沸点温度范围产物与烯烃和芳烃的裂化产物、轻循环油和重循环油;CO2收集和加工单元,其能够收集和纯化从重馏分产生的CO2;低聚单元,其能够加工C4化合物以产生烯烃低聚物和链烷烃残余液,链烷烃残余液用于在氢气产生单元中产生氢气;裂化石脑油分流器,其能够将包含石脑油沸点温度范围产物的裂化产物与烯烃和芳烃分离成包含C5和C6烯烃的轻馏分石脑油流和包含芳烃化合物的芳烃流,其中低聚单元能够将轻馏分石脑油流低聚;重石脑油选择性加氢处理单元,其能够对芳烃流进行加氢处理;循环油加氢裂化单元,其能够对轻循环油进行加氢裂化以产生单芳烃产物流;气化器单元,其能够气化重循环油以产生氢气、CO和CO2,其中碳反应单元能够通过至少一种选自以下的反应使得由气化重循环油产生的CO反应:羰基化、聚合和水煤气变换,其中CO2收集和加工单元能够收集和纯化由重循环油气化产生的CO2;以及芳烃抽提单元,其能够将产生的芳烃化合物加工并分离成苯和对二甲苯。
[0021] 在一些实施方案中,入口烃流包含至少一种选自以下的组分:原油和气体凝析油。在其他实施方案中,汽油和柴油不是系统的最终产物,或者小于系统最终产物的约5重量%或小于约10重量%。在其他实施方案中,系统中产生的按质量计大于约90重量%的CO2和按质量计大于约90重量%的CO被捕获并进一步加工成其他化合物。仍然在其他实施方案中,CO2收集和加工单元能够收集和纯化从氢气产生单元产生的CO2。在某些实施方案中,该系统包括CO2转化单元,其能够在选自以下的至少一种工艺中使得CO2反应:干重整;蒸汽重整;和加氢。在其他实施方案中,该系统包括CO2转化单元,其能够加工所产生的CO2的至少一部分以产生至少一种选自以下的产物:合成燃料;包含H2和CO的合成气;和烯烃。
[0022] 在该系统的其它实施方案中,进料入口分流器包括至少一个选自以下的单元:闪蒸罐、基于蒸馏的分离单元和旋风式汽‑液分离单元。在一些其他实施方案中,碳反应单元能够通过丁二烯的羰基化使CO反应以产生己二酸。在一些其他实施方案中,氢气产生单元包括选自以下的至少一个单元:蒸汽重整单元、部分氧化单元和自热重整单元。
[0023] 在一些实施方案中,HS‑FCC单元包括下流式反应器。仍然在其他实施方案中,系统中产生的一部分H2在内部用于加氢处理。在又一些实施方案中,循环油加氢裂化单元包括加氢裂化和重整反应。在其他实施方案中,芳烃抽提单元包括选自以下中的至少一个单元:苯抽提单元、甲苯加C9‑C11烷基转移单元、二甲苯异构化单元和对二甲苯抽提单元。该系统的一些实施方案包括催化剂再生器以从催化剂中去除焦炭。在其他实施方案中,由重馏分产生的重循环油的至少一部分用于向系统提供能量。仍然在其他实施方案中,氢气产生单元包括包含饱和C1至C4化合物的进料。并且在其他实施方案中,在芳烃抽提单元中产生的重芳烃再循环至循环油加氢裂化单元或气化器单元。
附图说明
[0024] 本公开的这些和其他特征、方面和优点将通过以下描述、权利要求和附图得到更好的理解。然而,需要注意的是,附图仅说明了本公开的若干实施方案,因此不应被认为是对本公开范围的限制,因为它可以承认其他同样有效的实施方案。
[0025] 图1是表示用于将原油直接转化为石油化学产品(不包括作为最终产物的汽油和柴油)和氢气,同时具有减少或消除的二氧化碳和一氧化碳排放的系统和工艺的一个实施方案的示意图。

具体实施方式

[0026] 从而可以更详细地理解用于将原油直接转化为石油化学产品(不包括汽油和柴油)和H2,同时具有减少或消除的二氧化碳和一氧化碳排放的系统和方法的实施方案的特征和优点的方式,通过参考本发明的实施方案,可以得到对前面简要概括的本公开的实施方案进行更具体的描述,这些实施方案在构成本说明书的一部分的附图中示出。然而,需要注意的是,附图仅说明了本公开的各种实施方案,因此不应被认为是对本公开范围的限制,因为它还可以包括其他有效的实施方案。
[0027] 首先参考图1,示意图显示了用于将原油直接转化为石油化学产品(不包括作为最终产物的汽油和柴油)和H2,同时具有减少或消除的二氧化碳和一氧化碳排放的系统和方法的一个实施方案。在图1的实施方案中,减少排放的原油加工系统100包括进料入口分流器102、氢气产生单元104、高苛刻度流化催化裂化(HS‑FCC)单元106、气化器单元108、循环油加氢裂化单元110、碳反应单元112以例如在聚合或羰基化反应中使得作为二氧化碳的补充或替代的一氧化碳反应、低聚单元114、裂化石脑油分流器116、重石脑油选择性加氢处理单元118、芳烃抽提单元120(也称为芳烃回收单元)、CO2收集和加工单元122和CO2转化单元124。减少排放的原油处理系统100的结果包括增加的烯烃、芳烃和氢气的产量以及增加的CO2捕获、转化和封存。在图1的实施方案中,汽油和柴油不是作为最终产物产生的,一氧化碳和二氧化碳被捕获和加工,而不是排放到大气中。
[0028] 烃进料流126可以包括原油(例如全原油)作为长沸程冷凝物的补充或替代,其中一种或两种可以在没有或缺乏预处理(例如,加氢处理)的情况下输送到进料入口分流器102。进料入口分流器102分离烃进料流126以获得轻馏分流128和重馏分流130。例如,进料入口分流器102可以包括闪蒸罐、基于蒸馏的分离单元或旋风汽‑液分离单元中的任何一种或其组合。
[0029] 轻馏分流128包括轻烃馏分,并且主要由沸点范围低于约180℃、低于约250℃或低于约370℃的石脑油沸点温度范围材料构成。重馏分材料通常具有大于约180℃、大于约250℃或大于约370℃的沸点范围。在一些实施方案中,轻馏分流128包括超过约50重量%、超过约70重量%、超过约90重量%或超过95重量%的石脑油沸点温度范围材料。轻馏分流128进入氢气产生单元104,该氢气产生单元104可包括蒸汽重整单元、部分氧化单元和自热重整单元中的任何一种或其组合。来自氢气产生单元104的两种产物是氢气流132中的氢气和一氧化碳流134中的一氧化碳(H2和CO生产被称为合成气)。在一些实施方案中,氢气生产单元104产生在约40摩尔%和约60摩尔%之间(例如约50摩尔%)的H2,产生在约30摩尔%和约
50摩尔%之间(例如约40摩尔%)的CO2,产生在约2摩尔%和约3摩尔%之间的CO,并产生在约7摩尔%和约8摩尔%之间的CH4。氢气产生单元104可以包括一个或多个反应器单元,该反应器单元能够对产生的CO进行水煤气变换以产生额外的氢气和CO2。
[0030] 在一氧化碳流134中产生的一氧化碳可以进一步与H2分离(例如通过变压吸附),然后通过水煤气变换反应与水反应,以产生更多的氢气和二氧化碳(未图示),作为输送到碳反应单元112的补充或替代以用于聚合(例如至聚羰基)或羰基化反应,例如通过丁二烯的羰基化生产己二酸。未转化的烃流136将未转化的石脑油型烃化合物再循环到氢气产生单元104以最大化合成气(H2和CO)的产率。
[0031] 氢气产生单元104产生二氧化碳作为二氧化碳流138中的副产物,二氧化碳流138进入CO2收集和加工单元122以使用CO2分离膜、溶剂、吸附剂、变压吸附或任何其他纯化操作或其组合进一步纯化和分离。来自CO2收集和加工单元122的流139中的分离和纯化的CO2可以再循环回到氢气产生单元104并且可以与(例如)蒸汽重整器或干重整器一起使用以进一步提高烃利用率。分离和纯化的CO2作为补充或替代可以通过CO2流140进入碳反应单元112以产生化学品,例如多元醇,从而产生碳封存化学产物流142。分离和纯化的CO2可以作为补充或替代通过流144进入CO2转化单元124。
[0032] 在一些实施方案中,来自CO2收集和加工单元122的两种产物包括氢气和CO2以及小体积百分比的CO,例如小于30体积%、小于20体积%或小于10体积%。CO可以如关于碳反应单元112所讨论的被进一步处理,主要通过羰基化反应。CO2最终被输送到CO2转化单元124。来自氢气产生单元104的氢气是用于该工艺中的内部消耗的产物以及作为产物出口以用于运输或其他行业的潜在用途。CO2主要被输送到CO2转化单元124,并且通过羰基化反应进一步转化CO。CO2用于通过聚合产生增值产物或通过干重整反应产生合成气,并进一步用于二甲醚(DME)或烯烃生产。
[0033] 作为C4H10的补充或替代,CO2转化单元124可以通过用较轻的烃类(例如CH4、C2H6、C3H8)重整来转化CO2,通过流146进入干重整工艺,或CO2转化单元124可以使用经由流148进入的蒸汽通过蒸汽重整来转化CO2。流150中产生的合成气(H2和CO)可以用作产生化学品或合成燃料的原料(未图示)。作为补充或替代,CO2可以在CO2转化单元124中使用氢气流152进行氢化,氢气流152可以包括通过流154转移的氢气流132的一部分,或者可以包括来自通过流156转移的来自流150的合成气的可再生氢气。CO2转化单元124可以提供合成燃料作为合成气(流150)的补充或替代产物(例如,通过加氢得到的二甲醚作为甲醇的补充或替代),具有减少的碳足迹
[0034] 重馏分流130包括重烃馏分,主要由柴油加沸点温度范围材料组成,其进入HS‑FCC单元106。例如,重馏分流130包括沸点高于约180℃、高于约220℃或高于约370℃的重质组分。在一些实施方案中,重馏分流130包括超过约30重量%、超过约50重量%、超过约70重量%、超过约90重量%或超过95重量%的沸点高于约180℃的柴油加沸点温度范围材料。在未图示的其他实施方案中,重馏分流130可以分成两个馏分:柴油沸点温度范围馏分和常压渣油沸点温度范围馏分,它们被送到双下行管式裂化反应器系统的两个单独的裂化反应器或提升管式裂化反应器和下行管式裂化反应器的组合。HS‑FCC单元106包含在流160中产生聚合级乙烯和在流162中产生聚合级丙烯的单元。HS‑FCC单元106可以包括下流式反应器或一系列下流式反应器。
[0035] 在HS‑FCC单元106中,超过约20重量%、超过约30重量%、或超过约50重量%的柴油加沸点温度范围材料可以转化为其他有用的化学品。适用于HS‑FCC 106的示例单元和合适的示例温度、压、催化剂和操作条件描述于例如美国专利5,000,000中,Bourane等人。
[0036] 来自HS‑FCC单元106的产物流164包括来自催化裂化工艺的混合C4化合物,在所示的实施方案中,其进入低聚单元114。低聚单元114产生至少两种产物:烯烃低聚物,其经由流166返回HS‑FCC单元106以使流162中的丙烯产率最大化;流168中的富链烷烃残余液在芳烃抽提单元120中分离芳烃后,通过经由流170进入氢气生产单元104。混合C4化合物包括饱和正C4化合物、异C4化合物和烯属1‑丁烯、异‑丁烯、顺式丁烯、反式丁烯和痕量的丁二烯。
[0037] 用于单元114的低聚工艺的适当示例包括但不限于Axens Solutions(总部位于法TM国Rueil‑Malmaison)的Polynaphtha 间接烷基化工艺,用于通过低聚C3/C4馏分中含有的轻烯烃将低价值C3/C4馏分提质为汽油和中间馏分。原料选择包括存在于来自裂化工艺的C3和C4馏分(包括烯烃C3和C4馏分)中的丙烯和混合丁烯馏分(或组合)。烯烃低聚物和富链烷烃残余液则主要包括C8烯烃和链烷烃化合物,例如大于50重量%、大于75重量%或大于90TM
重量%。Polynaphtha 工艺提供了几乎完全的轻烯烃转化率,例如大于70%、大于80%或大于90%。
[0038] 流172包括来自HS‑FCC单元106的在石脑油沸点温度范围内的催化裂化产物,并且可以富含烯烃和芳烃两者。在一些实施方案中,例如,流172可以包括在约1重量%至约5重量%之间的干气,主要是甲烷;在约30重量%至约50重量%之间的C2‑C4烯烃;在约30重量%至约50重量%的石脑油;在约2重量%至约15重量%之间的轻循环油;和在约1重量%至约5重量%之间的重循环油。在本文所述的实施方案中,重循环油可以包括在350℃和更高沸程内的那些循环油,轻循环油包括在约200℃或220℃至约350℃的沸程内的那些循环油,而石脑油可包括沸程在约180℃至约200℃或约220℃之间的范围内的化合物。
[0039] 流172进入裂化石脑油分流器116以进一步分离成两个流。轻馏分石脑油流174包括含有C5和C6烯烃的轻馏分石脑油,其适用于低聚并因此被输送至低聚单元114。重芳烃流176包括重芳烃化合物,其适用于抽提并最终在来自芳烃抽提单元120的流178中产生苯和在流180中产生对二甲苯。重芳烃流176在芳烃抽提单元120中抽提芳烃之前在重石脑油选择性加氢处理单元118中选择性加氢处理,因为芳烃抽提通常需要低的氮和硫浓度的进料。
加氢处理的石脑油流177由重石脑油选择性加氢处理单元118产生。氢流179可以由在减少排放的原油加工系统100中合成气产生期间产生的氢内部供应,并且氢流179中的氢可以外部供应作为补充或替代。
[0040] HS‑FCC单元106产物流182包括从HS‑FCC单元106产生的轻循环油,该轻循环油进入循环油加氢裂化单元110。循环油加氢裂化单元110包括加氢裂化和重整反应的组合以使单芳烃的量最大化作为流184中的产物,将其输送至芳烃抽提单元120。流184中的单芳烃已经过加氢处理,因此流184不需要像流176那样通过重石脑油选择性加氢处理单元118进一步去除硫和氮。在一个实施方案中,循环油加氢裂化单元110的配置包括全转化加氢裂化器和随后的催化重整器。另一种合适的配置包括全转化加氢裂化器,然后是脱氢和烷基转移反应单元。在一些实施方案中,循环油加氢裂化单元110与芳烃抽提单元120集成。通常,芳烃抽提单元120将包括烷基转移单元以将甲苯和C9‑C11芳烃转化为苯和混合二甲苯。
[0041] HS‑FCC单元106产物流186包括由燃烧裂化反应中产生的焦炭产生的CO2。焦炭在催化裂化系统(未图示)的再生器中燃烧,为HS‑FCC单元106的进料汽化、维持操作温度和吸热裂化反应提供能量。流186进入CO2收集和加工单元122进行分离和纯化,然后进入碳反应单元112,作为CO2转化单元124的补充或替代、作为氢气产生单元104的补充或替代,以进一步转化成有用的化学产物。
[0042] HS‑FCC单元106产物流188包括比流182中的轻循环油更重的沸点范围材料,称为重循环油和浆料。在一些实施方案中,将全部或部分流188再循环回HS‑FCC单元106以进一步经由流190加工。在一些实施方案中,取决于HS‑FCC单元106的进料特性和操作条件,在裂化反应中形成焦炭反应将无法提供足够的能量来满足工艺的所有要求。在这种情况下,流190可以提供替代的热能源。流190在催化裂化系统中可称为火炬油。流190可连续注入HS‑FCC单元106的汽提流部分。
[0043] 在其他实施方案中,将全部或部分流188送至气化器单元108以转化为合成气,包括氢气流192和一氧化碳流194。流196包括来自芳烃抽提单元120的所得重芳烃(例如C9+、C10+、C11+或C12+化合物)并且也被输送到气化器单元108。作为补充或者替代,所有或部分流196可以通过流197输送到循环油加氢裂化单元110。在气化器单元108中产生的焦炭将被燃烧以在流198中产生额外的二氧化碳,该二氧化碳被CO2收集和加工单元122分离和捕获,例如在CO2收集和加工单元122中使用胺吸收,并且分离和纯化的CO2可以进入碳反应单元112作为CO2转化单元124的补充或替代、氢气生产单元104的补充或替代,以进一步转化为合成燃料或合成气。类似地,一氧化碳流194进入碳反应单元112。
[0044] 气化器或气化单元可以是集成单元,其包括反应器、空气分离单元、合成气骤冷和冷却装置、变换反应器、酸性气体去除和回收装置以及氢气回收装置。反应区可以包括移动床、流化床或气流床系统。气化器可以在高于约800℃的温度和10巴或更高的压力下操作。来自FCC系统和工艺的重质渣油可以是用于合成气生产的合适原料,并且在气化器中产生的焦炭可以部分或全部燃烧以产生一氧化碳或二氧化碳。
[0045] 至氢气产生单元104的进料流200包括由其他单元产生的饱和C1至C4流中的任一种或其组合(例如来自HS‑FCC单元106、气化器单元108、循环油加氢裂化单元110、低聚单元114、裂化石脑油分流器116、重石脑油选择性加氢处理单元118和芳烃抽提单元120)。进料流200也可以含有氢气和甲烷。在进入氢气产生单元104之前,进料流200可以进入变压吸附(PSA))单元(未图示)。PSA单元可以分离氢气以用于(例如)重石脑油选择性加氢处理单元
118,作为需要氢气作为输入的其他单元的补充或替代。分离的甲烷进入氢气产生单元104。
[0046] 重石脑油选择性加氢处理单元118处理流176以去除污染物并产生流177,该流177进入芳烃抽提单元120。流176中所含的硫和氮被去除,因为它们是芳烃抽提单元120中使用的一些催化剂的污染物。流177中剩余的烯烃在芳烃抽提单元120中的芳烃抽提之前被完全氢化或以其他方式除去。芳烃抽提单元120可以包括选择性加氢处理以保持所需芳烃的含量用于回收。
[0047] 循环油加氢裂化单元110包括加氢裂化和重整反应的组合,使流184中单芳烃的量最大化,该流184被输送到芳烃抽提单元120。如果循环油加氢裂化单元110的加氢裂化产物不是完全转化的加氢裂化产物并且包含一些沸程高于石脑油的产物,作为气化器单元108的补充或替代,所有或部分的流184可被输送并再循环至HS‑FCC单元106(未图示)。
[0048] 芳烃抽提单元120进行芳烃抽提,在流178中产生苯并在流180中产生对二甲苯。在一些实施方案中,芳烃抽提单元120可以包括苯抽提单元、甲苯加C9‑C11烷基转移单元(作为歧化的补充或替代的脱烷基化)、二甲苯异构化单元(含或不含乙苯脱烷基化催化剂)和对二甲苯抽提单元中的任何一种或其任意组合。芳烃抽提单元120的副产物包括富链烷烃残余液流170,其被输送至氢气生产单元104,以及包括所得重芳烃(例如C9+、C10+、C11+或C12+化合物)的流196,其经由流196被输送至气化器单元108,用于作为通过流197用于加氢裂化的循环油加氢裂化单元110的补充或替代的合成气生产。
[0049] 为了清楚起见,已经省略了配置所需但为本领域普通技术人员理解的一些流和单元。这些流和单元可以被认为属于辅助操作。例如,H2S通常在循环油加氢裂化单元110和发生加氢处理反应的重石脑油选择性加氢处理单元118中产生。循环油加氢裂化单元110和重石脑油选择性加氢处理单元118需要补充氢气,作为气化器单元108的补充或替代,氢气来源可以是氢气产生单元104。除了未图示的边界外限制单元之外,如本领域普通技术人员所理解的,在需要的地方可以应用其他的单元,例如胺回收单元、酸性水汽提塔和尾气处理单元。虽然图1中的技术被表示为单独的单元,但任何单元都可以包括多个串联或并联工作的容器、工艺和单元,具体取决于不同的输入和所需的产品。在一些实施方案中,在图1中作为分离的单元图片实际上可以被组合。
[0050] 在未图示的其他实施方案中,烃进料流126可包括首先预处理的重原油,例如,通过加氢处理或超临界水提质中的任何一种或任意组合进行预处理。令人惊讶和意想不到地,本公开的实施方案提供了原油的催化裂化(作为凝析油的补充或替代),而无需任何先前的预处理(例如加氢处理)并且具有最少的分离。一氧化碳和二氧化碳的系统和工艺几乎没有碳足迹,因为系统和工艺中产生的一氧化碳和二氧化碳被捕获和转化,或被输送用于封存。
[0051] 从重整步骤产生的合成气(包括H2和CO)可以进一步与H2O反应以通过水煤气变换步骤产生额外的H2和CO2,其中CO与蒸汽反应产生H2和CO2。产生的氢气可以使用变压吸附、溶剂系统或通过氢气选择性膜进行纯化,以分离出纯的氢气产物。分离出来的CO2可以通过转化为高价值化学品、聚合物来重新用于各种应用,或用于通过进一步纯化来提高采油率的应用。
[0052] CO2可以再循环回到重整反应器,或者CO2可以通过干重整反应与CH4反应以产生具有合适的H2与CO比的额外合成气,用于二甲醚生产,其随后可以转化为烯烃和其他高价值化学品或石油化学原料。
[0053] 本文公开的实施方案消除了用于烯烃、芳烃和氢气的专用生产的精炼流对原料的依赖性。系统和方法(例如减少排放的原油加工系统100)最大限度地从原油和凝析油源产生烯烃和芳烃,同时消除了燃料如石脑油、汽油和柴油的最终产生。通过分离、捕获和转化为有价值的化学品来减少或消除二氧化碳和一氧化碳的排放。使用液态烃进料以优化的方式实现无CO2制氢。
[0054] 烃重整和流化催化裂化的协同组合能够实现原油和凝析油的直接裂化和转化。在本公开的实施方案中不需要将原油分馏成若干馏分,例如产生石脑油或处理原油馏分(如真空瓦斯油)以产生蜡油,从而为烯烃、芳烃和氢气的生产提供可用的液体原料。
[0055] 集成配置允许将大于约80重量%、或大于约90重量%、或大于约95重量%的原油转化为烯烃、芳族石油化学产品、其他有价值的化学品和氢气,并减少或消除排放到大气中的CO2和CO。
[0056] 本文的实施方案公开了直接催化裂化原油(作为凝析油的补充或替代),以及在下流式反应器中的催化裂化、烃的重整和气化之间的工艺集成,旨在最大化烯烃、芳烃和氢气的产量并且最小化或消除CO2排放。
[0057] 在本文的实施方案中用于加工的原油进料和其他烃进料在被加工用于化学品生产之前不需要分馏或提质。通过昂贵且能源密集的炼油厂加工步骤获得的最终馏分产物(如石脑油、煤油和瓦斯油)在这里不需要作为输入。汽油和柴油等燃料在这里不与氢气、烯烃和芳烃共同产生为最终产物。
[0058] 某些实施方案协同地组合了用于氢气生产和最小化或消除CO2的双下行管式FCC技术和工艺集成,并且作为凝析油的补充或替代的原油可以用作原料以使烯烃和氢气产量最大化,同时使CO2和燃料产量最小化。
[0059] 单数形式的“一个(a或an)”和“所述(the)”包括复数指示物,除非上下文另有明确规定。当用于值或范围时,词语“约”是指包括给定值或范围的正负5%的值。
[0060] 本领域普通技术人员将理解,附图中未示出的诸如压缩机、温度和压力传感器和其他部件的标准部件将可用于本公开的系统和方法的应用中.
[0061] 在附图和说明书中,已经公开了本公开的示例实施方案,并且尽管使用了特定术语,但这些术语仅用于描述性意义而不是出于限制的目的。具体参照这些示例性实施方案,已经相当详细地描述了本公开的实施方案。然而,显而易见的是,可以在如前述说明书中描述的本公开的精神和范围内进行各种修改和改变,并且这些修改和改变将被视为等同方式和本公开的一部分。
QQ群二维码
意见反馈