一种近红外光控双稳态场效应晶体管聚合物及其制备方法与应用

申请号 CN202010118848.X 申请日 2020-02-26 公开(公告)号 CN111187399B 公开(公告)日 2021-03-05
申请人 中国科学院化学研究所; 发明人 张德清; 田健吾; 刘子桐; 张关心; 张西沙;
摘要 本 发明 公开了一种 近红外 光控双稳态 场效应晶体管 聚合物 及其制备方法与应用。本发明聚合物的结构式如式Ⅰ所示:其式I中,Ar选自芳基、杂芳基、含有取代基的芳基和含有取代基的杂芳基中的任意一种,且其基团内部的键合方式选自单键、双键和三键中的至少一种;Fc选自杂芳基偶氮苯、二芳基乙烯以及含有取代基的杂芳基偶氮苯、二芳基乙烯中的任意一种。其制备方法通过 碳 碳偶联反应得到聚合物。本发明聚合物应用于制备场效应器件中,具体为近红外光控双稳态场效应晶体管。本发明利用 侧链 工程,在共轭聚合物侧链中引入了一定比例的响应性基团,结合上转换 纳米粒子 层的修饰,实现了利用600‑1500nm近红外光调控的快速,高效,稳定的场效应晶体管器件。
权利要求

1.一种聚合物,其结构式如式Ⅰ所示:
所述式I中,R1和R2均选自C1-C50的直链或支链烷基、C1-C50的烷基、C7-C50的芳烷基和C5-C50的杂烷基中的任意一种;Ar选自芳基、杂芳基、含有取代基的芳基和含有取代基的杂芳基中的任意一种,且其基团内部的键合方式选自单键、双键和三键中的至少一种;x:y为1:5~33;其中,所述杂烷基中的杂原子为氧、硫和硒中的至少一种,所述杂原子取代个数为1~10;Fc为
2.根据权利要求1所述的聚合物,其特征在于:所述式I中,R1和R2均选自C1-C50的烷基,且R1和R2相同;x:y为1:5;
所述Ar中,所述芳基选自单环芳基、双环芳基和三环芳基中的任意一种;
所述杂芳基选自单环杂芳基、双环杂芳基和三环杂芳基中的任意一种,所述杂芳基中的杂原子选自氧、硫和硒中的至少一种;
所述含有取代基的芳基和含有取代基的杂芳基中,所述取代基为C1-C50的烷基、C1-C50的烷基硫代、C1-C50的烷基羰基、酰氧基、腈基和C1-C50的烷氧基中的任意一种,所述取代基的个数为1~4的整数;
3.根据权利要求1所述的聚合物,其特征在于:所述式I中,R1和R2均选自C8-C30的烷基,且R1和R2相同;
所述Ar选自如下结构式a~u中的任意一种:
上述Ar中,R均选自氢、C1-C50的烷基和C1-C50的烷氧基中的任意一种。
4.权利要求1-3中任一项所述的聚合物的制备方法,包括如下步骤:a)在惰性气氛存在下,将式Ⅱ所示化合物、式III所示化合物和式IV所示化合物在有机溶剂中进行碳偶联反应,所述碳碳偶联反应结束后,将上述反应体系中加入苯基试剂和卤苯进行取代反应,即得到所述式Ⅰ所示化合物;
所述式Ⅱ、III、IV中,Fc、R1、R2和Ar与所述式I中的相同,Y为三烷基锡基或酸酯基。
5.根据权利要求4所述的制备方法,其特征在于:所述惰性气氛的气体为氮气;
所述催化剂由钯催化剂和膦配体组成,其中,所述钯催化剂选自四(三苯基膦)钯、三(二亚苄基丙)二钯和双(1,4-联苯膦)丁基二氯化钯中的至少一种;所述膦配体选自三苯基膦、邻三甲苯基膦、三(2-呋喃基)膦和2-(二叔丁基磷)联苯中的至少一种;
所述式Ⅱ所示化合物、所述式III所示化合物、式IV所示化合物、所述钯催化剂和所述膦配体的摩尔比为1:2~50:2~60:0.04~1.20:0.32~9.6;
所述碳碳偶联反应的反应温度为90~110℃,反应时间为24~96h;
所述有机溶剂选自甲苯、N,N-二甲基甲酰胺和氯苯中的至少一种;
所述苯基锡试剂选自三甲基苯基锡和/或三丁基苯基锡;
所述卤苯选自溴苯、氯苯和碘苯中的至少一种;
所述式Ⅱ所示化合物、所述苯基锡试剂和所述卤苯的摩尔比为1:2~50:4~100;
所述取代反应的反应温度为90~100℃,反应时间为3~12h;
所述取代反应的过程为先将所述体系和所述苯基锡试剂混合进行反应,再向其中加入所述卤苯进行反应;
所述取代反应后还包括如下处理的步骤:将所述取代反应后的体系与甲醇混合,过滤得固体;然后将所述固体依次用甲醇、正己烷和丙酮清洗,取清洗后的固体;最后,所述清洗后的固体用氯仿提取目标产物,并将溶有目标产物的氯仿和甲醇混合,抽滤所得固体,即为式Ⅰ所示聚合物。
6.一种化合物,其结构式如式Ⅱ所示:
所述式Ⅱ中,Fc为
7.权利要求6所述的化合物的制备方法,包括如下步骤:将式V所示化合物和含Fc基团化合物在溶剂中进行亲核取代反应,得到式II所示化合物;
所述式V中,A选自F、Cl、Br和I中的任意一种;所述含Fc基团化合物中Fc为
8.根据权利要求7所述的制备方法,其特征在于:所述式V所示化合物和所述含Fc基团化合物中Fc基团的摩尔比为1:2~50;
所述亲核取代反应的反应温度为60~80℃,反应时间为2~6h;
所述溶剂为DMF。
9.权利要求1-3中任一项所述聚合物在制备场效应器件中的应用。
10.根据权利要求9所述的应用,其特征在于:所述场效应器件包括场效应晶体管
11.根据权利要求10所述的应用,其特征在于:所述场效应晶体管为近红外光控双稳态场效应晶体管。
12.一种场效应器件,由包括权利要求1-3中任一项所述聚合物制成的薄膜并在其上引入上转换纳米粒子后制成。
13.权利要求12所述场效应器件的制备方法,包括如下步骤:将权利要求1-3中任一项所述聚合物与所述上转换纳米粒子分别溶于有机溶剂1和有机溶剂2,然后依次在衬底上进行旋转涂抹,得到半导体聚合物薄膜,然后制成所述场效应器件。
14.根据权利要求13所述的制备方法,其特征在于:所述有机溶剂1选自氯仿、邻二氯苯、1,1,2,2-四氯乙烷和甲苯中的至少一种,所述有机溶剂2选自正己烷、正辛烷和四氢呋喃中的至少一种;
所述上转换纳米粒子直径为5~50nm;
所述上转换纳米粒子的浓度为0.01mg/mL~5mg/mL。

说明书全文

一种近红外光控双稳态场效应晶体管聚合物及其制备方法与

应用

技术领域

[0001] 本发明涉及一种近红外光控双稳态场效应晶体管聚合物及其制备方法与应用,属于聚合物材料领域。

背景技术

[0002] 相比于无机半导体有机半导体材料具有易于调控,制备工艺简单,成本低廉,并且可以大面积制备有机柔性电路等特点。
[0003] 有机半导体器件主要包括有机发光二极管(OLEDs)、有机场效应晶体管(OFETs)及有机太阳能电池(OPVs)等。目前,有机发光二极管已经在一些小型设备中得到应用,如移动电话、掌上型电脑及数码相机等,而有机场效应晶体管和有机太阳能电池正在向产业化迈进。有机场效应晶体管具有制备工艺简单、成本低、重量轻和柔韧性好等特点,可用于智能卡电子商务、电子纸存储器传感器有源矩阵显示器等领域,是有机光电子器件和电路的关键元器件。由此可见,有机场效应晶体管均具有可商业化应用的前景。目前,该类材料发展重点一方面是通过分子的设计与结构优化,进一步提高有机半导体的性能,另一方面是如何制备具有外场调控能的场效应晶体管器件。光作为一种干净、易得的远程调控工具,最近受到了研究人员的广泛关注。该领域目前的许多报道集中在使用紫外-可见光进行调控,取得了一定的成果。然而,紫外光照会影响有机聚合物的稳定性和半导体器件的功能。近红外光作为一种对有机材料和生物体系友好的光源,近年来被广泛应用于光热治疗光声成像等领域中;因此,使用近红外光作为紫外光的替代工具进行调控,是一个好的选择。

发明内容

[0004] 本发明的目的是提供一种近红外光控双稳态场效应晶体管聚合物及其制备方法与应用;本发明利用侧链工程,在共轭聚合物侧链中引入了一定比例的响应性基团(如Fc基团的引入),结合上转换纳米粒子层的修饰,实现了利用600-1500nm近红外光调控的快速,高效,稳定的场效应晶体管器件。
[0005] 本发明提供的一种聚合物,其结构式如式Ⅰ所示:
[0006]
[0007] 所述式I中,R1和R2均选自C1-C50的直链或支链烷基、C1-C50的烷基、C7-C50的芳烷基和C5-C50的杂烷基中的任意一种;Ar选自芳基、杂芳基、含有取代基的芳基和含有取代基的杂芳基中的任意一种,且其基团内部的键合方式选自单键、双键和三键中的至少一种;x:y为1:5~33;其中,所述杂烷基中的杂原子为氧、硫和硒中的至少一种,所述杂原子取代个数为1~10;Fc选自杂芳基偶氮苯、二芳基乙烯以及含有取代基的杂芳基偶氮苯、二芳基乙烯中的任意一种,且其基团内部的键合方式选自单键、双键和三键中的至少一种。
[0008] 上述的聚合物中,所述式I中,R1和R2均选自C1-C50的烷基,且R1和R2相同;x:y为1:5;Fc选自杂芳基偶氮苯和含有取代基杂芳基偶氮苯。
[0009] 上述的制备方法中,所述式I中,R1和R2均选自C8-C30的烷基,且R1和R2相同,具体可均为2-辛基十二烷基。
[0010] 上述的聚合物中,所述Ar中,所述芳基选自单环芳基、双环芳基和三环芳基中的任意一种;
[0011] 所述杂芳基选自单环杂芳基、双环杂芳基和三环杂芳基中的任意一种,所述杂芳基中的杂原子选自氧、硫和硒中的至少一种;
[0012] 所述含有取代基的芳基和含有取代基的杂芳基中,所述取代基为C1-C50的烷基、C1-C50的烷基硫代、C1-C50的烷基羰基、酰氧基、腈基和C1-C50的烷氧基中的任意一种,所述取代基的个数为1~4的整数。
[0013] 上述的制备方法中,所述Ar选自如下结构式a~u中的任意一种:
[0014]
[0015] 上述Ar中,R均选自氢、C1-C50的烷基和C1-C50的烷氧基中的任意一种;最优选为噻吩基、二联噻吩基和并噻吩基中的任意一种。
[0016] 本发明中,所述Ar所示的基团中 表示在式I连接的位置
[0017] 本发明提供的所述式I所示聚合物,具有优良的载流子传输性能以及溶解性能,对600~1500nm近红外光具有快速,稳定的光响应。
[0018] 本发明还提供了上述式Ⅰ所示的聚合物的制备方法,包括如下步骤:在惰性气氛和催化剂存在下,将所述式Ⅱ所示化合物、所述式III所示化合物和式IV所示化合物在有机溶剂中进行碳偶联反应,所述碳碳偶联反应结束后,将上述反应体系中加入苯基试剂和卤苯进行取代反应,即得到所述式Ⅰ所示化合物;
[0019]
[0020] 所述式Ⅱ、III、IV中,Fc、R1、R2和Ar与所述式I中的相同,Y为三烷基锡基或酸酯基。
[0021] 本发明中,所述三烷基锡基具体可为三甲基锡基或三丁基锡基,所述硼酸酯基具体可为1,3,2-二氧杂硼烷-2-基或4,4,5,5-四甲基-1,2,3-二氧杂环戊硼烷-2-基。
[0022] 上述的制备方法中,所述惰性气氛的气体为氮气;
[0023] 所述催化剂由钯催化剂和膦配体组成,其中,所述钯催化剂选自四(三苯基膦)钯、三(三对甲基苯基膦)钯、三(二亚苄基丙)二钯和双(1,4-联苯膦)丁基二氯化钯中的至少一种,具体可为三(二亚苄基丙酮)二钯;所述膦配体选自三苯基膦、邻三甲苯基膦、三(2-呋喃基)膦和2-(二叔丁基磷)联苯中的至少一种,具体可为邻三甲苯基膦;
[0024] 所述式Ⅱ所示化合物、所述式III所示化合物、式IV所示化合物、所述钯催化剂和所述膦配体的摩尔比可为1:2~50:2~60:0.04~1.20:0.32~9.6;
[0025] 所述碳碳偶联反应的反应温度可为90~110℃,优选100℃,反应时间为24~96h,优选为72h;
[0026] 所述有机溶剂选自甲苯、N,N-二甲基甲酰胺和氯苯中的至少一种。
[0027] 上述的制备方法中,所述苯基锡试剂选自三甲基苯基锡和/或三丁基苯基锡;
[0028] 所述卤苯选自溴苯、氯苯和碘苯中的至少一种;
[0029] 所述式Ⅱ所示化合物、所述苯基锡试剂和所述卤苯的摩尔比可为1:2~50:4~100,具体可为1:10:20;
[0030] 所述取代反应的反应温度可为90~100℃,反应时间可为3~12h,优选为6h。
[0031] 上述的制备方法中,所述取代反应的过程为先将所述体系和所述苯基锡试剂混合进行反应,再向其中加入所述卤苯进行反应;此加入顺序的目的在于先对所述碳碳偶联反应得到的聚合物的含溴一端封端,再对另一端含锡试剂端封端;
[0032] 所述取代反应后还包括如下处理的步骤:将所述取代反应后的体系与甲醇混合,过滤得固体;然后将所述固体依次用甲醇、正己烷和丙酮清洗,取清洗后的固体;最后,所述清洗后的固体用氯仿提取目标产物,并将溶有目标产物的氯仿和甲醇混合,抽滤所得固体,即为式Ⅰ所示聚合物。
[0033] 本发明还提供了一种所述式Ⅱ所示化合物:
[0034]
[0035] 所述式Ⅱ中,Fc选自杂芳基偶氮苯、二芳基乙烯以及含有取代基的杂芳基偶氮苯、二芳基乙烯中的任意一种,且其基团内部的键合方式选自单键、双键和三键中的至少一种。
[0036] 上述式Ⅱ所示化合物中,所述Fc具体选自杂芳基偶氮苯和含有取代基杂芳基偶氮苯。
[0037] 本发明还提供了上述式Ⅱ所示的化合物的制备方法,包括如下步骤:
[0038] 将式V所示化合物和含Fc基团化合物在溶剂中进行亲核取代反应,得到式II所示化合物;
[0039]
[0040] 所述式V中,A选自卤素原子,具体选自F、Cl、Br和I中的任意一种;所述含Fc基团化合物中Fc基团选自杂芳基偶氮苯、二芳基乙烯以及含有取代基的杂芳基偶氮苯、二芳基乙烯中的至少一种。
[0041] 上述制备方法中,所述式V所示化合物和所述含Fc基团化合物中Fc基团的摩尔比为1:2~50,优选为1:2.5;
[0042] 所述亲核取代反应的反应温度为60~80℃,具体为60℃,反应时间为2~6h,具体为3h;
[0043] 所述溶剂为DMF。
[0044] 本发明还提供了上述式Ⅰ所示的聚合物在制备场效应器件中的应用。
[0045] 上述的应用中,所述场效应器件包括场效应晶体管;
[0046] 所述场效应晶体管具体为近红外光控双稳态场效应晶体管。
[0047] 本发明还提供了一种场效应器件,由包括上述式Ⅰ所示的聚合物制成的薄膜并在其上引入上转换纳米粒子后制成。
[0048] 本发明进一步提供了上述场效应器件的制备方法,包括如下步骤:将上述式Ⅰ所示的聚合物与所述上转换纳米粒子分别溶于有机溶剂1和有机溶剂2,然后依次在衬底上进行旋转涂抹,得到半导体聚合物薄膜,然后制成所述场效应器件;
[0049] 所述有机溶剂1和有机溶剂2为两种正交溶剂。
[0050] 上述场效应器件的制备方法中,所述有机溶剂1具体选自氯仿、邻二氯苯、1,1,2,2-四氯乙烷和甲苯中的至少一种,所述有机溶剂2具体选自正己烷、正辛烷和四氢呋喃中的至少一种;
[0051] 所述旋转涂抹过程如下:通过控制溶液旋涂的时间、转速、滴液量,依靠衬底旋转时产生的离心力及重力作用,将落在衬底上的溶液液滴全面流布于衬底表面的涂覆过程;所述衬底为本领域公知的常用衬底即可。
[0052] 上述场效应器件的制备方法中,所述上转换纳米粒子直径可为5~50nm;
[0053] 所述上转换纳米粒子的浓度可为0.01mg/mL~5mg/mL,具体可为1mg/mL、0.01mg/mL~1mg/mL、1mg/mL~5mg/mL、0.5mg/mL~2.5mg/mL或0.1mg/mL~3.5mg/mL。
[0054] 本发明具有以下优点:
[0055] 本发明提供的所述式I所示聚合物,具有优良的载流子传输性能以及溶解性能,有利于器件的制备。同时,它对600~1500nm的可见-近红外光具有快速、稳定的光响应能力,避免了常规利用紫外光照射造成的伤害。利用其制备的场效应晶体管,可表现出双稳态电流的输出,且放置100天后依然实现稳定输出,没有电流衰减,有利于实现其在记忆器件、突触型器件、以及人造电子皮肤器件等方面的应用。附图说明
[0056] 图1为所述式Ⅱ所述化合物的制备方法。
[0057] 图2为实施例2中式I所述聚合物的制备流程图
[0058] 图3为实施例2中制备的式I所述聚合物结合上转换纳米颗粒在薄膜状态下的近红外光照条件下的紫外-可见吸收光谱
[0059] 图4为实施例2中制备的式I所述聚合物的循环伏安曲线。
[0060] 图5为实施例2中制备的式I所述聚合物结合上转换纳米颗粒的近红外光照条件下的转移曲线和输出曲线;其中图5(a)为转移曲线,图5(b)为输出曲线。

具体实施方式

[0061] 下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0062] 下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0063] 实施例1、式Ⅱ所示化合物的合成(其式Ⅱ中,R1和R2均为2-辛基十二烷基):
[0064] 化学反应流程图如图1所示,具体反应步骤条件如下:
[0065] 将化合物1(1.28mmol)溶于50mL DMF中,加入化合物2(3.2mmol),60℃下反应3h,停止反应。用旋转蒸发仪除去溶剂,用胶柱分离得到产物3(0.136mmol,产率:10.6%);
[0066] 结构确证数据如下:
[0067] 1H NMR(300MHz,CDCl3)δ8.695(d,J=3.0Hz,2H);8.01-7.97(m,8H);7.24(d,J=3.0Hz,2H);7.02-6.97(m,8H);4.06-3.94(m,8H);3.94-3.92(d,J=6.0Hz,4H);2.55(s,
6H);2.50(s,6H);2.00-1.96(m,2H);1.87-1.74(m,10H);1.55-1.26(m,24H);0.97-0.89(m,
12H).;
[0068] HR-MS:计算值为C66H79Br2N6O6S2(M+):1273.3863,质谱峰位置:1273.3861。
[0069] 由上可知,该产物结构正确。
[0070] 实施例2、式Ⅰ所示三元共聚物的合成(其中,R1和R2均选自2-辛基十二烷基;Ar为2,5-噻吩取代基;当x:y=1:5时,定义聚合物为PDPYA):
[0071] 化学反应流程图如图2所示,PDPYA的具体反应步骤条件如下:
[0072] 将2,5-二(2-辛基十二烷基)-3,6二溴二噻吩吡咯并吡咯二酮(5,0.09812mmol),本发明实施例1中所得化合物3 0.01962mmol和2,5-二三甲基锡噻吩4(0.1178mmol)溶于无甲苯中,吹氮气20min,加入催化剂三(二亚苄基丙酮)二钯0.0021mmol和配体邻三甲苯基膦0.017mmol,继续鼓氮气20min,在氮气保护下,100℃下反应72h,再依次加入三甲基苯基锡1mmol和溴苯2mmol分别反应6h进行封端。冷却至室温,将反应体系倒入100mL甲醇中,析出固体,过滤。将所得固体通过索氏提取器用甲醇、正己烷和丙酮依次除去催化剂、未反应完原料和低聚物,最后用氯仿提出目标产物。再将溶有目标产物的氯仿溶液倒入200mL甲醇中,析出固体,抽滤,得最终产物PDPYA(122.9mg,收率为98%);
[0073] 结构确证数据如下:
[0074] 1HNMR(500MHz,CDCl2CDCl2,100℃):δ8.83(m,br),7.81(m,br),6.98-6.96(m,br),4.27-3.91(m,br),1.98-1.10(m,br),0.94-0.86(m,br).13C NMR(100MHz,solid):δ160.95,
141.34,136.96,128.74,124.37,108.60,45.97,39.73,32.82,30.69,23.74,15.01.[0075] 元素分析:计算值为C361H522N16O16S18:C,73.25;H,8.89;N,3.79;实际值:C,73.16;
H,8.72;N,3.74,由上可知,上述产物结构正确,为式I所示聚合物。
[0076] 实施例3、本发明聚合物的式I所述聚合物结合上转换纳米颗粒在薄膜状态下的近红外光照条件下的紫外-可见吸收光谱:
[0077] 将本发明实施例1-实施例2中制得的聚合物(式I所示化合物)溶于各种有机溶剂,有机溶剂包括氯仿、邻二氯苯、1,1,2,2-四氯乙烷,以及其他溶剂,如:甲苯。本发明聚合物在氯化溶剂中具有良好地溶解度(常温下的溶解度约20mg/mL)。通过将式I所示化合物的邻二氯苯溶液旋涂(滴液量为200微升,转速3000转每分钟,时间为1分钟)至石英片上而制得高品质薄膜,在再表面旋涂(滴液量为200微升,转速3000转每分钟,时间为1分钟)UCNP上转换颗粒(可商业化,具体结构式为结合上转换纳米颗粒,直径具体为5~50nm)。UCNP溶于各种有机溶剂,有机溶剂包括正己烷、正辛烷,以及其他溶剂,如:四氢呋喃,具体为UCNP溶于正己烷,浓度为1mg/mL。
[0078] 本发明实施例2聚合物结合上转换纳米颗粒在薄膜状态下测得的吸收光谱如图3所示,从图3可得知:薄膜最大吸收波长在724nm左右和790nm左右。
[0079] 从图3可得知:本发明聚合物薄膜在近红外光一(980nm)照射条件下,348nm处吸收峰下降,在近红外光二(808nm)照射条件下,348处吸收峰恢复。照射时间在5-100s之间。
[0080] 实施例4、利用电化学循环伏安法测量前线轨道能级(HOMO,LUMO):
[0081] 利用电化学工作站对本发明实施例2中的聚合物的电化学特性进行了测试,以二茂为标准,六氟磷酸四丁基胺为电解质,电解液为六氟磷酸四丁基胺的乙腈溶液(浓度为0.1M)。采用标准的三电极系统进行测试,以铂丝作为对电极、Ag/Ag+作为参比电极。测得其循环伏安曲线如图4所示,从图4可得知:聚合物的HOMO能级为-5.28eV,LUMO能级为-
3.48eV。
[0082] 实施例5、制备聚合物的场效应器件:
[0083] 根据文献(Chem.Rev.2012,112,2208-2267)的方法,在单晶硅一层300nm厚的二氧化硅,再用光蚀刻的方法镀金,宽度1440微米,长度为50微米,并用十八烷基三氯硅烷单分子层进行修饰,然后将在本发明实施例1-实施例2中制得聚合物(3mg)溶解于1mL邻二氯苯中,在以上修饰好的薄片上旋涂成膜。在再表面旋涂UCNP上转换颗粒(将UCNP上转换颗粒(3mg)溶解于正己烷中)。通过真空退火100℃后,制备得到聚合物的场效应器件,测试其场效应性质及在紫外,近红外光调控下的场效应性质变化;
[0084] 其相应的输出曲线和转移曲线如图5所示。在紫外及近红外光照条件下,该体系均表现出明显的场效应调控性质,并具有良好的稳定性,以及响应速度。由结果可以看出,通过杂芳基偶氮苯基团的引入,结合上转换纳米粒子层的修饰,本发明实现了近红外光区的场效应调控。
QQ群二维码
意见反馈