首页 / 专利库 / 纤维类 / 原纤化 / 一种抗光暗化的掺镱石英光纤及其制备方法

一种抗光暗化的掺镱石英光纤及其制备方法

阅读:816发布:2023-01-22

专利汇可以提供一种抗光暗化的掺镱石英光纤及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种抗光暗化的掺镱 石英 光纤及其制备方法。具体地,本发明提供一种抗光暗化的掺镱石英光纤,所述光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5在整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%。本发明还提供一种抗光暗化的掺镱石英光纤的制备方法。本发明通过将溶胶凝胶法和改进的 化学气相沉积 法相结合,分别利用其分子级掺杂均匀性和低损耗制备优势,将镱离子、 铝 离子磷离子有效掺杂在石英基质中,有效解决了光纤损耗高、由于团簇等原因引起的光暗化以及折射率中心凹陷问题。,下面是一种抗光暗化的掺镱石英光纤及其制备方法专利的具体信息内容。

1.一种抗光暗化的掺镱石英光纤,其特征在于,光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5在整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%。
2.一种抗光暗化的掺镱石英光纤的制备方法,其特征在于,制备方法至少包括:将溶胶凝胶法和浸泡法应用到改进的化学气相沉积法中制备镱磷掺杂疏松体,再经过脱、脱、塌缩、光纤拉制后最终制得抗光暗化的掺镱石英光纤。
3.如权利要求2所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,制备所述的
3+ 3+ 5+
镱铝磷掺杂二氧化硅疏松体需要用到Yb ,Al ,P 三掺的氧化硅透明溶胶液;
所述Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液的制备方法包括步骤S1:首先按照预设的摩尔百分比称量镱源、铝源、磷酸,然后配置正硅酸乙酯、水、乙醇的混合溶液,最后将所述的镱源、铝源和磷酸依次加入所述的混合溶液中,充分混合后即可得到Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液。
4.如权利要求2和3所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,制备所述镱铝磷掺杂二氧化硅疏松体包括以下步骤:
S2:抛光,向沉积管中通入六氟化硫和氧气,然后加热沉积管至2000℃,对沉积管内壁进行化学抛光处理;
S3:沉积,向抛光后的沉积管通入四氯化硅和氧气,加热沉积管至1400-1600℃,沉积二氧化硅疏松体;
S4:浸泡,将沉积管部分浸泡于步骤S1所述的氧化硅透明溶胶液中,得到镱铝磷掺杂二氧化硅疏松体。
5.如权利要求4所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,将所述镱铝磷掺杂二氧化硅疏松体经过脱水、脱碳、塌缩、光纤拉制后获得抗光暗化的掺镱石英光纤的方法包括以下步骤:
S5:脱水,向步骤S4得到的沉积管中通入氯气和氧气,加热沉积管至900-1100℃,即完成脱水工序;
S6:脱碳,继续向沉积管中通入氧气和氦气,加热沉积管至1100-1300℃,完成脱碳工序;
S7:塌缩,加热沉积管至2200℃以上,将沉积管缩成实心棒,即完成光纤预制棒的制备;
S8:光纤拉制,将光纤预制棒置入光纤拉丝塔处理形成光纤,光纤外径符合要求时,对光纤外部涂敷胶并固化,即得到所需光纤。
6.如权利要求3所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的镱源、铝源分别为六水合氯化镱、六水合氯化铝。
7.如权利要求3所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的镱源、铝源和磷酸的摩尔百分比为0.05-0.3mol%:1-3mol%:1-5mol%,所述的混合溶液中正硅酸乙酯、水、乙醇的体积比为1:5:10。
8.如权利要求4所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的步骤S2中六氟化硫和氧气的通入流速分别为50sccm和1000sccm,所述的加热具体为单向正向移动100毫米/分钟;所述的步骤S3中四氯化硅和氧气的通入流速分别为200sccm和500-
2000sccm,所述的加热具体为单向正向100毫米/分钟;所述的步骤S4中浸泡时间大于30分钟。
9.如权利要求5所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的步骤S5中氯气和氧气的通入流速分别为100sccm和1000sccm,所述的加热为单向正向100毫米/分钟;所述的步骤S6中氧气和氦气的通入流速分别为1000sccm和1000sccm,所述的加热为单向正向100毫米/分钟;所述的步骤S7中加热具体为先正向20毫米/分钟移动,重复3-5次,再逆向10毫米/分钟移动。
10.如权利要求5所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的步骤S8之前还包括步骤S80,将所制备的光纤预制棒加工成正八边形。
11.如权利要求5所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的步骤S8涂敷胶为两层,内层为低折射率的涂敷胶,外层为高折射率的涂敷胶,分别作为外包层结构和保持层,制得双包层光纤。
12.如权利要求5所述的抗光暗化的掺镱石英光纤的制备方法,其特征在于,所述的步骤S2-S7中加热工具为氢氧焰,所述的步骤S8中固化方式为光固化或热固化。
13.一种抗光暗化的掺镱石英光纤,其特征在于,至少包括如权利要求2至10所述的任一项所述的制备方法制得,所制备的光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%,其余为SiO2。

说明书全文

一种抗光暗化的掺镱石英光纤及其制备方法

技术领域

[0001] 本发明涉及光纤领域,具体地涉及一种抗光暗化的掺镱石英光纤及其制备方法。

背景技术

[0002] 掺镱石英光纤是1μm光纤激光器的核心元件。随着半导体激光器浦与激光耦合等能量电子技术的飞速发展,掺镱光纤激光器的功率也从最初的瓦级发展到万瓦级。然而,随着激光功率的升高,掺镱石英光纤中出现输出功率随运行时间的增加而降低的现象,该现象称为光暗化现象。光暗化现象大大制约了高功率掺镱光纤激光器的寿命和稳定性
[0003] 掺镱石英光纤光暗化现象产生的原因主要有以下几个方面。首先是色心,关于色心产生的原因,英国南安普顿大学的S.Yoo(Electronics Letters,2010,第46卷,第3期,243)认为色心的形成分为两步,首先是掺镱光纤在辐照条件下结构中的缺陷会放出电子,然后临近的镱离子格位通过俘获电子形成色心;文献(Optics Express,2014,第22卷,第7期,7638)则认为光纤材料中三价镱离子得到电子发生价态改变:Yb3+→Yb2+,并在氧配位键周围形成空穴,进而诱导产生色心。其次是镱离子团簇,文献(Optics Express,2007,第15卷,第22期,14838)研究报道,掺镱光纤中的光暗化现象与镱离子发生团簇现象存在密切关联,其出现的概率与镱离子对的数量和某些离子键断裂的概率成正相关,镱离子浓度越高,团簇现象越明显,光纤中光暗化现象也越严重。此外,温度也是影响掺镱石英光纤中光暗化的重要因素,文献(Journal of the Optical Society of America B,2011,第28卷,第1期,65)对比了掺镱光纤在不同温度下的光暗化现象,光暗化速率随着温度的升高先加快,达到一定温度之后趋于饱和。
[0004] 针对以上光暗化机理,目前改善掺镱石英光纤光暗化性能的方法主要有以下几种:
[0005] 第一种是引入铈离子,铈离子的掺入会在掺镱石英光纤中引入氧化还原对Ce3+/Ce4+,减少镱离子本身的变价,降低由于镱离子变价引起的色心,从而减弱掺镱光纤中的光暗化。李进延等(专利CN 102135641 A,申请号201110076289.1)报道了一种通过共掺铈和钇等离子制备掺镱石英光纤,实现了82%的斜率效率以及优异的光暗化性能,该光纤能在50小时,10W的输出功率条件下工作50小时效率降低小于5%,但所述输出激光功率与工业应用仍有较大距离(工业应用要求1000W输出功率500小时效率降低小于等于5%)。
[0006] 第二种是引入三氧化和五氧化二磷。三氧化铝和五氧化二磷打破了二氧化的致密结构,从而增大了镱离子在二氧化硅结构中的溶解度,减小了镱离子之间的团簇。该方法可以在一定程度上抑制光暗化现象,专利(CN106116136 A,申请号201610489887.4)通过引入P,在相同实验条件下,激光功率下降幅度由不掺P样品的56%降低至16%,暗化现象有大幅改进,但仍有继续优化的空间。
[0007] 第三种是引入金属和碱土金属元素。专利(CN107390315  A,申请号201710583330.1)指出,通过在稀土掺杂有源光纤制作过程中向纤芯中掺杂碱性金属离子,改变稀土离子所处环境的光学碱度,降低光暗化附加损耗。但碱性金属离子的掺入无疑导致了其光纤损耗过高的问题,实施例中的样品损耗均大于40dB/km,离目前商用掺镱石英光纤损耗小于15dB/km的指标尚有一定差距。
[0008] 第四种是通过溶胶凝胶法制备高均匀掺杂的掺镱石英光纤,谢封侯等(Material Sciences,2017,第7卷,第6期,567)用溶胶凝胶法制备了掺镱石英光纤,并对比了用MCVD法和溶胶凝胶法制备的相同组分掺镱石英光纤的抗光暗化性能,发现溶胶凝胶法制备的掺镱光纤光暗化诱导损耗明显低于MCVD法制备的掺镱光纤。溶胶凝胶法可以实现分子级的均匀性,使得镱离子充分分散,降低团簇影响。但该文没有报道光纤的损耗以及激光性能等指标。溶胶凝胶法虽然可以实现分子级的均匀性,但往往由于纤芯玻璃烧制过程的坩埚污染容易导致损耗较高的问题。
[0009] 改进的化学气相沉积系统结合溶液浸泡法是一种制备掺镱石英光纤的通用方法。其中,镱铝磷掺杂的方法包括下列步骤(CN106116136 A,申请号201610489887.4):首先在沉积管(1-2)中沉积一层二氧化硅疏松体,在一定浓度的氯化镱、氯化铝溶液中浸泡,浸泡吹干后通入三氯氧磷完成磷掺杂,最后玻璃化和缩棒完成光纤预制棒的制备。用该方法铝镱为溶液浸泡,而磷是后掺入,很难实现均匀掺杂,从报道的折射率分布图可以看出,折射率起伏较大。并且也没有报道光纤的抗光暗化性能。
[0010] 综上,本领域需要开发一种能够有效解决掺镱石英光纤光暗化的方法。

发明内容

[0011] 本发明的目的在于提供一种抑制掺镱石英光纤光暗化的光纤及其制备方法。
[0012] 本发明的第一方面,提供一种抗光暗化的掺镱石英光纤,所述光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5在整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%。
[0013] 本发明的第二方面,提供一种抗光暗化的掺镱石英光纤的制备方法,制备方法至少包括:将溶胶凝胶法和浸泡法应用到改进的化学气相沉积法中制备镱铝磷掺杂二氧化硅疏松体,再经过脱、脱、塌缩、光纤拉制后最终制得抗光暗化的掺镱石英光纤。
[0014] 在另一优选例中,制备所述的镱铝磷掺杂二氧化硅疏松体需要用到Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液;
[0015] 所述Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液的制备方法包括步骤S1:首先按照预设的摩尔百分比称量镱源、铝源、磷酸,然后配置正硅酸乙酯、水、乙醇的混合溶液,最后将所述的镱源、铝源和磷酸依次加入所述的混合溶液中,充分混合后即可得到Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液。
[0016] 在另一优选例中,制备所述镱铝磷掺杂二氧化硅疏松体包括以下步骤:
[0017] S2:抛光,向沉积管中通入六氟化硫和氧气,然后加热沉积管至2000℃,对沉积管内壁进行化学抛光处理;
[0018] S3:沉积,向抛光后的沉积管通入四氯化硅和氧气,加热沉积管至1400-1600℃,沉积二氧化硅疏松体;
[0019] S4:浸泡,将沉积管部分浸泡于步骤S1所述的氧化硅透明溶胶液中,得到镱铝磷掺杂二氧化硅疏松体。
[0020] 在另一优选例中,将所述镱铝磷掺杂二氧化硅疏松体经过脱水、脱碳、塌缩、光纤拉制后获得抗光暗化的掺镱石英光纤的方法包括以下步骤:
[0021] S5:脱水,向步骤S4得到的沉积管中通入氯气和氧气,加热沉积管至900-1100℃,即完成脱水工序;
[0022] S6:脱碳,继续向沉积管中通入氧气和氦气,加热沉积管至1100-1300℃,完成脱碳工序;
[0023] S7:塌缩,加热沉积管至2200℃以上,将沉积管缩成实心棒,即完成光纤预制棒的制备;
[0024] S8:光纤拉制,将光纤预制棒置入光纤拉丝塔处理形成光纤,光纤外径符合要求时,对光纤外部涂敷胶并固化,即得到所需光纤。
[0025] 在另一优选例中,所述的镱源、铝源分别为六水合氯化镱、六水合氯化铝。
[0026] 在另一优选例中,所述的镱源、铝源和磷酸的摩尔百分比为0.05-0.3mol%:1-3mol%:1-5mol%,所述的混合溶液中正硅酸乙酯、水、乙醇的体积比为1:5:10。
[0027] 在另一优选例中,所述的步骤S2中六氟化硫和氧气的通入流速分别为50sccm和1000sccm,所述的加热具体为单向正向移动100毫米/分钟;所述的步骤S3中四氯化硅和氧气的通入流速分别为200sccm和500-2000sccm,所述的加热具体为单向正向100毫米/分钟;
所述的步骤S4中浸泡时间大于30分钟。
[0028] 在另一优选例中,所述的步骤S5中氯气和氧气的通入流速分别为100sccm和1000sccm,所述的加热为单向正向100毫米/分钟;所述的步骤S6中氧气和氦气的通入流速分别为1000sccm和1000sccm,所述的加热为单向正向100毫米/分钟;所述的步骤S7中加热具体为先正向20毫米/分钟移动,重复3-5次,再逆向10毫米/分钟移动。
[0029] 在另一优选例中,所述的步骤S8之前还包括步骤S80,将所制备的光纤预制棒加工成正八边形。
[0030] 在另一优选例中,所述的步骤S8涂敷胶为两层,内层为低折射率的涂敷胶,外层为高折射率的涂敷胶,分别作为外包层结构和保持层,制得双包层光纤。
[0031] 在另一优选例中,所述的步骤S2-S7中加热工具为氢氧焰,所述的步骤S8中固化方式为光固化或热固化。
[0032] 本发明第三方面,提供一种抗光暗化的掺镱石英光纤,至少包括本发明第二方面所述的制备方法制得,所制备的光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%,其余为SiO2。
[0033] 应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。

具体实施方式

[0034] 本发明针对现有工艺的不足,公开了一种抑制掺镱石英光纤光暗化的光纤及其制备方法,通过将溶胶凝胶法(Sol-Gel)和改进的化学气相沉积法(MCVD)相结合,分别利用其分子级掺杂均匀性和低损耗制备优势,将镱离子、铝离子磷离子有效掺杂在石英基质中,有效解决了光纤损耗高、由于团簇等原因引起的光暗化以及折射率中心凹陷问题。本发明各项指标完全达到商业光纤的使用要求:可达到1000W泵浦条件下工作500小时功率降低可达5%,同时损耗低至15dB/km,镱离子掺杂浓度达到0.3mol%时,激光效率大于80%,适用于大规模产业化生产。
附图说明
[0035] 图1是本发明采用的改进的化学气相沉积系统(MCVD设备)的结构示意图;其中,各编号代表:1为车床,1-1为前端管,1-2为沉积管,1-3为加热工具(氢氧焰),1-4加热底座为(可移动)。
[0036] 图2是本发明实施例1制备预制棒的折射率分布图。
[0037] 图3是本发明实施例1-3制备的掺镱石英光纤激光输入输出结果。
[0038] 图4是本发明实施例1制备的掺镱石英光纤吸收损耗谱。
[0039] 图5是本发明实施例1-3制备的掺镱石英光纤光暗化曲线。
[0040] 图6是本发明实施例2制备预制棒的折射率分布图。
[0041] 图7是本发明实施例2制备的掺镱石英光纤吸收损耗谱。
[0042] 图8是本发明实施例3制备预制棒的折射率分布图。
[0043] 图9是本发明实施例3制备的掺镱石英光纤吸收损耗谱。
[0044] 本发明的技术解决方案如下:
[0045] 一种抗光暗化的掺镱石英光纤,光纤芯棒的玻璃至少包括Yb2O3、Al2O3、P2O5、SiO2,其中,Yb2O3、Al2O3、P2O5整个物质中的占比分别为:Yb2O3:0.05~0.3mol%,Al2O3:1~3mol%,P2O5:1~5mol%。
[0046] 一种抗光暗化的掺镱石英光纤的制备方法,制备方法至少包括:将溶胶凝胶法和浸泡法应用到改进的化学气相沉积法中制备镱铝磷掺杂二氧化硅疏松体,再经过脱水、脱碳、塌缩、拉制后最终制得抗光暗化的石英光纤。
[0047] 一种典型地改进的化学气相沉积系统(MCVD设备)的结构如图1所示,其中各编号代表:1为车床,1-1为前端管,1-2为沉积管,1-3为加热工具(氢氧焰),1-4加热底座为(可移动)。
[0048] 优选地,制备所述的镱铝磷掺杂二氧化硅疏松体需要用到Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液;所述Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液制备方法包括步骤S1:首先按照预设的摩尔百分比称量镱源、铝源、磷酸,然后配置正硅酸乙酯、水、乙醇的混合溶液,最后将所述的镱源、铝源和磷酸依次加入所述的混合溶液中,充分混合后即可得到Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液。透明溶胶液中Yb3+,Al3+,P5+均匀分散,并能稳定保存。
[0049] 优选地,制备所述镱铝磷掺杂二氧化硅疏松体包括以下步骤:
[0050] S2:抛光,向沉积管中通入六氟化硫和氧气,然后加热沉积管至2000℃,对沉积管内壁进行化学抛光处理;
[0051] S3:沉积,向抛光后的沉积管通入四氯化硅和氧气,加热沉积管至1400-1600℃,沉积二氧化硅疏松体;
[0052] S4:浸泡,将沉积管部分浸泡于步骤S1所述的氧化硅透明溶胶液中,一段时间后,得到镱铝磷掺杂二氧化硅疏松体;
[0053] 将所述镱铝磷掺杂二氧化硅疏松体经过脱水、脱碳、塌缩、光纤拉制后获得抗光暗化的掺镱石英光纤的方法包括以下步骤:
[0054] S5:脱水,向步骤S4得到的沉积管中通入氯气和氧气,加热沉积管至900-1100℃,即完成脱水工序;
[0055] S6:脱碳,继续向沉积管中通入氧气和氦气,加热沉积管至1100-1300℃,完成脱碳工序;
[0056] S7:塌缩,加热沉积管至2200℃以上,将沉积管缩成实心棒,即完成光纤预制棒的制备;
[0057] S8:光纤拉制,将光纤预制棒置入光纤拉丝塔处理形成光纤,光纤外径符合要求时,对光纤外部涂敷胶并固化,即得到所需光纤。
[0058] 在另一优选例中,所述的镱源、铝源分别为六水合氯化镱、六水合氯化铝,有利于制备稳定性好、理化性能好的溶胶液。
[0059] 在另一优选例中,所述的镱源、铝源和磷酸的摩尔百分比为0.05-0.3mol%:1-3mol%:1-5mol%,使光纤同时具有较好的放大作用、高折射率和抑制光暗化的效果。在另一优选例中,所述的混合溶液中正硅酸乙酯、水、乙醇的体积比为1:5:10,保证了镱源、铝源和磷酸在混合溶液中长期稳定的均匀分散。
[0060] 优选地,所述的步骤S2中六氟化硫和氧气的通入流速分别为50sccm和1000sccm,所述的加热具体为单向正向移动100毫米/分钟。优选地,所述的步骤S3中四氯化硅和氧气的通入流速分别为200sccm和500-2000sccm,所述的加热具体为单向正向100毫米/分钟。优选地,所述的步骤S4中浸泡时间大于30分钟。优选地,所述的步骤S5中氯气和氧气的通入流速分别为100sccm和1000sccm,所述的移动加热为单向正向100毫米/分钟。优选地,所述的步骤S6中氧气和氦气的通入流速分别为1000sccm和1000sccm,所述的移动加热为单向正向100毫米/分钟。优选地,所述的步骤S7中加热具体为先正向20毫米/分钟移动,重复3-5次,再逆向10毫米/分钟移动。
[0061] 优选地,所述的步骤S8之前还包括步骤S80,将所制备的光纤预制棒加工成正八边形。
[0062] 优选地,所述的步骤S8涂敷胶为两层,内层为低折射率的涂敷胶,外层为高折射率的涂敷胶,分别作为外包层结构和保持层,制得双包层光纤。
[0063] 优选地,所述的步骤S2-S7中加热工具为氢氧焰,沉积管整体受热均匀;所述的步骤S8中固化方式为光固化或热固化。
[0064] 本发明的主要优点包括:
[0065] (1)本发明所述的抗光暗化的掺镱石英光纤,除掺杂了镱离子外,还按照特定比例掺杂有铝离子和磷离子,即解决了光纤抗光暗化的同时,保证了光纤的低损耗和良好的激光斜率效率。
[0066] (2)本发明采用Sol-Gel与MCVD结合的方法,有效实现了Yb3+,Al3+,P5+在石英玻璃中的分子级均匀掺杂,解决了镱离子的团聚问题,改善了光纤的抗光暗化性能。掺镱石英光纤中镱离子浓度为0.3mol%时,1000W泵浦功率下连续工作500小时功率下降小于等于5%,功率下降最低可达1%。
[0067] (3)本发明采用Sol-Gel与MCVD结合的方法,利用MCVD法解决了原Sol-Gel方法存在的光纤高损耗问题。本发明所述的掺镱石英光纤损耗低于15db/km。
[0068] (4)本发明采用Sol-Gel与MCVD结合的方法,解决了MCVD加溶液浸泡法共掺P时挥发导致的掺镱石英光纤折射率中心凹陷问题,有助于光纤在高功率条件下保持模式稳定。本发明能够实现大于80%的激光斜率效率。
[0069] (5)本发明采用Sol-Gel与MCVD结合的方法制备的光纤预制棒中各组分均匀分布并严格符合其组成比例。
[0070] 本发明采用Sol-Gel与MCVD结合的方法所制备的掺镱石英光纤完全满足工业化需求的标准。
[0071] 下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
[0072] 实施例1:
[0073] 该掺镱石英光纤的平均折射率与纯石英玻璃折射率的差值为0.0016,纤芯玻璃组分:0.2Yb2O3·2Al2O3·2P2O5·95.8SiO2,光纤纤芯和包层尺寸分别为20微米和400微米。该实施例掺镱石英光纤采用MCVD法结合Sol-Gel法进行制备。该方法包括如下步骤:
[0074] (1)首先按纤芯玻璃组分(摩尔比)0.2Yb2O3·2Al2O3·2P2O5·95.8SiO2,称量六水合氯化镱、六水合氯化铝和磷酸;按照正硅酸乙酯:水:乙醇=1:5:10的体积比配置混合溶液,然后将所述的六水合氯化镱、六水合氯化铝、磷酸依次加入所述的混合溶液中,在室温下经过20小时充分搅拌,获得Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液,密封保存静置5天备用;
[0075] (2)向沉积管(1-2)中通入50sccm六氟化硫和1000sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至2000℃,移动加热底座(1-4)为正向100毫米/分钟,对沉积管内壁进行化学抛光处理;
[0076] (3)向抛光后的沉积管(1-2)中通入200sccm四氯化硅和1500sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至1500℃,移动加热底座(1-4)为正向100毫米/分钟,沉积一层二氧化硅疏松体;
[0077] (4)将沉积管(1-2)和前端管(1-1)取下,将沉积管(1-2)部分竖直浸泡在所述的Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液中,浸泡时间30分钟,在沉积管1-2内得到一层镱铝磷掺杂二氧化硅疏松体;
[0078] (5)将上述浸泡后的沉积管(1-2)和前端管(1-1)架回车床(1),向沉积管(1-2)中通入100sccm氯气和1000sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至1000℃,移动灯头底座(1-4)为正向100毫米/分钟,即完成脱水工序;
[0079] (6)向沉积管(1-2)中通入1000sccm氧气和1000sccm氦气,用氢氧焰(1-3)加热沉积管(1-2)至1200℃,移动加热底座(1-4)为正向100毫米/分钟,即完成脱碳工序;
[0080] (7)利用氢氧焰(1-3)将沉积管(1-2)加热至2200℃以上,移动加热底座(1-4)为正向20毫米/分钟,重复三次,最后移动加热底座(1-4)为逆向10毫米/分钟将沉积管(1-2)缩成实心棒,即完成光纤预制棒的制备。
[0081] (8)将所制备的光纤预制棒加工成正八边形,纤芯直径与八边形面对面距离的比例为1:20;
[0082] (9)将所述的预制棒夹持在光纤拉丝塔的送料端,并将其下端下降至拉丝加热炉的高温位置。等待拉丝加热炉温度升至2200℃的掉料温度,预制棒的下端软化并依靠重缓慢掉落形成光纤。将加热炉的温度降至2000℃的拉丝温度,并开启拉丝牵引轮,以10m/min的速度拉制光纤,等待光纤的外径(八边形的面对面长度为400μm)符合要求后,开启涂敷装置和紫外固化炉,在光纤表面涂上两层涂敷胶,内层为低折射率的涂敷胶作为双包层光纤的外包层结构,外层为高折射率的涂敷胶作为双包层光纤的保持层,将拉制的光纤通过收丝机盘绕在光纤盘上;
[0083] (10)测试:
[0084] 采用PK2600折射率分布测试仪测试折射率分布,如图2,折射率分布中心无凹坑,折射率波动小于2×10-4;
[0085] 采用FP线性腔测试实施例1获得的掺镱石英光纤激光输出,泵浦波长为970nm,如图3,斜率效率为83%;
[0086] 采用截断法测试实施例1获得的石英光纤损耗:图4为其损耗谱,1200nm背底损耗为7.5dB/km,表明散射点和杂质污染均很低,1383nm羟基吸收为5dB/km,表明该工艺脱水效果良好;
[0087] 光暗化的测试采用工作波长为915nm的1200W半导体激光器作为泵浦源,记录输出功率与时间的变化关系,如图5,500小时功率下降为3%。
[0088] 实施例2:
[0089] 该掺镱石英光纤的平均折射率与纯石英玻璃折射率差值为0.005,芯棒玻璃组分:0.05Yb2O3·1Al2O3·1P2O5·97.95SiO2,光纤纤芯和包层尺寸分别为30微米和600微米。该实施例掺镱石英光纤采用MCVD法结合Sol-Gel法进行制备。该方法包括如下步骤:
[0090] (1)首先按芯棒玻璃组分(摩尔比)0.05Yb2O3·1Al2O3·1P2O5·97.95SiO2称量六水合氯化镱、六水合氯化铝和磷酸;按照正硅酸乙酯:水:乙醇=1:5:10的体积比配置混合溶液,然后将所述的六水合氯化镱、六水合氯化铝、磷酸依次加入所述的混合溶液中,在室温下经过20小时充分搅拌,获得Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液,密封保存静置5天备用;
[0091] (2)向沉积管(1-2)中通入50sccm六氟化硫和1000sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至2000℃,移动加热底座(1-4)为正向100毫米/分钟,对沉积管内壁进行化学抛光处理;
[0092] (3)向抛光后的沉积管(1-2)中通入200sccm四氯化硅和500sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至1400-1600℃,移动加热底座(1-4)为正向100毫米/分钟,沉积一层二氧化硅疏松体;
[0093] (4)将沉积管(1-2)和前端管1-1取下,将沉积管(1-2)部分竖直浸泡在所述的Yb3+,3+ 5+
Al ,P 三掺的氧化硅透明溶胶液中,浸泡时间30分钟,在沉积管(1-2)内得到一层镱铝磷掺杂二氧化硅疏松体;
[0094] (5)将上述浸泡后的沉积管(1-2)和前端管(1-1)架回车床(1),向沉积管(1-2)中通入100sccm氯气和1000sccm氧气,用氢氧焰(1-3)加热沉积管(1-2)至900-1100℃,移动加热底座(1-4)为正向100毫米/分钟,即完成脱水工序;
[0095] (6)向沉积管(1-2)中通入1000sccm氧气和1000sccm氦气,用氢氧焰(1-3)加热沉积管(1-2)至1100℃,移动加热底座(1-4)为正向100毫米/分钟,即完成脱碳工序;
[0096] (7)利用氢氧焰(1-3)将沉积管(1-2)加热至2200℃以上,移动加热底座(1-4)为正向20毫米/分钟,重复三次,最后移动加热底座(1-4)为逆向10毫米/分钟,将沉积管(1-2)缩成实心棒,即完成光纤预制棒的制备;
[0097] (8)将所制备的光纤预制棒加工成正八边形,纤芯直径与八边形面对面距离的比例为1:20;
[0098] (9)将所述的预制棒夹持在光纤拉丝塔的送料端,并将其下端下降至拉丝加热炉的高温位置。等待拉丝加热炉温度升至2200℃的掉料温度,预制棒的下端软化并依靠重力缓慢掉落形成光纤,将加热炉的温度降至2000℃的拉丝温度,并开启拉丝牵引轮,以10m/min的速度拉制光纤。等待光纤的外径(八边形的面对面长度为600μm)符合要求后,开启涂敷装置和热固化炉,在光纤表面涂上两层涂敷胶,内层为低折射率的涂敷胶作为双包层光纤的外包层结构,外层为高折射率的涂敷胶作为双包层光纤的保持层,将拉制的光纤通过收丝机盘绕在光纤盘上;
[0099] (10)测试:
[0100] 采用PK2600折射率分布测试仪测试折射率分布,如图6,折射率分布中心无凹坑,折射率波动小于2×10-4;
[0101] 采用FP线性腔测试实施例2获得的掺镱石英光纤激光输出,泵浦波长为970nm,如图3,斜率效率为81%;
[0102] 采用截断法测试实施例2获得的石英光纤损耗:图7为其损耗谱,1200nm背底损耗为8dB/km,1383nm羟基吸收为12dB/km;
[0103] 光暗化的测试采用工作波长为915nm的1200W半导体激光器作为泵浦源,记录输出功率与时间的变化关系,如图5,500小时功率下降1%。
[0104] 实施例3:
[0105] 该掺镱石英光纤的平均折射率与纯石英玻璃折射率差值为0.0023,芯棒玻璃组分:0.3Yb2O3·3Al2O3·5P2O5·91.7SiO2,光纤纤芯和包层尺寸分别为25微米和400微米。该实施例掺镱石英光纤采用MCVD法结合Sol-Gel法进行制备。该方法包括如下步骤:
[0106] (1)首先按选定的芯棒玻璃组分(摩尔比)0.3Yb2O3·3Al2O3·5P2O5·91.7SiO2称量六水合氯化镱、六水合氯化铝和磷酸;按照正硅酸乙酯:水:乙醇=1:5:10的体积比配置混合溶液,然后将所述的六水合氯化镱、六水合氯化铝、磷酸依次加入所述的混合溶液中,在室温下经过20小时充分搅拌,获得Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液,密封保存静置5天备用;
[0107] (2)向沉积管(1-2)中通入50sccm六氟化硫和1000sccm氧气,用氢氧焰灯(1-3)加热沉积管(1-2)至2000℃,移动加热底座(1-4)为正向100毫米/分钟,对沉积管内壁进行化学抛光处理;
[0108] (3)向抛光后的沉积管(1-2)中通入200sccm四氯化硅和2000sccm氧气,用氢氧焰灯(1-3)加热沉积管(1-2)至1600℃,移动加热底座(1-4)为正向100毫米/分钟,沉积一层二氧化硅疏松体;
[0109] (4)将沉积管(1-2)和前端管(1-1)取下,将沉积管(1-2)部分竖直浸泡在Yb3+,Al3+,P5+三掺的氧化硅透明溶胶液中,浸泡时间40分钟,在沉积管(1-2)内得到一层镱铝磷掺杂二氧化硅疏松体;
[0110] (5)将上述浸泡后的沉积管(1-2)和前端管(1-1)架回车床(1),向沉积管(1-2)中通入100sccm氯气和1000sccm氧气,用氢氧焰灯(1-3)加热沉积管(1-2)至1100℃,移动加热底座(1-4)为正向100毫米/分钟,即完成脱水工序;
[0111] (6)向沉积管(1-2)中通入1000sccm氧气和1000sccm氦气,用氢氧焰灯(1-3)加热沉积管(1-2)至1300℃,移动加热底座(1-4)为正向100毫米/分钟,即完成脱碳工序;
[0112] (7)利用氢氧焰灯(1-3)将沉积管(1-2)加热至2200℃以上,移动加热底座(1-4)为正向20毫米/分钟,重复三次,最后移动加热底座(1-4)为逆向10毫米/分钟将沉积管(1-2)缩成实心棒,即完成光纤预制棒的制备;
[0113] (8)将所制备的光纤预制棒加工成正八边形,纤芯直径与八边形面对面距离的比例为1:16;
[0114] (9)将所述的预制棒夹持在光纤拉丝塔的送料端,并将其下端下降至拉丝加热炉的高温位置。等待拉丝加热炉温度升至2200℃的掉料温度,预制棒的下端软化并依靠重力缓慢掉落形成光纤,将加热炉的温度降至2000℃的拉丝温度,并开启拉丝牵引轮,以10m/min的速度拉制光纤。等待光纤的外径(八边形的面对面长度为400μm)符合要求后,开启涂敷装置和紫外固化炉,在光纤表面涂上两层涂敷胶,内层为低折射率的涂敷胶作为双包层光纤的外包层结构,外层为高折射率的涂敷胶作为双包层光纤的保持层,将拉制的光纤通过收丝机盘绕在光纤盘上;
[0115] (10)测试:
[0116] 采用PK2600折射率分布测试仪测试折射率分布,如图8,折射率分布中心无凹坑,折射率波动小于3×10-4;
[0117] 采用FP线性腔测试实施例3获得的掺镱石英光纤激光输出,泵浦波长为970nm,如图3,斜率效率为87%;
[0118] 采用截断法测试实施例3获得的石英光纤损耗:图9为其损耗谱,1200nm背底损耗为14dB/km,1383nm羟基吸收为12dB/km;
[0119] 暗化的测试采用工作波长为915nm的1200W半导体激光器作为泵浦源,记录输出功率与时间的变化关系,如图5,500小时功率下降为5%。
[0120] 在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈