首页 / 专利库 / 动物学 / 节肢动物 / 叮咬昆虫 / 微生物聚生体及其用途

生物聚生体及其用途

阅读:202发布:2020-08-10

专利汇可以提供生物聚生体及其用途专利检索,专利查询,专利分析的服务。并且除其他以外,本文提供了 微 生物 组合物及使用其的方法。提供的所述微生物组合物包括,除其他以外, 治疗 有效量的约氏乳杆菌(Lactobacillus johnsonii)、普氏栖粪杆菌(Faecalibacterium prausnitzii)、嗜粘蛋白阿克曼氏菌(Akkermansia muciniphila)、黄色粘球菌(Myxococcus xanthus)和戊糖片球菌(Pediococcus pentosaceus),并且对于治疗和 预防 炎性 疾病 的方法特别有用。,下面是生物聚生体及其用途专利的具体信息内容。

1.一种治疗预防有需要的受试者中菌群失调的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种(Lactobacillus sp.)、栖粪杆菌属种(Faecalibacterium sp.)、阿克曼氏菌属种(Akkermansia sp.)、粘球菌属种(Myxococcus sp.)和片球菌属种(Pediococcus sp.)的细菌群体。
2.根据权利要求1所述的方法,其中(i)所述乳杆菌属种为约氏乳杆菌(Lactobacillus johnsonii);(ii)所述栖粪杆菌属种为普氏栖粪杆菌(Faecalibacterium prausnitzii);
(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌(Akkermansia muciniphila);(iv)所述粘球菌属种为黄色粘球菌(Myxococcus xanthus);并且(v)所述片球菌属种为戊糖片球菌(Pediococcus pentosaceus)。
3.根据权利要求1所述的方法,其中(i)所述乳杆菌属种为玉米乳杆菌(Lactobacillus zeae)、酸鱼乳杆菌(Lactobacillus acidipiscis)、嗜酸乳杆菌(Lactobacillus acidophilus)、能动乳杆菌(Lactobacillus agilis)、乳杆菌(Lactobacillus aviarius)、短乳杆菌(Lactobacillus brevis)、Lactobacillus coleohominis、卷曲乳杆菌(Lactobacillus crispatus)、面包乳杆菌(Lactobacillus crustorum)、弯曲乳杆菌(Lactobacillus curvatus)、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌(Lactobacillus fermentum)、果糖乳杆菌(Lactobacillus fuchuensis)、哈尔滨乳杆菌(Lactobacillus harbinensis)、瑞士乳杆菌(Lactobacillus helveticus)、希氏乳杆菌(Lactobacillus hilgardii)、肠乳杆菌(Lactobacillus intestinalis)、詹氏乳杆菌(Lactobacillus jensenii)、乳酒样乳杆菌(Lactobacillus kefiranofaciens)、高加索酸奶乳杆菌(Lactobacillus kefiri)、林氏乳杆菌(Lactobacillus lindneri)、马里乳杆菌(Lactobacillus mali)、食木薯乳杆菌(Lactobacillus manihotivorans)、粘膜乳杆菌(Lactobacillus mucosae)、Lactobacillus oeni、寡发酵乳杆菌(Lactobacillus oligofermentans)、面包乳杆菌(Lactobacillus panis)、德式乳杆菌(Lactobacillus pantheris)、类短乳杆菌(Lactobacillus parabrevis)、类丘状乳杆菌(Lactobacillus paracollinoides)、类高加索酸奶乳杆菌(Lactobacillus parakefiri)、类植物乳杆菌(Lactobacillus paraplantarum)、戊糖乳杆菌(Lactobacillus pentosus)、桥乳杆菌(Lactobacillus pontis)、罗伊氏乳杆菌(Lactobacillus reuteri)、罗氏乳杆菌(Lactobacillus rossiae)、唾液乳杆菌(Lactobacillus salivarius)、Lactobacillus siliginis、Lactobacillus sucicola、痘乳杆菌(Lactobacillus vaccinostercus)、阴道乳杆菌(Lactobacillus vaginalis)、嗜葡萄酒乳杆菌(Lactobacillus vini)、格氏乳球菌(Lactococcus garvieae)或乳酸乳球菌(Lactococcus lactis);(ii)所述栖粪杆菌属种为普氏栖粪杆菌;(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)所述粘球菌属种为黄色粘球菌;并且(v)所述片球菌属种为戊糖片球菌、乳酸片球菌(Pediococcus acidilactici)、有害片球菌(Pediococcus damnosus)、耐乙醇片球菌(Pediococcus ethanolidurans)或小片球菌(Pediococcus parvulus)。
4.根据权利要求1所述的方法,其中所述粘球菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。
5.根据权利要求4所述的方法,其中所述粘球菌属种呈包含孢子的粉末的形式。
6.根据权利要求1所述的方法,其中少于约20、15、10、9、8、7或6个不同物种的细菌被施用至所述受试者。
7.根据权利要求1所述的方法,其中所述细菌群体形成细菌组合物的一部分。
8.根据权利要求7所述的方法,其中所述细菌组合物包括少于约20、15、10、9、8、7或6个物种的细菌。
9.根据权利要求7所述的方法,其中所述细菌组合物不是粪便移植物。
10.根据权利要求7所述的方法,其中所述细菌组合物还包含药学上可接受的赋形剂。
11.根据权利要求7所述的方法,其中所述细菌组合物口服或经直肠施用。
12.根据权利要求7所述的方法,其中所述受试者患有炎性疾病
13.根据权利要求1所述的方法,其中所述受试者具有患有炎性疾病的险。
14.根据权利要求1所述的方法,其中所述受试者具有被诊断患有炎性疾病的至少1、2、
3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。
15.根据权利要求13所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
16.根据权利要求15所述的方法,其中所述炎性疾病为儿童过敏性哮喘或炎性肠病。
17.根据权利要求1所述的方法,其中所述受试者患有便秘、腹泻、腹胀、尿急和/或腹痛。
18.根据权利要求1所述的方法,其中所述受试者已经在最近1、2、3或4个月内被施用抗生素。
19.根据权利要求1所述的方法,其中所述受试者为新生儿。
20.根据权利要求1所述的方法,其中所述受试者小于约1、2、3、4、5、6、7、8、9、12、18或
24个月。
21.根据权利要求1所述的方法,其中所述受试者在约2和约18岁之间,或至少约18岁。
22.根据权利要求1所述的方法,其中所述受试者包括这样的胃肠生物组,所述胃肠微生物组:
(a)与健康或普通群体相比,具有比例增加的链球菌属(Streptococcus spp.)、双歧杆菌属(Bifidobacterium spp.)和肠球菌属(Enterococcus spp.);
(b)与健康或普通群体相比,具有比例减少的链格孢(Alternaria alternata)、黄曲霉(Aspergillus flavus)、Aspergillus cibarius和大豆念珠菌(Candida sojae);
(c)与健康或普通群体相比,具有比例增加的白色念珠菌(Candida albicans)和德巴利酵母属(Debaryomyces spp.);
(d)与健康或普通群体相比,具有比例减少的双歧杆菌属(Bifidobacteria spp.)、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
(e)与健康或普通群体相比,具有比例减少的马拉色菌属(Malassezia spp.);
(f)与健康或普通群体相比,具有比例增加的拟杆菌属(Bacterioides spp.)、瘤胃球菌属(Ruminococcus spp.)、普雷沃氏菌属(Prevotella spp.)或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球菌(Enterococcus faecalis)、屎肠球菌(Enterococcus faecium)或艰难梭菌(Clostridium difficile)。
23.根据权利要求1所述的方法,其中所述有效量对于以下有效
(i)增加所述受试者中双歧杆菌属种、属于进化枝IV和XIV的梭菌属种(Clostridia sp.)、毛螺菌属种(Lachnospira sp.)和/或瘤胃球菌属种的平;
(ii)降低所述受试者的粪便的pH;
(iii)增加所述受试者的所述粪便中乳酸的水平;
(iv)增加所述受试者中循环衣康酸的水平;
(v)治疗、减少或预防受试者中的过敏性炎症
(vi)减少所述受试者的气道中的适应性免疫反应;
(vii)减少胃肠相关的肠系膜淋巴结中的树突细胞活化;
(viii)增加所述受试者的、血液、血清或血浆中修复巨噬细胞的水平;
(ix)增加所述受试者中抗炎化合物的水平;
(x)降低所述受试者中促炎化合物的水平;
(xi)降低所述受试者中嗜酸细胞活化趋化因子表达和/或分泌的水平;和/或
(xii)降低所述受试者中粘蛋白表达和/或分泌的水平。
24.根据权利要求23所述的方法,其中所述有效量对于降低所述受试者的肺中的所述粘蛋白分泌和/或分泌的水平有效。
25.根据权利要求23所述的方法,其中所述抗炎化合物为细胞因子、微生物脂质、微生物水化合物或微生物基酸。
26.根据权利要求25所述的方法,其中所述抗炎化合物为IL-17。
27.根据权利要求23所述的方法,其中所述促炎化合物为细胞因子、微生物脂质、微生物碳水化合物或微生物氨基酸。
28.根据权利要求27所述的方法,其中所述促炎化合物为IL-4、IL-10、IL-8、IL-13、TNF-α或MUC5B。
29.根据权利要求1所述的方法,还包括向所述受试者施用(a)双歧杆菌属种、(b)孢囊杆菌属种(Cystobacter sp.)或(c)真菌微生物。
30.一种治疗或预防有需要的受试者中炎性疾病的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
31.根据权利要求30所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
32.一种治疗或预防有需要的受试者中病毒性呼吸道感染的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
33.根据权利要求32所述的方法,其中所述病毒性呼吸道感染由呼吸道合胞病毒、流感病毒、副流感病毒、腺病毒、冠状病毒或鼻病毒引起。
34.根据权利要求32所述的方法,其中所述病毒性呼吸道感染为毛细支气管炎、感冒、哮吼或肺炎。
35.一种治疗或预防有需要的受试者中过敏的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
36.根据权利要求35所述的方法,其中所述过敏为对奶、蛋、鱼、贝类、坚果、花生、小麦、来自猫、犬或啮齿动物的皮屑、昆虫叮咬、花粉、乳胶、尘螨或大豆过敏。
37.根据权利要求35所述的方法,其中所述过敏为儿童过敏性哮喘、枯草热或过敏性气道致敏。
38.一种在有需要的受试者中增加抗炎化合物的水平和/或降低促炎化合物的水平的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
39.根据权利要求38所述的方法,为了增加所述抗炎化合物的所述水平,增加和/或降低所述受试者的粪便、血液、血浆、血清、支气管肺泡灌洗液、汗液、唾液、痰液、淋巴液、脊髓液、尿液、眼泪、胆汁、房水、玻璃体液、羊水母乳脑脊液、耵聍、鼻粘液、粘痰或皮脂中所述促炎化合物的所述水平。
40.根据权利要求38所述的方法,其中所述抗炎化合物为微生物脂质、微生物碳水化合物或微生物氨基酸。
41.根据权利要求38所述的方法,其中受试者患有菌群失调或炎性疾病。
42.一种组合物,所述组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种。
43.根据权利要求42所述的组合物,其中(i)所述乳杆菌属种为约氏乳杆菌;(ii)所述栖粪杆菌属种为普氏栖粪杆菌;(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)所述粘球菌属种为黄色粘球菌;并且(v)所述片球菌属种为戊糖片球菌。
44.根据权利要求42所述的组合物,其中所述组合物包括少于约20、15、10、9、8、7或6个不同物种的细菌。
45.根据权利要求42所述的组合物,其中所述组合物不是粪便移植物。
46.根据权利要求42所述的组合物,另外包含药学上可接受的赋形剂。
47.根据权利要求42所述的组合物,所述组合物为胶囊、片剂、悬液、栓剂、粉末、霜剂、油、水包油乳液、油包水乳液或水溶液。
48.根据权利要求42所述的组合物,所述组合物呈粉末、固体、半固体或液体的形式。
49.根据权利要求42所述的组合物,所述组合物在20℃具有小于约0.9、0.8、0.7、0.6、
0.5、0.4、0.3、0.2或0.1的水活度(aw)。
50.根据权利要求42所述的组合物,所述组合物为食物或饮料。
51.根据权利要求42所述的组合物,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种呈粉末的形式。
52.根据权利要求42所述的组合物,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种已被冻干。
53.一种检测有需要的受试者中促炎化合物的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品中的所述促炎化合物。
54.根据权利要求53所述的方法,其中所述受试者患有菌群失调或具有发展菌群失调的风险。
55.根据权利要求53所述的方法,其中所述受试者患有炎性疾病。
56.根据权利要求53所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
57.根据权利要求53所述的方法,其中所述受试者小于约1、2、3、4、5、6、7、8、9、12、18或
24个月。
58.根据权利要求53所述的方法,其中所述受试者在约2和约18岁之间,或至少约18岁。
59.根据权利要求53所述的方法,其中所述受试者包括这样的胃肠微生物组,所述胃肠微生物组:
(a)与健康或普通群体相比,具有比例增加的链球菌属种、双歧杆菌属种和肠球菌属种;
(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
(d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
(e)与健康或普通群体相比,具有比例减少的马拉色菌属;
(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
60.根据权利要求53所述的方法,其中所述生物样品为体液。
61.根据权利要求60所述的方法,其中所述体液为血液、血浆、血清、粪便水或支气管肺泡灌洗液。
62.根据权利要求61所述的方法,其中所述体液为粪便水。
63.根据权利要求53所述的方法,其中检测所述促炎化合物包括使抗原呈递细胞与所述生物样品接触
64.根据权利要求63所述的方法,其中所述抗原呈递细胞为树突细胞。
65.根据权利要求53所述的方法,其中检测所述促炎化合物还包括使幼稚T细胞与抗原呈递细胞接触以产生接触的T细胞。
66.根据权利要求65所述的方法,还包括检测由所述接触的T细胞和/或所述接触的T细胞的后代产生的细胞因子。
67.根据权利要求65所述的方法,其中如果
(i)与对照相比,所述接触的T细胞的所述后代中T-辅助(TH)-2细胞的比例增加;
(ii)与对照相比,所述接触的T细胞的所述后代中TH-1、TH-17和/或TH22细胞的比例增加;
(iii)与对照相比,所述接触的T细胞的所述后代中TH-1细胞与TH-2细胞的比率降低;
(iv)与对照相比,所述接触的T细胞的所述后代中产生IL-17的CD8+T细胞的比例增加;
和/或
(v)与对照相比,由所述接触的T细胞的所述后代和/或其所述后代产生的IL-4、IL-10和/或IL-13的量增加,
则所述促炎化合物被检测。
68.根据权利要求53所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括指导所述受试者接受治疗或者另外测试或监测菌群失调或炎性疾病。
69.根据权利要求53所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括向所述受试者施用根据权利要求52至62中任一项所述的组合物。
70.根据权利要求53所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括将所述受试者诊断为患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险。
71.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)根据权利要求63至80中任一项所述的方法检测促炎化合物。
72.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
73.根据权利要求53所述的方法,还包括确定所述受试者是否具有这样的胃肠微生物组,所述胃肠微生物组:
(a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;
(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
(d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
(e)与健康或普通群体相比,具有比例减少的马拉色菌属;
(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
74.一种治疗或预防根据权利要求71所述的方法被确定患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的受试者中菌群失调或炎性疾病的方法,所述方法包括向所述受试者施用菌群失调或所述炎性疾病的治疗。
75.一种监测菌群失调或炎性疾病的治疗效果的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
76.一种确定受试者中炎性疾病活性的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
77.一种检测患有炎性疾病或具有发展炎性疾病的风险的受试者中抗炎代谢物的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)确定所述生物样品中抗炎代谢物的表达水平。
78.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定所述表达水平相对于标准对照是增加还是降低,其中相对于所述标准对照的促炎代谢物的表达水平升高或抗炎代谢物的表达水平降低指示所述受试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的所述表达水平,确定所述受试者是否患有炎性疾病或具有发展炎性疾病的风险。
79.一种监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法,所述方法包括:(i)在第一时间点确定所述受试者中抗炎代谢物或促炎代谢物的第一表达水平;(ii)在第二时间点确定所述受试者中抗炎代谢物或促炎代谢物的第二表达水平;和(iii)将抗炎代谢物或促炎代谢物的所述第二表达水平与抗炎代谢物或促炎代谢物的所述第一表达水平进行比较,从而确定所述受试者中炎性疾病的治疗效果。
80.一种确定受试者中炎性疾病活性的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定所述表达水平是否相对于标准对照被调节,从而确定所述受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的所述表达水平,确定所述受试者中所述炎性疾病活性。

说明书全文

生物聚生体及其用途

[0001] 相关申请的交叉引用
[0002] 本申请要求2016年3月4日提交的美国临时申请第62/304,087号的优先权的权益,所述临时申请以其整体并且出于所有目的并入本文。
[0003] 关于在联邦政府资助的研究和开发下完成的发明权利的声明
[0004] 本发明是在由国家卫生研究院(National Institutes of Health)授予的授权号R21 AT004732、P01 AI089473和HL080074的政府支持下完成的。政府在本发明中拥有某些
权利。
[0005] 序列表的参考引用
[0006] 创建于2017年3月3日并且大小为107,536字节的名为“48536-575001WO_SequenceListing.TXT”的文本文件的内容以其整体通过引用并入本文。
[0007] 发明背景
[0008] 最近的研究提供了驻留于人类肠道中的微生物群落在宿主免疫应答的发展和调节中起关键作用的证据。例如,已示出特定梭菌属(Clostridium)物种的存在诱导特定T细
胞库(repertoire)[Atarashi等人,(2011)Induction of colonic regulatory T cells 
by indigenous Clostridium species.Science 331(6015):337-341]。尽管肠道微生物组
很复杂,但特定细菌物种的存在或不存在可以显著地改变适应性免疫环境。
[0009] 发明概述
[0010] 本文中提供令人惊讶地可用于治疗菌群失调、感染和炎性疾病的新颖方法和包括约氏乳杆菌(Lactobacillus johnsonii)、普氏栖粪杆菌(Faecalibacterium 
prausnitzii)、嗜粘蛋白阿克曼氏菌(Akkermansia muciniphila)、黄色粘球菌
(Myxococcus xanthus)和戊糖片球菌(Pediococcus pentosaceus)的微生物组合物。
[0011] 一方面提供了方法和包括细菌群体的组合物,该细菌群体包括1、2、3、4、5、6、7或8个(或至少1、2、3、4、5、6、7或8个)细菌物种、基本上由1、2、3、4、5、6、7或8个(或至少1、2、3、4、5、6、7或8个)细菌物种组成或由1、2、3、4、5、6、7或8个(或至少1、2、3、4、5、6、7或8个)细菌物种组成。在实施方案中,细菌群体包括乳杆菌属种(Lactobacillus sp.)、栖粪杆菌属种(Faecalibacterium sp.)、阿克曼氏菌属种(Akkermansia sp.)、粘球菌属种(Myxococcus sp.)、孢囊杆菌属种(Cystobacter sp.)、片球菌属种(Pediococcus sp.)、双歧杆菌属种
(Bifidobacterium sp.)和梭菌属种(Clostridium sp)中的任1、2、3、4、5、6、7或8个、基本上由乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8个组成或由乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8个组成。在实施方案中,细菌群体包括乳杆菌属种和普氏栖粪杆属菌。在实施方案中,细菌群体包括乳杆菌属种和嗜粘蛋白阿克曼氏菌。在实施方案中,细菌群体包括乳杆菌属种和黄色粘球菌。在实施方案中,细菌群体包括乳杆菌属种和深褐孢
囊杆菌(Cystobacter fuscus)。在实施方案中,细菌群体包括乳杆菌属种和戊糖片球菌
(Pediococcus pentosaceus)、乳酸片球菌(Pediococcus acidilactici)、有害片球菌
(Pediococcus damnosus)、耐乙醇片球菌(Pediococcus ethanolidurans)或小片球菌
(Pediococcus parvulus)。在实施方案中,细菌群体包括乳杆菌属种和两歧双歧杆菌
(Bifidobacterium bifidum)、假长双歧杆菌(Bifidobacterium pseudolongum)、世纪双歧杆菌(Bifidobacterium saeculare)或细长双歧杆菌(Bifidobacterium subtile)。在实施
方案中,细菌群体包括乳杆菌属种和Clostridium hiranonis。在实施方案中,乳杆菌属种为约氏乳杆菌、鼠李糖乳杆菌(Lactobacillus rhamnosus)、玉米乳杆菌(Lactobacillus 
zeae)、酸鱼乳杆菌(Lactobacillus acidipiscis)、嗜酸乳杆菌(Lactobacillus 
acidophilus)、能动乳杆菌(Lactobacillus agilis)、乳杆菌(Lactobacillus 
aviarius)、短乳杆菌(Lactobacillus brevis)、Lactobacillus coleohominis、卷曲乳杆菌(Lactobacillus crispatus)、面包乳杆菌(Lactobacillus crustorum)、弯曲乳杆菌
(Lactobacillus curvatus)、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌(Lactobacillus fermentum)、果糖乳杆菌(Lactobacillus fuchuensis)、哈尔滨乳杆菌(Lactobacillus harbinensis)、瑞士乳杆菌(Lactobacillus helveticus)、希氏乳杆菌(Lactobacillus hilgardii)、肠乳杆菌(Lactobacillus intestinalis)、詹氏乳杆菌(Lactobacillus jensenii)、乳酒样乳杆菌(Lactobacillus kefiranofaciens)、高加索酸奶乳杆菌(Lactobacillus kefiri)、林氏乳杆菌(Lactobacillus lindneri)、马里乳
杆菌(Lactobacillus mali)、食木薯乳杆菌(Lactobacillus manihotivorans)、粘膜乳杆
菌(Lactobacillus mucosae)、Lactobacillus oeni、寡发酵乳杆菌(Lactobacillus 
oligofermentans)、面包乳杆菌(Lactobacillus panis)、德式乳杆菌(Lactobacillus 
pantheris)、类短乳杆菌(Lactobacillus parabrevis)、类丘状乳杆菌(Lactobacillus 
paracollinoides)、类高加索酸奶乳杆菌(Lactobacillus parakefiri)、类植物乳杆菌
(Lactobacillus paraplantarum)、戊糖乳杆菌(Lactobacillus pentosus)、桥乳杆菌
(Lactobacillus pontis)、罗伊氏乳杆菌(Lactobacillus reuteri)、罗氏乳杆菌
(Lactobacillus rossiae)、唾液乳杆菌(Lactobacillus salivarius)、Lactobacillus 
siliginis、Lactobacillus sucicola、痘乳杆菌(Lactobacillus vaccinostercus)、阴道乳杆菌(Lactobacillus vaginalis)、嗜葡萄酒乳杆菌(Lactobacillus vini)、格氏乳球菌(Lactococcus garvieae)或乳酸乳球菌(Lactococcus lactis)。在实施方案中,乳杆菌
属种为约氏乳杆菌。在实施方案中,细菌群体包括以下的任何组合中的至少1、2、3、4、5、6、
7、8、9或10,或1-5、1-10、1-5或1-20种:约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus 
farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌、乳酸乳球菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、深褐孢囊杆菌、戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌和小片球菌。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。
[0012] 在一方面,提供了施用分离的细菌的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0013] 在一方面,提供了细菌补充的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0014] 在一方面,提供了治疗或预防有需要的受试者中炎症的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0015] 在一方面,提供了微生物组合物。在实施方案中,微生物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种。在实施方案中,微生物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种。在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、戊糖片球菌和适合于施用于肠道的生物载体。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0016] 在一方面,提供了微生物组合物。在实施方案中,微生物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种。在实施方案中,微生物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种。在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌和适合于施用于肠道的生物载体。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0017] 在一方面,提供了药物组合物。在实施方案中,药物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种。在实施方案中,药物组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种。在实施方案中,药物组合物包括治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌并且提供了药学上可接受的赋形剂。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium 
hiranonis。
[0018] 在一方面,提供了治疗或预防有需要的受试者中炎性疾病的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0019] 在一方面,提供了增加有需要的受试者中抗炎代谢物的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0020] 在一方面,提供了减少有需要的受试者中促炎代谢物的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的细菌群体。在实施方案中,方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,细菌群体还包括双歧杆菌属种或Clostridium hiranonis。
[0021] 在一方面,提供了检测患有炎性疾病或具有发展炎性疾病的险的受试者中抗炎代谢物的方法。方法包括(i)从受试者获得生物样品;和(ii)确定生物样品中抗炎代谢物的表达平。
[0022] 在一方面,提供了检测患有炎性疾病或具有发展炎性疾病的风险的受试者中促炎代谢物的方法。方法包括(i)从受试者获得生物样品;和(ii)确定生物样品中促炎代谢物的表达水平。
[0023] 在一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的促炎代谢物的表达水
平升高或抗炎代谢物的表达水平降低指示受试者患有炎性疾病或具有发展炎性疾病的风
险;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0024] 在一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种促炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的促炎代谢物的表达水平增加指示受
试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的表
达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0025] 在一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的抗炎代谢物的表达水平降低指示受
试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的表
达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0026] 在一方面,提供了监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法。方法包括(i)在第一时间点确定受试者中抗炎代谢物的
第一表达水平;(ii)在第二时间点确定受试者中抗炎代谢物的第二表达水平;和(iii)将抗炎代谢物的第二表达水平与抗炎代谢物的第一表达水平进行比较,从而确定受试者中炎性
疾病的治疗效果。
[0027] 在一方面,提供了监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法。方法包括(i)在第一时间点确定受试者中促炎代谢物的
第一表达水平;(ii)在第二时间点确定受试者中促炎代谢物的第二表达水平;和(iii)将促炎代谢物的第二表达水平与促炎代谢物的第一表达水平进行比较,从而确定受试者中炎性
疾病的治疗效果。
[0028] 在一方面,提供了确定受试者中炎性疾病活性的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物的表达水平;(ii)确定表达水平是否相对于标准对照被调节,从
而确定受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者中炎性疾病活性。
[0029] 在一方面,提供了确定受试者中炎性疾病活性的方法。方法包括(i)检测受试者中一种或更多种促炎代谢物的表达水平;(ii)确定表达水平是否相对于标准对照被调节,从
而确定受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者中炎性疾病活性。
[0030] 附图简述
[0031] 图1A-1B.显著改进的组织学和降低的杯状细胞增生只在补充C+Lj的小鼠中明显。来自六个实验组的每个组的三只小鼠的组织学样品被染色,以在重复研究中使杯状细
胞增生可视化。图1A:六组中的每个组的PAS染色的代表性图像清楚地示出,杯状细胞(染
色)的粘蛋白分泌是在CRA攻击的小鼠中诱导的,并且补充约氏乳杆菌和微生物聚生体为保
护免于该诱导的唯一治疗组。图1B:图像J用于定量每个图像中PAS染色阳性的面积的百分
比。每个数据点由两项独立鼠研究中产生的单独的符号表示。该数据的统计学分析示出,与所有其它CRA治疗组相比,与C+Lj聚生体补充的小鼠相关的PAS染色百分比显著减少。
[0032] 图2.在补充C+Lj的小鼠中MUC5AC的显著降低的表达支持组织学发现。从每只动物的肺提取的RNA用于检查MUC5AC的基因表达水平,MUC5AC为参与由杯状细胞产生粘蛋白的
基因。呈现了来自两项独立鼠研究的数据。该数据的统计学分析示出,与所有其它CRA治疗组相比,与C+Lj补充的小鼠相关的Muc5ac基因表达的百分比显著减少。
[0033] 图3A-3C.补充C+Lj导致与过敏性反应相关的细胞因子的气道表达降低。从每只动物的肺提取的RNA也用于检查与过敏性反应相关的多种细胞因子(包括IL-4(图3A)、IL-13
(图3B)、IL-10(图3C)和IL-17)的基因表达水平。类似地,对于Th2相关的细胞因子(IL-4和IL-13)以及IL-10,申请人观察到C+Lj补充相关的细胞因子表达的显著降低。呈现来自两项独立重复研究的数据。
[0034] 图4.分泌IL-17的T辅助细胞(CD3+CD4+)的百分比增加在补充C+Lj的小鼠中最为显著。来自脾细胞的流式细胞术数据揭示了表达IL-17的CD4+细胞百分比显著增加,IL-17为
与Th17细胞相关的细胞因子。该观察结果在重复研究中适用,并且此处示出了来自两项研
究的数据。
[0035] 图5A-5B.包括约氏乳杆菌但不包括鼠李糖乳杆菌LGG的细菌聚生体提供过敏性致敏的减弱。CRA过敏原小鼠研究使用鼠李糖乳杆菌LGG(LGG)或约氏乳杆菌(Lj)作为包括在
细菌聚生体补充物中的乳杆菌锚定物种进行。为了评价每个聚生体对致敏的影响,使用
qPCR确定肺组织中MUC5AC的表达水平。基于约氏乳杆菌的聚生体显著降低MUC5AC表达,而
鼠李糖乳杆菌LGG聚生体未能降低该过敏性反应生物标志物的表达。
[0036] 图6A-6C.来自非特应症新生儿的粪便水显著减少IL4和IL13应答的表达。图6A:粪便水暴露显著降低一个但不是两个供体中CD4+T-辅助2细胞的数量。图6B:IL4表达在两个
供体中显著减少。图6C:IL13表达在两个供体中显著减少。
[0037] 图7A-7B.来自念珠菌属(Candida)的不同新生儿肠道微生物组分离物的无细胞上清液持续地诱导CD4+IL4+(Th2)细胞(图7A)。特定物种诱导或抑制CD4+IL10+(T-reg)细胞
(图7B)。BHI,无菌脑心输注介质暴露(对照);CT,热带念珠菌(C.tropicalis);CP,近平滑念珠菌(C.parapsilosis);CO,拟平滑念珠菌(C.orthopsilosis);和CT,热带念珠菌;对照,非抗原刺激条件;CRA,蟑螂刺激T细胞。
[0038] 图8A-8D.UC微生物类型表现出明显不同的疾病严重程度和持续时间。图8A:简单结肠炎疾病严重程度评分。图8B:结肠外表现的数量。图8C:疾病持续时间。图8D.具有炎性肠病(IBD)的家庭成员人数。
[0039] 图9A-9D.体外粪便水测定揭示了UC患者表现出显著不同的Th2比率、IL4产量和CD8+IL17+群体。图9A:与健康对照相比,显著偏向Th2应答表征UC患者。图9B:UC微生物类型表现出Th2偏斜程度的显著差异,其中最严重的微生物类型(MBT-1)表现出最明显的Th2偏
斜。图9C:IL4表达跨UC微生物类型显著不同,其中与最低疾病严重程度组相比,MBT-1组表现出显著更高的IL4表达。图9D:与另外两个较低疾病严重程度组相比,MBT-1患者表现出显著更大数量的CD8+IL17+细胞。
[0040] 图10.实验时间表说明在鼠气道过敏性致敏模型中磷酸盐缓冲盐水(PBS)或治疗性聚生体(TC)补充方案和CRA攻击计划。
[0041] 图11A-11B.对小鼠口服补充TC促进与诱导免疫耐受相关的属的相对丰度的增加。图11A:使用16S rRNA测序确定研究中的动物粪便中的微生物组组成。聚类分析揭示在跨治疗组的微生物组组成的差异。与对照组相比,补充TC的动物示出显著不同的组成。具体地,补充TC的动物富集具有免疫调节活性潜的物种(例如双歧杆菌属(Bifidobacterium)、属
于进化枝IV和XIV的梭菌属(Clostridia)物种、毛螺菌属(Lachnospira)和拟杆菌
(Bacteroides))。图11B:示出CRA-TC治疗的动物中富集的分类单元的饼图。
[0042] 图12A-12B.口服补充TC的小鼠促进肠腔和外周两者中的代谢重新编程,且包括循环衣康酸的显著增加,这与修复巨噬细胞效应表型相关。图12A:使用非靶向液相色谱质谱对优势腔代谢物的主成分分析揭示了三组之间不同的代谢谱(堪培拉(Canberra)距离矩
阵;PERMANOVA,R2=0.29,p=0.005)。图12B:使用相同策略对血清中鉴定的循环代谢物的主成分分析也揭示了检查组之间的显著差异(堪培拉距离矩阵;PERMANOVA,R2=0.29,p=
0.002)。在蟑螂(CRA)抗原攻击前,非靶向LC GC质谱用于鉴定和确定补充TC或PBS的小鼠粪便(图12A)和血清(图12B)中数百种代谢物的相对浓度。PcoA图上补充TC对补充PBS的动物
的显著空间分开指示,这些动物粪便和血清中代谢物谱显著不同。
[0043] 图13A-13B.图13A:鼠气道(肺)的组织切片指示在鼠气道过敏性致敏模型中口服补充代谢活性的治疗性聚生体(CRA+TC)的小鼠显著减少炎性内流[苏木精和伊红(H&E)染
色;深色有核细胞]。单独的约氏乳杆菌不能带来保护(CRA+Lj),补充四种TC的动物也不能带来保护(省略约氏乳杆菌;CRA+C),表明约氏乳杆菌与TC的其它四个成员协同作用,以在气道粘膜表面处起到保护作用。热杀死的、无代谢活性的TC也不能带来保护,表明只有代谢活性的TC起保护作用。图13B:嗜酸性粒细胞标记物CCL-11表达的基因表达分析证实,在过敏性致敏后,CRA+TC组表现出肺中嗜酸性粒细胞的存在显著减少。
[0044] 图14A-14B.图14A:鼠气道(肺)的组织切片指示在鼠气道过敏性致敏模型中口服补充代谢活性的治疗性聚生体(CRA+TC)的小鼠显著减少粘蛋白分泌过多(过碘酸-希夫
(Periodic acid-Schiff)(PAS)染色;深色染色)。单独的约氏乳杆菌不能减少粘蛋白分泌
(CRA+Lj),补充四种TC的动物也不能减少粘蛋白分泌(省略约氏乳杆菌;CRA+C),表明约氏乳杆菌与TC的其它四个成员协同作用,以抑制气道粘膜表面处的粘蛋白分泌。热杀死的、无代谢活性的TC也不能减少粘蛋白分泌,表明只有代谢活性的TC起保护作用。图14B:负责气道中粘蛋白分泌的主要基因Muc5AC表达的基因表达分析证实,与其它治疗组相比,CRA+TC
组表现出肺粘蛋白基因表达显著减少。
[0045] 图15A-15C.口服补充代谢活性的TC的小鼠显著减少在鼠气道过敏性致敏模型中与过敏性炎症相关的细胞因子表达。图15A:箱线图证明,与PBS治疗和CRA攻击相比,用TC治疗和CRA攻击的动物中IL-13表达的相对变化显著降低。图15B:箱线图证明,与PBS治疗和
CRA攻击相比,用TC治疗和CRA攻击的动物中IL-4表达的相对变化显著降低。图15C:箱线图证明,与PBS治疗和CRA攻击相比,用TC治疗和CRA攻击的动物中IL-10表达的相对变化显著
降低。
[0046] 图16A-16F.口服补充TC的小鼠导致在鼠气道过敏性致敏模型中巨噬细胞效应表型的修复。在CRA+TC治疗的小鼠中,与CRA+PBS治疗的动物相比,CD11bhiF4/80hi巨噬细胞在(图16A)肠系膜淋巴结、(图16B)脾脏和(图16C)肺中形成更大百分比的非淋巴细胞群体。
CRA+TC和CRA+PBS治疗的动物在(图16D)肠系膜淋巴结和(图16E)脾脏两者中的非淋巴细胞
群体中示出类似百分比的CD11bhiF4/80hiCD206+(M2)巨噬细胞。图16F:在肺中,与CRA+PBS治疗的小鼠相比,CRA+TC治疗的动物示出非淋巴细胞群体中CD11bhiF4/80hiCD206+(M2)巨噬细胞的百分比增加。
[0047] 图17.示出用于鼠气道过敏性致敏研究模型中的治疗组的表格。
[0048] 图18A-18C.用治疗性聚生体(TC)口服补充小鼠后,肠腔中的代谢重新编程促进富集多不饱和脂肪酸(PUFA)的特定脂质即缩磷脂的浓度增加。在儿童期过敏和哮喘风险低
的新生儿粪便中的PUFA增加。图18A:用TC治疗后水化合物的浓度降低。图18B:用TC治疗后,能量化合物的浓度降低。图18C:用TC治疗后,脂质化合物(PUFA、长链脂肪酸、酰基甘油和支链脂肪酸)的浓度降低,并且(磷脂和缩醛磷脂)的浓度增加。
[0049] 图19.细菌和真菌α-多样性和β-多样性与粪便样品采集时参与者年龄相关。细菌α-多样性和真菌α-多样性呈负相关(香农(Shannon’s)指数;n=188;皮尔逊(Pearson’s)相关,r2=-0.24;P<0.001)。
[0050] 图20A-20B.新生儿中存在组成上不同、年龄无关的NGM状态,表现出真菌分类上的显著差异,并且与在2岁时的特应症RR相关。图20A:NGM参与者在年龄上没有显著差异(n=
130;克鲁斯卡尔-沃利斯(Kruskal-Wallis);P=0.256)。箱线图由第25和75百分位定义。中心线表示中位数(第50百分位)。须被定义为四分位差(IQR,75-25百分位)的1.5倍,分别加上或减去第75和25百分位。图20B:与NGM1参与者相比,对于NGM3来说在2岁时测量的过敏原特异性血清IgE浓度之和(n=130)显著较高(韦尔奇(Welch’s)t检验;P=0.034)。箱线图如图20A中定义的那样构建。
[0051] 图21.NGM表现出在2岁时PM特应症发展和在4岁时父母报告的医生诊断的哮喘的显著不同的RR。在对数二项式回归的基础上计算微生物群状态之间的风险比率的显著性。
[0052] 图22A-22F.来自NGM3参与者的无菌粪便水诱导与特应性哮喘相关的CD4+细胞群体功能障碍。将来自两个健康成人供体(生物重复)血清的树突细胞和自体纯化的初始CD4+
细胞与来自NGM1(n=7;每个样品三个生物重复)或NGM3(n=5;每个样品三个生物重复)参
+
与者的无菌粪便水一起孵育。图22A和22B:来自NGM3参与者的粪便水诱导显著增加的CD4
IL-4+细胞的比例(LME,P<0.001;中心线表示平均值)(图22A)和IL-4的表达(LME;P=
0.045)(图22B)。图22C:与对照相比,来自NGM1和NGM3参与者两者的粪便水诱导显著增加的CD4+CD25+FOXP3+细胞的比例(LME;对于NGM1P<0.001且对于NGM3P=0.017)。图22D:加权相关网络分析鉴定将NGM3与NGM2和NGM1参与者区分开的代谢模(n=28;ANOVA;P=0.038)。
箱图定义第25和75百分位;中位数由中心线表示。IQR(第75-25百分位)由须表示。图22E:代谢物显著性对区别NGM3的代谢模块中12种代谢物的模块成员资格(MM)的散点图。具有较高
代谢物显著性值的代谢物将NGM3与其它NGM区别开。虚线上方绘制的代谢物(表示NGM之间
差异的总p值)与NGM分化明显相关(P<0.05),并且与其它NGM相比,在NGM3中检测到较高浓
度的代谢物。MM值指示特定代谢物与模块中其它代谢物的互联性程度(MM值越高指示互联
性越大)。图22F:当使用在图22A-22C中进行的相同离体测定时,与媒介物对照相比,三种不同浓度的12,13-DiHOME显著减少CD4+CD25+FOXP3+细胞的比例(LME;对于75μM、130μM和200μM的浓度分别为P=0.04、P<0.001、P=0.001;中心线表示细胞的平均比例)。
[0053] 图23.狄利克雷(Dirichlet)多项式混合模型将三种组成上不同的细菌NGM鉴定为最佳模型拟合。模型拟合基于对负对数模型的拉普拉斯(Laplace)近似,其中较低值指示较好模型拟合。
[0054] 图24.来自NGM3参与者的无菌粪便水诱导CD4+IL-4+细胞偏斜。将来自两个健康成人供体(生物重复)血清的树突细胞与来自NGM1(n=7;每个样品三个生物重复)或NGM3(n=
5;每个样品三个生物重复)参与者的无菌粪便水一起孵育,然后与自体纯化的初始CD4+细
胞共孵育。与NGM1相比,NGM3粪便水诱导CD4+IL-4+细胞偏斜的趋势(LME;P=0.095)。
[0055] 图25.证实在用于离体测定的NGM3样品子集中二羟基脂肪酸12,13DiHOME的浓度显著增加。使用离体DC-T细胞测定中采用的样品子集,并且基于代谢物换算强度数据,与
NGM1(n=5)样品相比,12,13DiHOME在NGM3(n=7)中的相对浓度显著增加(韦尔奇t-检验;P=0.033)。
[0056] 图26.在本研究中用于确定参与者的PM特应症状态的过敏原。提供各自的过敏原特异性IgE(IU ml-1)的平均值和中位数。
[0057] 图27.IGM(>6个月的幼儿)发展特应症或患有父母报告的医生诊断的哮喘的风险比率。风险比率基于对数二项式回归计算。
[0058] 图28.低风险NGM1对高风险NGM3新生儿肠道微生物群中表现出相对丰度显著增加的真菌分类单元。使用零膨胀负二项式回归模型确定相对丰度的显著差异(q<0.20)。白色
背景指示在NGM1中富集的分类单元(与NGM3相比),灰色背景指示在NGM3中富集的分类单元
(与NGM1相比)。发现按相对丰度的差异排列(NGM1-NGM3)。
[0059] 图29.低风险NGM2对高风险NGM3新生儿肠道微生物群中表现出相对丰度显著增加的真菌分类单元。使用零膨胀负二项式回归模型确定相对丰度的显著差异(q<0.20)。白色
背景指示在NGM2中富集的分类单元(与NGM3相比),灰色背景指示在NGM3中富集的分类单元
(与NGM2相比)。发现按相对丰度的差异排列(NGM2-NGM3)。
[0060] 图30.基于16S rRNA的β-多样性、PICRUSt和代谢组学数据集的Procrustes分析。来自Procrustes分析的结果指示细菌β-多样性、PICRUSt和代谢组学数据为高度和显著相
关的。
[0061] 图31A-31C.健康(n=13)和UC相关(n=30)的粪便微生物群的比较。图31A:细菌多样性。水平条表示平均值±标准偏差。P值通过双尾学生t检验获得。图31B:由成对加权
UniFrac距离的非度量多维标度(NMDS)表示的细菌群落组成。图31E:由成对加权UniFrac距离的NMDS表示的按种族分层的UC患者的细菌群落组成(EU UC为18个,SA UC为12个)。在图
31B和图31E中,每个虚线椭圆表示如由ordiellipse计算的每个分层组质心的95%置信区
间。
[0062] 图32A-32D.UC MCS中UC严重程度的临床测量(对于MCS1为11个、对于MCS2为8个、对于MCS3为4个、对于MCS4为3个)。图32A:简单的临床结肠炎活性。图32B:结肠外症状的数量。图32C:被诊断患有IBD的家庭成员数量。图32D:疾病持续时间。所有成对比较都是用双尾Dunn检验进行的。仅指示P值<0.1。EU UC,正方形;SA UC,圆圈。
[0063] 图33A-33K.与无菌粪便水共孵育的自体DC共培养后的体外人类T细胞活性。图33A:Th1与Th2比率;图33B:Th1频率;图33C:Th2频率;图33D:Th17频率;e,调节T细胞频率(48名健康的,116名UC)。示出了健康和UC MCS的Th1频率(图33F)、Th2频率(图33G)和Th1与Th2比率(图33H)的比较(48名健康的、48名MCS1、40名MCS2、16名MCS3,以及8名MCS4)。示出了在人类T细胞与自体DC共培养后,细胞上清液中IL-4(图33I)、IL-5(图33J)和IL-13(图
33K)的浓度,所述自体DC受到来自健康参与者和MCS1和MCS2患者的灭菌粪便水的攻击(48
名健康参与者、48名MCS1患者、以及40名MCS2患者)。数据从用从两个匿名PBMC供体获得的DC/T细胞的四个(图33A-33H)或两个(图33I-33K)复制实验中产生。水平条(每组的平均拟
合值)和P值通过线性混合效应模型确定(参见材料和方法)。指示P值<0.1。
[0064] 图34A-34H.健康(n=13)和UC相关的(n=30)粪便真菌微生物群的比较。图34A:由健康状况分层的真菌α多样性。图34B:由成对布雷-柯蒂斯(Bray-Curtis)距离的NMDS表示的真菌群落组成。参与者被健康状况染色。细菌α多样性图34C和真菌α多样性图34D按健康状况和种族分层(10名健康EU、3名健康SA、18名UC EU,12名UC SA)。图34E:按种族分层的UC患者的简单临床结肠炎活性(14名EU UC、12名SA UC)。P值通过双尾秩和检验获得。图34F由成对加权UniFrac距离的NMDS表示的按种族分层的所有参与者的细菌群落组成(28名EU、15
名SA)。图34G:由成对布雷-柯蒂斯距离的NMDS表示的按种族分层的所有参与者的真菌群落组成(28名EU、15名SA)。图34H:由成对堪培拉距离的NMDS表示的按种族分层的UC患者的
PhyloChip分析的细菌群落组成(15名EU UC、11名SA UC)。在图a、c和d中,水平条表示平均值±标准偏差。P值通过双尾t检验获得。在图34B和图34F-34H中,每个虚线椭圆表示如由
ordiellipse计算的每个参与者分层组质心的95%置信区间。每个点/正方形表示从单一供
体获得的单一粪便样品。
[0065] 图35A-35B.按UC MCS分层的UC患者的细菌群落组成。图35A:经由Illumina MiSeq获得的16S rRNA谱的成对加权UniFrac距离的NMDS(12名MCS1、10名MCS2、4名MCS3、3名
MCS4、1名其它)。图35B:经由PhyloChip获得的16S rRNA谱的成对堪培拉距离的NMDS(10名MCS1、8名MCS2、4名MCS3、2名MCS4、1名其它)。每个虚线椭圆表示如由ordiellipse计算的每个参与者分层组质心的95%置信区间。每个点/正方形表示从单一供体获得的单一粪便样
品。
[0066] 图36.与无菌粪便水共孵育的自体DC共培养后的体外人类T细胞活性。比较EU UC(n=)和SA UC患者的诱导Th1与Th2比率。数据为从用从两个匿名PBMC供体获得的DC/T细胞
的四个重复实验中产生的。水平条(每组的平均拟合值)和P值通过线性混合效应模型确定。
[0067] 图37.研究参与者队列的细分。注意:1名SA-UC参与者没有报告他们的性别。
[0068] 图38.Metabolon QC样品的描述。
[0069] 图39.Metabolon QC标准。
[0070] 详述
[0071] I.定义
[0072] 虽然在本文中示出和描述了本发明的各种实施方案和方面,但是对于本领域技术人员而言明显的是,此类实施方案和方面仅仅是作为实施例提供的。在不脱离本发明的情
况下,本领域技术人员现在将想到许多变化、改变和替换。应当理解,在实践本发明时,可以采用本文中描述的本发明的实施方案的各种替代方案。
[0073] 本文中使用的章节标题仅用于组织目的,并且不应被解释为限制所描述的主题。在本申请中引用的所有文件或部分文件,包括但不限于专利、专利申请、文章、书籍、手册和论文出于任何目的以其整体在此明确地通过引用并入。
[0074] 除非另外定义,否则本文中使用的技术和科学术语具有与本领域普通技术人员通常理解的相同含义。参见,例如,Singleton等人,DICTIONARY OF MICROBIOLOGY AND 
MOLECULAR BIOLOGY第二版,J.Wiley&Sons(New York,NY 1994);Sambrook等人,MOLECULAR CLONING,A LABORATORY MANUAL,Cold Springs Harbor Press(Cold Springs Harbor,NY 
1989)。在本发明的实践中可以使用类似于或等同于本文中所述的任何方法、装置和材料。
提供以下定义以便于理解本文中经常使用的某些术语,并不意味着限制本公开内容的范
围。
[0075] 术语“外源性”是指起源于给定细胞或生物体以外的分子或物质(例如,化合物、核酸或蛋白质)。例如,如本文中所提及的“外源启动子”为不起源于表达它的植物的启动子。相反,术语“内源性”或“内源启动子”是指原产于或起源于给定细胞或生物体内的分子或物质。
[0076] 术语“分离的”在应用于核酸或蛋白质时表示核酸或蛋白质基本上不含与其在自然状态下缔合的其它细胞组分。例如,它可以是均质状态,并且可以在干溶液或水溶液中。
纯度和均质性使用分析化学技术诸如聚丙烯酰胺凝胶电泳法或高效液相色谱法典型地确
定。制品中存在的优势物类(predominant species)的蛋白质是基本上纯化的。
[0077] 术语“分离的”在应用于细菌时是指已经(1)与在最初生产时(无论是在自然界还是在实验环境中)与其相缔合的至少一些组分分开的细菌,和/或(2)由人工生产、制备、纯化和/或制造的细菌,例如使用人工培养条件,诸如(但不限于)在平板上和/或在发酵罐
培养。分离的细菌包括被培养的那些细菌,即使此类培养物不是单一培养物。分离的细菌可以与其最初相缔合的其它组分的至少约10%、约20%、约30%、约40%、约50%、约60%、约
70%、约80%、约90%或更多分开。在实施方案中,分离的细菌大于约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或大于约99%纯。
在实施方案中,本文提供的细菌群体包括分离的细菌。在实施方案中,本文提供的组合物包括分离的细菌。在实施方案中,施用的细菌为分离的细菌。
[0078] 如本文使用的,如果物质基本上不含其它组分,那么该物质为“纯的”。在应用于细菌时,术语“纯化(purify)”、“纯化(purifying)”和“纯化的(purified)”是指已经与在最初生产或产生时(例如,无论是在自然界还是在实验环境中),或者在其最初生产后的任何时间期间,和与其相缔合的至少一些组分分开的细菌。如果细菌或细菌群体在生产时或生产
后被分离,诸如从含有细菌或细菌群体的材料或环境中分离,或者通过培养来分离,那么该细菌或细菌群体可以被认为是纯化的,并且纯化的细菌或细菌群体可以含有高达约10%、
约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%或高于约90%的其它材料,并且仍然被认为是“分离的”。在一些实施方案中,纯化的细菌和细菌群体大于约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或大于约99%纯。在本文提供的微生物组合物的情况中,组合物中存在的一种或更多种细
菌类型(物种或菌株)可以独立地从含有该细菌类型的材料或环境中产生和/或存在的一种
或更多种其它细菌中纯化。微生物组合物及其细菌组分通常从残留的生境产物中纯化。
[0079] 术语“多肽”、“肽”和“蛋白质”在本文中可互换使用,是指基酸残基的聚合物,其中聚合物在实施方案中可以与不由氨基酸组成的部分缀合。术语适用于其中一个或更多个氨基酸残基是天然存在的氨基酸的对应的人工化学模拟物的氨基酸聚合物,以及天然存在
的氨基酸聚合物和非天然存在的氨基酸聚合物。“融合蛋白质”是指编码重组表达成一个部分的两个或更多个分开的蛋白质序列的嵌合蛋白质。
[0080] 术语“肽基”和“肽基部分”意指单价肽。
[0081] 术语“氨基酸”是指天然存在的氨基酸和合成氨基酸,以及以类似于天然存在的氨基酸的方式作用的氨基酸类似物和氨基酸模拟物。天然存在的氨基酸是由遗传密码编码的那些氨基酸,以及后来被修饰的那些氨基酸,例如羟脯氨酸、γ-羧基谷氨酸和O-磷酸丝氨酸。氨基酸类似物是指具有与天然存在的氨基酸相同的基本化学结构(即与氢、羧基基团、氨基基团和R基键接的α碳)的化合物,例如高丝氨酸、正亮氨酸、蛋氨酸亚砜、蛋氨酸甲锍(methionine methyl sulfonium)。此类类似物具有修饰的R基(例如正亮氨酸)或修饰的肽
主链,但保留与天然存在的氨基酸相同的基本化学结构。氨基酸模拟物是指具有与氨基酸
的一般化学结构不同的结构、但以类似于天然存在的氨基酸的方式作用的化合物。术语“非天然存在的氨基酸”和“非天然氨基酸”是指氨基酸类似物、合成氨基酸和在自然界中找不到的氨基酸模拟物。
[0082] 在本文中氨基酸可以由其通常已知的三个字母符号或由IUPAC-IUB生物化学命名委员会(Biochemical Nomenclature Commission)推荐的单字母符号指代。同样,核苷酸也可以由其通常接受的单字母代码指代。
[0083] “保守修饰的变体”适用于氨基酸和核酸序列两者。对于特定核酸序列,“保守修饰的变体”是指编码同一或基本上同一氨基酸序列的那些核酸。由于遗传密码的简并性,许多核酸序列将编码任何给定的蛋白质。例如,密码子GCA、GCC、GCG和GCU全部编码氨基酸丙氨酸。因此,在丙氨酸由密码子指定的每个位置,密码子可以被更改为所描述的任何对应密码子,而不更改所编码的多肽。此类核酸变异为“沉默变异”,其为保守修饰的变异中的一种。本文中编码多肽的每一个核酸序列也描述该核酸的每一种可能的沉默变异。本领域技术人
员将认识到,核酸中的每个密码子(除了通常为蛋氨酸的唯一密码子的AUG和通常为色氨酸
的唯一密码子的TGG)可以被修饰以产生功能上相同的分子。因此,编码多肽的核酸的每种
沉默变异隐含在每个描述的序列中。
[0084] 至于氨基酸序列,本领域技术人员将认识到,更改、添加或缺失所编码的序列中单一氨基酸或小百分比氨基酸的核酸、肽、多肽或蛋白质序列的个别取代、缺失或添加是“保守修饰的变体”,其中更改导致氨基酸被化学上类似的氨基酸取代。提供功能上类似的氨基酸的保守取代表在本领域是众所周知的。此类保守修饰的变体是在本发明的多态性变体、种间同系物和等位基因以外的,并且不排除本发明的多态性变体、种间同系物和等位基因。
[0085] 以下八组各自含有彼此为保守取代的氨基酸:
[0086] 1)丙氨酸(A)、甘氨酸(G);
[0087] 2)天冬氨酸(D)、谷氨酸(E);
[0088] 3)天冬酰胺(N)、谷氨酰胺(Q);
[0089] 4)精氨酸(R)、赖氨酸(K);
[0090] 5)异亮氨酸(I)、亮氨酸(L)、蛋氨酸(M)、缬氨酸(V);
[0091] 6)苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);
[0092] 7)丝氨酸(S)、苏氨酸(T);和
[0093] 8)半胱氨酸(C)、蛋氨酸(M)
[0094] (参见,例如,Creighton,Proteins(1984))。
[0095] 在两个或更多个核酸或多肽序列的上下文中,术语“同一的”或百分比“同一性”是指两个或更多个序列或子序列相同或具有指定百分比的相同的氨基酸残基或核苷酸(即,当在比较窗口或设定区域上对最大对应进行比较和比对时,在指定区域上约60%同一性,
优选65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、
99%或更高的同一性),如使用下文描述的BLAST或BLAST 2.0序列比较算法与默认参数进
行测量,或者通过手工比对和目检进行测量(参见,例如,NCBI网站http://
www.ncbi.nlm.nih.gov/BLAST/或类似的)。然后此类序列被称为“基本上同一”。该定义也指或者可以应用于测试序列的互补物。定义还包括具有缺失和/或添加的序列,以及具有取代的那些序列。如下文所述,优选算法可以考虑空位(gap)等。优选地,同一性存在于长度为至少约25个氨基酸或核苷酸的区域上,或者更优选存在于长度为50-100个氨基酸或核苷酸
的区域上。
[0096] “标记”或“可检测部分”为通过光谱、光化学、生物化学、免疫化学、化学或其它物理手段可检测的组合物。例如,可用的标记包括32P、荧光染料(例如花青)、电子致密试剂、酶(例如,如ELISA中常用的)、生物素、地高辛,或可以例如通过将放射性标记掺入到与靶肽特异反应的肽或抗体中可检测的半抗原和蛋白质或其它实体。可以采用本领域已知的用于将抗体缀合到标记的任何合适的方法,例如,使用Hermanson,Bioconjugate Techniques 
1996,Academic Press,Inc.,San Diego中描述的方法。
[0097] “接触”根据其简单的普通含义使用,并且是指允许至少两种截然不同物类(例如包括生物分子的化合物和/或细胞诸如细菌细胞)变得足够接近以反应、相互作用或物理接
触的过程。这是应该理解的;然而,所得反应产物可以由添加的试剂之间的反应直接产生,或者由可在反应混合物中产生的一种或更多种添加的试剂的中间体产生。
[0098] 术语“接触”可以包括允许两种物类反应、相互作用或物理接触,其中这两种物类可以是例如本文中所述的抗体结构域和抗体结合结构域。在实施方案中,接触包括例如允许如本文中所述的抗体结构域与抗体结合结构域相互作用。
[0099] “患者”或“有需要的受试者”是指患有或可能患有指示的紊乱的动物界的活成员。在实施方案中,受试者为包括自然患有疾病的个体的物种的成员。在实施方案中,受试者为哺乳动物。哺乳动物的非限制性实施例包括啮齿动物(例如小鼠和大鼠)、灵长动物(例如狐猴、丛猴、猴子、猿和人类)、兔子、犬(例如伴侣犬、服务犬或工作犬,诸如警犬、军犬、赛犬或表演犬)、马(诸如赛马和工作马)、猫(例如家养猫)、牲畜(诸如猪、牛、驴、骡子、野牛、山羊、骆驼和绵羊)和鹿。在实施方案中,受试者为人类。在实施方案中,受试者为非哺乳动物,诸如火鸡、鸭子或鸡。在实施方案中,受试者为患有或易于患疾病或状况的活生物体,该疾病或状况可以通过施用如本文提供的组合物或药物组合物来治疗。
[0100] 术语“疾病”或“状况”是指能够用本文提供的化合物、药物组合物或方法治疗的患者或受试者的存在状态或健康状况。在实施方案中,疾病为炎性疾病(例如哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病、结节性红斑或本文提及的任何其它炎性疾病)。如本文所用,疾病的“症状”包括与疾病相关联的任何临床或实验室表现,并且不限于受试者可感觉或观察到的表现。
[0101] 如本文所用,术语“炎性疾病”是指以异常炎症(例如,与对照诸如未患有疾病的健康人相比炎症水平增加)为特征的疾病或状况。炎性疾病的非限制性实施例包括过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩(Crohn’s)病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔(Whipple's)病、沃尔曼(Wolman)病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利(Guillain-Barre)综合征、桥本氏(Hashimoto’s)脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏(Graves)眼病、阿狄森氏(Addison’s)病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0102] 如本文所用,术语“菌群失调”意指与健康或普通群体相比,胃肠微生物群的差异。在实施方案中,菌群失调包括与健康或普通群体相比的胃肠微生物群共栖物种多样性的差
异。在实施方案中,菌群失调包括有益微生物的减少和/或致病有机体(pathobiont)(致病
微生物或潜在致病微生物)的增加和/或总体微生物群物种多样性的降低。许多因素可伤害
肠微生物群的有益成员,导致菌群失调,包括(但不限于)抗生素的使用、心理和生理压力、辐射和饮食改变。在实施方案中,菌群失调包括或促进细菌机会致病菌诸如粪肠球菌
(Enterococcus faecalis)、屎肠球菌(Enterococcus faecium)或艰难梭菌(Clostridium 
difficile)的过度生长。在实施方案中,与健康受试者(例如,不患有炎性疾病、感染并且在约1、2、3、4、5或6个月内没有施用抗生素的对应受试者)相比,和/或与健康或普通群体相比,菌群失调包括物种或属的细菌或真菌细胞的量(总微生物群体的绝对数量或比例)减少
(例如,5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、
75%、80%、85%、90%、95%或减少得更多)。在实施方案中,与健康受试者(例如,不患有炎性疾病、感染并且在约1、2、3、4、5或6个月内没有施用抗生素的对应受试者)相比,和/或与健康或普通群体相比,菌群失调包括物种或属内细菌或真菌细胞的量(总微生物群体的绝
对数量或比例)增加(例如,5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、
60%、65%、70%、75%、80%、85%、90%、95%或增加更多)。在实施方案中,包括胃肠感染、胃肠炎症、腹泻、结肠炎或在约1、2、3、4、5、6、7、8、9或10周内接受抗生素的受试者被认为包括菌群失调。在实施方案中,受损的微生物群包括小肠细菌或真菌过度生长。抗生素施用
(例如系统地,诸如通过静脉注射或口服)为正常微生物群中重大变化的常见和重要原因。
因此,如本文所用,术语“抗生素诱导的菌群失调”是指由施用抗生素引起或在施用抗生素后引起的菌群失调。
[0103] 菌群失调的非限制性实施例在本文提供的实施例中描述。在新生儿的上下文中菌群失调的非限制性实施例也在Fujimura等人.(2016)“Neonatal gut microbiota 
associates with childhood multisensitized atopy and T cell differentiation”
Nature Medicine 22(10):1187-1191(在下文中为“Fujimura等人.2016”)中描述,其全部内容(包括所有补充信息和数据)通过引用并入本文。在一些实施方案中,患有菌群失调的
受试者具有如Fujimura等人.2016中所列出的NGM3微生物组谱。在溃疡性结肠炎的上下文
中菌群失调的非限制性实施例在Mar等人.(2016)“Disease Severity and Immune 
Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically 
Distinct Ulcerative Colitis Patients”mBio 7(4):e01072-16(在下文中为“Mar等人
.2016”)中描述,其全部内容(包括所有补充信息和数据)通过引用并入本文。在一些实施方案中,患有菌群失调的受试者具有如Mar等人.2016中所列出的MCS4微生物组谱。在一些实
施方案中,患有菌群失调的受试者具有如Mar等人.2016中所列出的MCS3微生物组谱。在一
些实施方案中,患有菌群失调的受试者具有如Mar等人.2016中所列出的MCS2微生物组谱。
在一些实施方案中,患有菌群失调的受试者具有如Mar等人.2016中所列出的MCS1微生物组
谱。
[0104] 在与疾病(例如过敏、哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑)相关的物质或物质活性或功能的上下文中,术语“相关”或“与……相关”意指疾病(全部或部分地)由该物质或物质活性或功能引起,或者疾病的症状(全部或部分地)由该物质或物质活性或功能引起。
[0105] 如本文所用,术语“异常”是指不同于正常。当用于描述酶活性时,异常是指大于或小于正常对照或正常非患病对照样品的平均值的活性。异常活性可以是指导致疾病的活性量,其中将异常活性恢复到正常或非疾病相关量(例如,通过使用如本文所述的方法)导致
疾病或一种或更多种疾病症状的减少。
[0106] “对照”或“标准对照”是指用作与测试样品、测量值或值进行比较的参考(通常为已知参考)的样品、测量值或值。例如,可以从怀疑患有给定疾病(例如,菌群失调、自身免疫性疾病、炎性自身免疫性疾病、癌症、传染病、免疫性疾病或其它疾病)的患者中提取测试样品,并且将其与已知的正常(非患病)个体(例如,标准对照受试者)进行比较。标准对照也可以表示从不患有给定疾病(即标准对照群体)的类似个体的群体(例如标准对照受试者),例如具有类似医学背景、相同年龄、体重等的健康个体,收集的平均测量值或值。标准对照值也可以从同一个体获得,例如,从疾病发作之前从患者较早获得的样品中。例如,可以设计对照来基于药理学数据(例如半衰期)或治疗措施(例如副作用比较)比较治疗益处。对照对
于确定数据的显著性也为有价值的。例如,如果给定参数的值在对照中变化很大,那么测试样品中的变化将不被认为是显著的。本领域技术人员将认识到,标准对照可以被设计用于
评估任何数量的参数(例如微生物组、RNA水平、蛋白质水平、特定细胞类型、特定体液、特定组织、滑膜细胞、滑膜液、滑膜组织、纤维细胞样滑膜细胞、巨噬细胞样滑膜细胞等)。
[0107] 本领域技术人员将理解在给定情况下哪些标准对照最合适,并且将能够基于与标准对照值的比较来分析数据。标准对照对于确定数据的显著性(例如统计显著性)也是有价
值的。例如,如果给定参数的值在标准对照中变化很大,那么测试样品中的变化将不被认为是显著的。
[0108] 术语“诊断”是指疾病(例如自身免疫性疾病、炎性自身免疫性疾病、癌症、传染病、免疫性疾病或其它疾病)存在于受试者中的相对概率。类似地,术语“预后”是指相对于疾病状态,受试者可出现某一未来结果的相对概率。例如,在本发明的上下文中,预后可以是指个体将发展疾病(例如自身免疫性疾病、炎性自身免疫性疾病、癌症、传染病、免疫性疾病或其它疾病)的可能性,或者疾病的可能严重程度(例如疾病持续时间)。如将由医学诊断领域中的任何一位技术人员所理解的,术语并不旨在为绝对的。
[0109] “生物样品”或“样品”是指从受试者或患者获得或衍生的材料。生物样品包括组织切片,诸如活检和尸检样品,以及为了组织学目的而取的冷冻切片。此类样品包括体液,诸如血液和血液级分或产物(例如血清、血浆、血小板、红细胞等)、粪便和粪便级分或产物(例如粪便水,诸如但不限于通过诸如离心和过滤的方法与其它粪便组分和固体分开的粪便水)、痰、组织、培养细胞(例如原代培养物、外植体和转化细胞)、大便、尿液、滑膜液、关节组织、滑膜组织、滑膜细胞、成纤维细胞样滑膜细胞、巨噬细胞样滑膜细胞、免疫细胞、造血细胞、成纤维细胞、巨噬细胞、树突细胞、T细胞等。在实施方案中,样品从真核生物获得,诸如哺乳动物诸如灵长动物例如黑猩猩或人类;奶牛;犬;猫;啮齿动物,例如豚鼠、大鼠、小鼠;
兔子;或鸟;爬行动物;或鱼。
[0110] 如本文所用,“细胞”是指进行足以保存或复制其基因组DNA的代谢或其它功能的细胞。细胞可以通过本领域周知的方法鉴定,包括例如完整的膜的存在、用特定染料染色、产生子代的能力,或者在配子的情况下,与第二配子结合以产生可存活后代的能力。细胞可以包括原核细胞和真核细胞。原核细胞包括但不限于细菌。真核细胞包括但不限于酵母
胞和源自植物和动物的细胞,例如哺乳动物、昆虫(如灰翅夜蛾(spodoptera))和人类细胞。
当细胞天然不粘附或已经被处理(例如通过胰蛋白酶化)为不粘附于表面时,细胞可以为可
用的。
[0111] 如本文所用,物种的缩写“sp.”意指所指示的属的至少一个物种(例如,1、2、3、4、5或更多个物种)。物种的缩写“spp.”意指所指示的属的2个或更多个物种(例如,2、3、4、5、6、7、8、9、10个或更多个)。在实施方案中,本文提供的方法和组合物包括所指示的属或多个所指示的属内的单一物种,或者所指示的属或多个所指示的属内的2个或更多个(例如,包括
多于2个的多个)物种。在实施方案中,1、2、3、4、5个或更多个或全部所指示的物种被分离。
在实施方案中,所指示的物种被一起施用。在实施方案中,所指示的物种中的每一个存在于包括物种中的每一个的单一组合物中。在实施方案中,每个物种被同时施用,例如在彼此约
1、2、3、4、5、6、7、8、9、10、30或60、1-5、1-10、1-30、1-60或5-15秒或分钟内。
[0112] 在本公开内容中,“包含(comprises)”、“包括(comprising)”、“含有”和“具有”等可以具有美国专利法中赋予它们的含义,并且可以表示“包括(includes、including)”等。“基本上由……组成”或“基本组成为”同样具有美国专利法中赋予的含义,并且该术语为开放式的,允许存在多于所叙述内容,只要所叙述内容的基本或新颖特征不因为存在多于所
叙述内容而改变,但是排除现有技术的实施方案。相比之下,过渡短语“由……组成”排除未指定的任何元素、步骤或成分。
[0113] 如本文所用,在数值或范围的上下文中术语“约”意指所叙述或要求保护的数值或范围的±10%,除非上下文需要更有限的范围。
[0114] 在本文的说明书权利要求中,短语诸如“至少一个”或“一个或更多个”可以出现在要素或特征的连接列表之后。术语“和/或”也可以出现在两个或更多个要素或特征的列表中。除非另外与使用该短语的上下文隐含或明确矛盾,否则此类短语旨在意指任何单独列出的要素或特征,或者与任何其它叙述的要素或特征组合的任何叙述的要素或特征。例
如,短语“A和B中的至少一个”;“A和B中的一个或更多个”;和“A和/或B”各自旨在意指“单独A、单独B或A和B一起”。类似的解释也旨在用于包括三个或更多个项目的列表。例如,短语“A、B和C中的至少一个”;“A、B和C中的一个或更多个”;和“A、B和/或C”各自旨在意指“单独A、单独B、单独C、A和B一起、A和C一起、B和C一起,或者A和B和C一起”。此外,以上和权利要求中使用的术语“基于”旨在意指“至少部分基于”,使得未叙述的特征或要素也是可允许的。
[0115] 应当理解,在提供参数范围的情况下,该范围内的所有整数及其十分之一也由本发明提供。例如,“0.2-5mg”公开了0.2mg、0.3mg、0.4mg、0.5mg、0.6mg等,高达并且包括
5.0mg。
[0116] 如在本文的描述以及在随后的整个权利要求中所使用的,“一(a)”、“一个(an)”和“所述”的含义包括复数引用,除非上下文另外明确规定。
[0117] II.细菌群体和微生物组合物
[0118] 在一方面,组合物包括细菌群体,该细菌群体包括1、2、3、4、5、6、7或8(或至少1、2、3、4、5、6、7或8)个细菌物种、基本上由1、2、3、4、5、6、7或8(或至少1、2、3、4、5、6、7或8)个细菌物种组成或由1、2、3、4、5、6、7或8(或至少1、2、3、4、5、6、7或8)个细菌物种组成。在实施方案中,细菌群体包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8个、基本上由乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8个组成或由乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、
4、5、6、7或8个组成。在实施方案中,细菌群体包括乳杆菌属种和普氏栖粪杆菌。在实施方案中,细菌群体包括乳杆菌属种和嗜粘蛋白阿克曼氏菌。在实施方案中,细菌群体包括乳杆菌属种和黄色粘球菌。在实施方案中,细菌群体包括乳杆菌属种和深褐孢囊杆菌。在实施方案中,细菌群体包括乳杆菌属种和戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。在实施方案中,细菌群体包括乳杆菌属种和两歧双歧杆菌、假长双歧杆菌、世纪双歧杆菌或细长双歧杆菌。在实施方案中,细菌群体包括乳杆菌属种和Clostridium 
hiranonis。在实施方案中,乳杆菌种为约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、Lactobacillus crustorum、弯曲乳杆菌、Lactobacillus diolivorans、
Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌。在实施方案中,乳杆菌属种为约氏乳杆菌。在实施方案中,细菌群体包括以下的任何组合中的至少1、
2、3、4、5、6、7、8、9或10个,或1-5、1-10、1-5或1-20个:约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus 
coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、
Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌、乳酸乳球菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、深褐孢囊杆菌、戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌和小片球菌。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在实施方案中,细菌为分离的细菌。
[0119] 在一方面,提供了包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种的组合物。在实施方案中,(i)乳杆菌属种为约氏乳杆菌;(ii)栖粪杆菌属属种为普氏栖粪杆菌;(iii)阿克曼氏菌种为嗜粘蛋白阿克曼氏菌;(iv)粘球菌属种为黄色粘球菌;并且(v)片球菌属种为戊糖片球菌。
[0120] 在一方面,提供包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、孢囊杆菌属种和/或片球菌属种的组合物。在实施方案中,(i)乳杆菌属种为约氏乳杆菌;(ii)栖粪杆菌属种为普氏栖粪杆菌;(iii)阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)孢囊杆菌属种为深褐孢囊杆菌;并且(v)片球菌属种为戊糖片球菌。
[0121] 在实施方案中,细菌群体还包括双歧杆菌属种或梭菌属种。在实施方案中,双歧杆菌属种为两歧双歧杆菌、假长双歧杆菌、世纪双歧杆菌或细长双歧杆菌。在实施方案中,梭菌属种为Clostridium hiranonis。
[0122] 在一方面,提供了微生物组合物。组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、戊糖片球菌和适合于施用于肠道的生物载体。
[0123] 在一方面,提供了微生物组合物。组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌和适合于施用于肠道的生物载体。
[0124] 在实施方案中,生物载体适合于口服或经直肠施用。在实施方案中,生物载体适合于肠道的定植。如本文所提及的“生物学上可接受的”(或“药理学上可接受的”)载体是指如本文所述的分子实体和组合物,当向动物或人类施用时,它们不产生不良、过敏性或其它不利反应。
[0125] 在实施方案中,组合物包括少于约20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、3或2个不同物种的细菌。在实施方案中,组合物包括少于约20个不同物种的细菌。在实施方案中,组合物包括少于20个不同物种的细菌。在实施方案中,组合物包括少于约15个不同物种的细菌。在实施方案中,组合物包括少于15个不同物种的细菌。在实施方案中,组合物包括少于约10个不同物种的细菌。在实施方案中,组合物包括少于10个不同物种的细
菌。在实施方案中,组合物包括少于约9个不同物种的细菌。在实施方案中,组合物包括少于
9个不同物种的细菌。在实施方案中,组合物包括少于约8个不同物种的细菌。在实施方案
中,组合物包括少于8个不同物种的细菌。在实施方案中,组合物包括少于约7个不同物种的细菌。在实施方案中,组合物包括少于7个不同物种的细菌。在实施方案中,组合物包括少于约6个不同物种的细菌。在实施方案中,组合物包括少于6个不同物种的细菌。在实施方案
中,组合物包括少于约5个不同物种的细菌。在实施方案中,组合物包括少于5个不同物种的细菌。在实施方案中,组合物包括少于约4个不同物种的细菌。在实施方案中,组合物包括少于4个不同物种的细菌。在实施方案中,组合物包括少于约3个不同物种的细菌。在实施方案中,组合物包括少于3个不同物种的细菌。在实施方案中,组合物包括少于约2个不同物种的细菌。在实施方案中,组合物包括少于2个不同物种的细菌。
[0126] 在实施方案中,组合物不是粪便移植物。在实施方案中,组合物另外包含药物可接受的赋形剂。在实施方案中,组合物为胶囊、片剂、悬液、栓剂、粉末、霜剂、油、水包油乳液、油包水乳液或水溶液。在实施方案中,组合物呈粉末、固体、半固体或液体的形式。在实施方案中,组合物为食物或饮料。
[0127] 在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种呈粉末的形式。在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种已被冻干。
[0128] 在实施方案中,粘球菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。在实施方案中,粘球菌属种呈包含孢子的粉末的形式。在实施方案中,梭菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。在实施方案中,梭菌属种呈包含孢子的粉末的
形式。
[0129] 在实施方案中,细菌组合物在20℃具有小于约0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1的水活度(aw)。在实施方案中,细菌组合物在20℃具有小于约0.9的aw。在实施方案中,细菌组合物在20℃具有小于0.9的aw。在实施方案中,细菌组合物在20℃具有小于约0.8的aw。在实施方案中,细菌组合物在20℃具有小于0.8的aw。在实施方案中,细菌组合物在20℃具有小于约0.7的aw。在实施方案中,细菌组合物在20℃具有小于0.7的aw。在实施方案中,细菌组合物在20℃具有小于约0.6的aw。在实施方案中,细菌组合物在20℃具有小于0.6的
aw。在实施方案中,细菌组合物在20℃具有小于约0.5的aw。在实施方案中,细菌组合物在20℃具有小于0.5的aw。在实施方案中,细菌组合物在20℃具有小于约0.4的aw。在实施方案中,细菌组合物在20℃具有小于0.4的aw。在实施方案中,细菌组合物在20℃具有小于约0.3的
aw。在实施方案中,细菌组合物在20℃具有小于0.3的aw。在实施方案中,细菌组合物在20℃具有小于约0.2的aw。在实施方案中,细菌组合物在20℃具有小于0.2的aw。在实施方案中,细菌组合物在20℃具有小于约0.1的aw。在实施方案中,细菌组合物在20℃具有小于0.1的aw。
[0130] 如本文提供的“微生物组合物”是指包括细菌群体的组合物,该细菌群体包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8个、基本上由其组成或由其组成。在实施方案中,细菌群体包括乳杆菌属种和普氏栖粪杆菌。在实施方案中,细菌群体包括乳杆菌属种和嗜粘蛋白阿克曼氏菌。在实施方案中,细菌群体包括乳杆菌属种和黄色粘球菌。在实施方案中,细菌群体包括乳杆菌属种和深褐孢囊杆菌。在实施方案中,细菌群体包括乳杆菌属种和戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。在实施方案中,细菌群体包括乳杆菌属种和两歧双歧杆菌、假长双歧杆菌、世纪双歧杆菌或细长双歧杆菌。在实施方案中,细菌群体包括乳杆菌属种和Clostridium hiranonis。在实施方案中,乳杆菌属种为约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、
Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌。在实施方案中,乳杆菌种为约氏乳杆菌。在实施方案中,细菌群体包括以下的任何组合中的至少1、2、3、4、5、6、7、8、9或10,或1-5、1-10、1-5或1-20个:约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、Lactobacillus crustorum、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌、乳酸乳球菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、深褐孢囊杆菌、戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌和小片球菌。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在一些实施方案中,微生物组合物包括细菌类型约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌的一种或更多种的细菌细胞。在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌。在实施方案中,细菌为分离的。如本文所用,一种“类型”或多于一种“类型”的细菌可以在属级、物种级、亚物种级、菌株级或通过本文中所述的和以其他方式本领域已知的任何其它分类方法分化。
[0131] 在实施方案中,组合物包括有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,组合物包括有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌。在实施方案中,组合物基本上由有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌组成。在实施方案中,组合物由有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌组成。在微生物组合物“基本上由”约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌组成时,可以包括不干扰微生物组合物的操作
或基本和新颖特征的其它剂。
[0132] “有效量”为足以实现规定目的的量(例如达到施用的效果、治疗疾病、降低酶活性、减少疾病或病况的一种或更多种症状的效果)。“有效量”的实例为足以有助于治疗、预防或减少疾病的一种或多种症状的量,也可称为“治疗有效量”。因此,如本文提供的“有效量”或“治疗有效量”是指相对于未治疗的患者,改善或预防疾病的症状(例如,菌群失调、感染或炎性疾病)所需的细菌群体(例如,包括一个或更多个细菌物种或菌株的细菌群体,诸
如包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌的细菌群体)的量。在实施方案中,微生物组合物不包括鼠李糖乳杆菌。
[0133] 一种或多种症状的“减少”(和该短语的语法等价物)意指(一种或多种)症状的严重程度或频率的降低,或者(一种或多种)症状的消除。药物的“预防有效量”是当向受试者施用时将具有预期的预防效果的量,例如,预防或延迟损伤、疾病、病理或状况的发作(或复发),或降低疾病、病理或病况或其症状发作(或复发)的可能性的药物的量。完全的预防效果不一定是通过施用一个剂量发生的,而是可以仅在施用一系列剂量后才发生的。因此,预防有效量可以一次或更多次施用来施用。如本文所用,“活性降低量”是指相对于不存在拮抗剂,降低酶或蛋白质活性所需的拮抗剂的量。如本文所用,“功能破坏量”是指相对于不存在拮抗剂,破坏酶或蛋白质功能所需的拮抗剂的量。文献中可以找到针对给定类别药物产
品的适当剂量的指南。例如,对于给定参数,有效量将示出至少5%、10%、15%、20%、25%、
40%、50%、60%、75%、80%、90%或至少100%的增加或降低。效力也可以表示为“-倍”增加或降低。例如,治疗有效量可以相对于对照具有至少1.2倍、1.5倍、2倍、5倍或更多倍的效果。确切的剂量将取决于治疗的目的,并且将由本领域技术人员使用已知技术可确定(参
见,例如Lieberman,Pharmaceutical Dosage Forms(vols.1-3,1992);Lloyd,The Art,
Science and Technology of Pharmaceutical Compounding(1999);Pickar,Dosage 
Calculations(1999);和Remington:The Science and Practice of Pharmacy,第20版,
2003,Gennaro,Ed.,Lippincott,Williams&Wilkins)。
[0134] 在实施方案中,本文提供的组合物可以口服施用,并且包括从103至1015菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1015cfu/g。在实施方案中,组合物包括105至1015cfu/g。在实施方案中,组合物包括106至1015cfu/g。在实施方案中,组合物包括107至1015cfu/g。在实施方案中,组合物包括108至1015cfu/g。在实施方案中,组合物包括109至1015cfu/g。在实施方案中,组合物包括1010至1015cfu/g。在实施方案中,组合物包括
11 15 12 15
10 至10 cfu/g。在实施方案中,组合物包括10 至10 cfu/g。在实施方案中,组合物包括
1013至1015cfu/g。在实施方案中,组合物包括1014至1015cfu/g。在实施方案中,组合物包括从
103至1015cfu。在实施方案中,组合物包括104至1015cfu。在实施方案中,组合物包括105至
1015cfu。在实施方案中,组合物包括106至1015cfu。在实施方案中,组合物包括107至1015cfu。
8 15 9 15
在实施方案中,组合物包括10至10 cfu。在实施方案中,组合物包括10 至10 cfu。在实施方案中,组合物包括1010至1015cfu。在实施方案中,组合物包括1011至1015cfu。在实施方案中,组合物包括1012至1015cfu。在实施方案中,组合物包括1013至1015cfu。在实施方案中,组合物包括1014至1015cfu。
[0135] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至1014菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1014cfu/g。在实施方案中,组合物包括105至1014cfu/g。在实施方案中,组合物包括106至1014cfu/g。在实施方案中,组合物包括107至1014cfu/g。在实施方案中,组合物包括108至1014cfu/g。在实施方案中,组合物包括109至1014cfu/g。在实施方案中,组合物包括1010至1014cfu/g。在实施方案中,组合物包括1011至1014cfu/g。在实施方案中,组合物包括1012至1014cfu/g。在实施方案中,组合物包括
1013至1014cfu/g。在实施方案中,组合物包括从103至1014cfu。在实施方案中,组合物包括104至1014cfu。在实施方案中,组合物包括105至1014cfu。在实施方案中,组合物包括106至
1014cfu。在实施方案中,组合物包括107至1014cfu。在实施方案中,组合物包括108至1014cfu。
在实施方案中,组合物包括109至1014cfu。在实施方案中,组合物包括1010至1014cfu。在实施方案中,组合物包括1011至1014cfu。在实施方案中,组合物包括1012至1014cfu。在实施方案中,组合物包括1013至1014cfu。
[0136] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至1013菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1013cfu/g。在实施方案中,组合物包括105至1013cfu/g。在实施方案中,组合物包括106至1013cfu/g。在实施方案中,组合物包括107至1013cfu/g。在实施方案中,组合物包括108至1013cfu/g。在实施方案中,组合物包括109至1013cfu/g。在实施方案中,组合物包括1010至1013cfu/g。在实施方案中,组合物包
11 13 12 13
括10 至10 cfu/g。在实施方案中,组合物包括10 至10 cfu/g。在实施方案中,组合物包括从103至1013cfu。在实施方案中,组合物包括104至1013cfu。在实施方案中,组合物包括105至
1013cfu。在实施方案中,组合物包括106至1013cfu。在实施方案中,组合物包括107至1013cfu。
在实施方案中,组合物包括108至1013cfu。在实施方案中,组合物包括109至1013cfu。在实施
10 13 11 13
方案中,组合物包括10 至10 cfu。在实施方案中,组合物包括10 至10 cfu。在实施方案
中,组合物包括1012至1013cfu。
[0137] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至1012菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1012cfu/g。在实施方案中,组合物包括105至1012cfu/g。在实施方案中,组合物包括106至1012cfu/g。在实施方案中,组合物包括107至1012cfu/g。在实施方案中,组合物包括108至1012cfu/g。在实施方案中,组合物包括109至1012cfu/g。在实施方案中,组合物包括1010至1012cfu/g。在实施方案中,组合物包括1011至1012cfu/g。在实施方案中,组合物包括从103至1012cfu。在实施方案中,组合物包括
104至1012cfu/g。在实施方案中,组合物包括105至1012cfu。在实施方案中,组合物包括106至
1012cfu。在实施方案中,组合物包括107至1012cfu。在实施方案中,组合物包括108至1012cfu。
9 12 10 12
在实施方案中,组合物包括10至10 cfu。在实施方案中,组合物包括10 至10 cfu。在实施方案中,组合物包括1011至1012cfu。
[0138] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至1011菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1011cfu/g。在实施方案中,组
5 11 6 11
合物包括10至10 cfu/g。在实施方案中,组合物包括10至10 cfu/g。在实施方案中,组合
物包括107至1011cfu/g。在实施方案中,组合物包括108至1011cfu/g。在实施方案中,组合物包括109至1011cfu/g。在实施方案中,组合物包括从103至1011cfu。在实施方案中,组合物包括104至1011cfu。在实施方案中,组合物包括105至1011cfu。在实施方案中,组合物包括106至
11 7 11 8 11
10 cfu。在实施方案中,组合物包括10至10 cfu。在实施方案中,组合物包括10至10 cfu。
在实施方案中,组合物包括109至1011cfu。
[0139] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至1010菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至1010cfu/g。在实施方案中,组合物包括105至1010cfu/g。在实施方案中,组合物包括106至1010cfu/g。在实施方案中,组合物包括107至1010cfu/g。在实施方案中,组合物包括108至1010cfu/g。在实施方案中,组合物包括109至1010cfu/g。在实施方案中,组合物包括从103至1010cfu。在实施方案中,组合物包括104至1010cfu。在实施方案中,组合物包括105至1010cfu。在实施方案中,组合物包括106至
1010cfu。在实施方案中,组合物包括107至1010cfu。在实施方案中,组合物包括108至1010cfu。
在实施方案中,组合物包括109至1010cfu。
[0140] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至109菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至109cfu/g。在实施方案中,组合物包括105至109cfu/g。在实施方案中,组合物包括106至109cfu/g。在实施方案中,组合物包括107至109cfu/g。在实施方案中,组合物包括108至109cfu/g。在实施方案中,组合物包括从103至109cfu。在实施方案中,组合物包括104至109cfu。在实施方案中,组合物包括105至109cfu。
在实施方案中,组合物包括106至109cfu。在实施方案中,组合物包括107至109cfu。在实施方案中,组合物包括108至109cfu。
[0141] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至108菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至108cfu/g。在实施方案中,组合物包括105至108cfu/g。在实施方案中,组合物包括106至108cfu/g。在实施方案中,组合物包括107至108cfu/g。在实施方案中,组合物包括从103至108cfu。在实施方案中,组合物包括104至
8 5 8 6 8
10cfu。在实施方案中,组合物包括10至10cfu。在实施方案中,组合物包括10至10cfu。在实施方案中,组合物包括107至108cfu。
[0142] 在实施方案中,本文中提供的组合物可以口服施用,并且包括从103至107菌落形成单位(cfu)/g的活微生物。在实施方案中,组合物包括104至107cfu/g。在实施方案中,组合物包括105至107cfu/g。在实施方案中,组合物包括106至107cfu/g。在实施方案中,组合物包括从103至107cfu。在实施方案中,组合物包括104至107cfu。在实施方案中,组合物包括105至107cfu。在实施方案中,组合物包括106至107cfu。
[0143] 应当理解,如本文提供的菌落形成单位(cfu)/g和cfu的量可以是指(单独)施用的每个细菌物种菌株的量或细菌群体的总cfu/g或cfu。
[0144] 本发明的组合物在药物组合物中的比例或浓度可以根据许多因素而变化,包括剂量、化学特征(例如疏水性)和施用途径。例如,所定义的微生物组合物可以被提供在含有从约0.005mg至约1000mg的胶囊中用于口服施用。可选地或另外,剂量可以如上所述表示为
cfu或cfu/g细菌(例如,当表示为cfu/g时的干重)。在实施方案中,剂量可以变化,但是可以在从约102至约1015cfu/g干重的当量范围内,例如1×102cfu/g、5×102cfu/g、1×103cfu/g、
3 4 4 5 5 6
5×10 cfu/g、1×10 cfu/g、5×10 cfu/g、1×10 cfu/g、5×10cfu/g、1×10 cfu/g、5×
106cfu/g、1×107cfu/g、5×107cfu/g、1×108cfu/g、5×108cfu/g、1×109cfu/g、5×109cfu/g、1×1010cfu/g、5×1010cfu/g、1×1011cfu/g、5×1011cfu/g或1×1012cfu/g。在实施方案
中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌以103、104、
5 6 7 8 9 10 11 12 13 14 15
10、10、10、10、10、10 、10 、10 、10 、10 、或10 菌落形成单位(cfu)/g干重或总cfu中的任一种单独或全部施用。在实施方案中,组合物包括约107菌落形成单位(cfu)/g或总计
107cfu的约氏乳杆菌。在实施方案中,组合物包括约107菌落形成单位(cfu)/g或总计107cfu的嗜粘蛋白阿克曼氏菌。在实施方案中,组合物包括约107菌落形成单位(cfu)/g或总计
107cfu的黄色粘球菌。在实施方案中,组合物包括约107菌落形成单位(cfu)/g或总计107cfu的戊糖片球菌。在实施方案中,组合物包括约108菌落形成单位(cfu)/g或总计108cfu的普氏栖粪杆菌。在实施方案中,组合物包括活微生物每克组合物,或者对于灭活或死亡的微生物或对于微生物级分或产生的代谢物的计算的当量剂量的活微生物(例如约氏乳杆菌、普氏
栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌)。
[0145] 在实施方案中,如本文提供的约氏乳杆菌是指使用乳杆菌分离培养基(deMan、Rogose和Sharpe琼脂)从鼠肠培养的菌株的一个或更多个分离的细菌细胞。约氏乳杆菌的
非限制性实例包括以登记号11506和53672保藏在ATCC的菌株。
[0146] 在实施方案中,如本文提供的鼠李糖乳杆菌是指以下菌株的一个或更多个分离的细菌细胞:具有以登记号53103保藏在ATCC的菌株的所有鉴定特征的细菌菌株;具有ATCC号
53103菌株的所有鉴定特征的以登记号53103保藏在ATCC的菌株的变体;和具有ATCC号
53103菌株的所有鉴定特征的以登记号53103保藏在ATCC的菌株的突变体。
[0147] 在实施方案中,如本文提供的普氏栖粪杆菌是指以下菌株的一个或更多个分离的细菌细胞:具有以登记号27766保藏在ATCC的菌株的所有鉴定特征的细菌菌株;具有ATCC号
27766菌株的所有鉴定特征的以登记号27766保藏在ATCC的菌株的变体;和具有ATCC号
27766菌株的所有鉴定特征的以登记号27766保藏在ATCC的菌株的突变体。
[0148] 在实施方案中,如本文提供的嗜粘蛋白阿克曼氏菌是指以下菌株的一个或更多个分离的细菌细胞:具有以登记号BAA-835保藏在ATCC的菌株的所有鉴定特征的细菌菌株;具有ATCC号BAA-835菌株的所有鉴定特征的以登记号BAA-835保藏在ATCC的菌株的变体;和具
有ATCC号BAA-835菌株的所有鉴定特征的以登记号BAA-835保藏在ATCC的菌株的突变体。
[0149] 在实施方案中,如本文提供的黄色粘球菌是指以下菌株的一个或更多个分离的细菌细胞:具有以登记号25232保藏在ATCC的菌株的所有鉴定特征的细菌菌株;具有ATCC号
25232菌株的所有鉴定特征的以登记号25232保藏在ATCC的菌株的变体;和具有ATCC号
25232菌株的所有鉴定特征的以登记号25232保藏在ATCC的菌株的突变体。
[0150] 在实施方案中,如本文提供的戊糖片球菌是指以下菌株的一个或更多个分离的细菌细胞:具有以登记号25744保藏在ATCC的菌株的所有鉴定特征的细菌菌株;具有ATCC号
25744菌株的所有鉴定特征的以登记号25744保藏在ATCC的菌株的变体;和具有ATCC号
25744菌株的所有鉴定特征的以登记号25744保藏在ATCC的菌株的突变体。
[0151] 在实施方案中,组合物对于增加抗炎代谢物有效。在实施方案中,约氏乳杆菌对于增加抗炎代谢物有效。在实施方案中,普氏栖粪杆菌对于增加抗炎代谢物有效。在实施方案中,嗜粘蛋白阿克曼氏菌对于增加抗炎代谢物有效。在实施方案中,黄色粘球菌对于增加抗炎代谢物有效。在实施方案中,戊糖片球菌对于增加抗炎代谢物有效。如本文提供的“代谢物”是指细菌细胞代谢的中间体和产物,其中细菌细胞驻留于哺乳动物的肠道内。术语代谢物还包括由哺乳动物细胞形成的中间体和产物。代谢物的非限制性实例包括氨基酸、醇、维生素、多元醇、有机酸、核苷酸(例如5’-单磷酸肌苷和5’-单磷酸鸟苷)、脂质、碳水化合物、肽和蛋白质。如本文提供的“抗炎代谢物”是指由细胞(例如细菌细胞、哺乳动物细胞)产生并且能够抑制炎症的代谢物。如本文所定义,涉及蛋白质-抗炎代谢物相互作用的术语“抑制(inhibition、inhibit、inhibiting)”等意指相对于在不存在抑制剂(例如抗炎代谢物)的情况下的蛋白质的活性或功能,负面影响(例如降低)蛋白质的活性或功能(例如降低炎性代谢物的活性)。术语“抑制”包括至少部分、部分或完全阻断刺激,减少、预防或延迟活化,或失活、脱敏或下调炎症所需的信号转导、基因表达、酶活性或蛋白质表达(例如炎性代谢物)。在一些实施方案中,抑制是指减少疾病或疾病的症状(例如炎症)。类似地,“抑制剂”是例如通过结合、部分或完全阻断、降低、预防、延迟、失活、脱敏或下调炎性代谢物活性抑制炎症的化合物(例如代谢物)。如本文提供的能够抑制或减少炎症的代谢物是指与对照相
比导致可检测地较低炎症活性水平的物质。降低的活性可以比对照中的活性低10%、20%、
30%、40%、50%、60%、70%、80%、90%或更少。在某些情况下,与对照相比,降低为1.5倍、
2倍、3倍、4倍、5倍、10倍或更少。
[0152] 在实施方案中,抗炎代谢物为微生物脂质或微生物碳水化合物。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为磷脂。在实施方案中,抗炎代谢物为多不饱和脂肪酸。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为衣康酸。在实施方案中,抗炎代谢物为n-乙酰葡萄糖胺。在实施方案中,抗炎代谢物为n-乙酰半乳糖胺。在实施方案中,抗炎代谢物为岩藻糖乳糖。在实施方案中,抗炎代谢物为氨基酸。在实施方案中,抗炎代谢物为色氨酸。
[0153] 在实施方案中,组合物对于减少促炎代谢物有效。在实施方案中,组合物对于减少促炎代谢物有效。在实施方案中,约氏乳杆菌对于减少促炎代谢物有效。在实施方案中,普氏栖粪杆菌对于减少促炎代谢物有效。在实施方案中,嗜粘蛋白阿克曼氏菌对于减少促炎代谢物有效。在实施方案中,黄色粘球菌对于减少促炎代谢物有效。在实施方案中,戊糖片球菌对于减少促炎代谢物有效。如本文提供的“促炎代谢物”是指由细胞(例如细菌细胞、哺乳动物细胞)产生并且能够增加炎症的代谢物。如本文提供的能够增加炎症的代谢物是指
与对照相比导致可检测地更高炎症水平的物质。增加的活性可以比对照中的活性高10%、
20%、30%、40%、50%、60%、70%、80%、90%或更多。在某些情况下,与对照相比,增加为
1.5倍、2倍、3倍、4倍、5倍、10倍或更多。
[0154] 在实施方案中,促炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,促炎代谢物为微生物脂质。在实施方案中,促炎代谢物为二羟基十八碳-12-烯酸、胆酸酯或甲基丙二酸。在实施方案中,促炎代谢物为微生物碳水化合物。在实施方案中,促炎代谢物为n-乙酰胞壁酸酯、乳糖醛酸或麦芽三糖。在实施方案中,促炎代谢物为微生物氨基酸。在实施方案中,促炎代谢物为鸟氨酸或牛磺酸。
[0155] 本文提供的组合物可包括代谢活性的细菌或无代谢活性的细菌或其级分。在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为代谢活性的。在实施方案中,所述约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为无代谢活性的。代谢活性的细菌能够分裂并且产生代谢物,诸如碳水化
合物、脂质或氨基酸。相反,无代谢活性的细菌不分裂或产生代谢物。
[0156] III.药物组合物
[0157] 如本文所述,本文提供的微生物组合物可以包括细菌群体,该细菌群体包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8种、基本上由其组成或由其组成。在实施方案中,细菌群体包括乳杆菌属种和普氏栖粪杆菌。在实施方案中,细菌群体包括乳杆菌属种和嗜粘蛋白阿克曼氏菌。在实施方案中,细菌群体包括乳杆菌属种和黄色粘球菌。在实施方案中,细菌群体包括乳杆菌属种和深褐孢囊杆菌。在实施方案中,细菌群体包括乳杆菌属种和戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。在实施方案中,细菌群体包括乳杆菌属种和两歧双歧杆菌、假长双歧杆菌、世纪双歧杆菌或细长双歧杆菌。在实施方案中,细菌群体包括乳杆菌属种和Clostridium hiranonis。在实施方案中,乳杆菌种为约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、Lactobacillus crustorum、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、
Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌。在实施方案中,乳杆菌种为约氏乳杆菌。在实施方案中,细菌群体包括以下的任何组合中的至少1、2、3、4、5、6、7、8、9或10,或1-5、1-10、1-5或1-20种:约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、Lactobacillus crustorum、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌、乳酸乳球菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、深褐孢囊杆菌、戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌和小片球菌。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在一些实施方案中,微生物组合物包括细菌类型约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌中的一个或更多个的细菌细胞。在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。
在实施方案中,组合物包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌或戊糖片球菌。在实施方案中,细菌为分离的细菌。
[0158] 在实施方案中,微生物组合物包括治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。
[0159] 在实施方案中,微生物组合物另外包含药学上可接受的赋形剂。因此,在一个方面,提供了一种药物组合物,所述药物组合物包括治疗有效量的约氏乳杆菌、普氏栖粪杆
菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌以及药学上可接受的赋形剂。
[0160] “药学上可接受的赋形剂”和“药学上可接受的载体”是指有助于向受试者施用活性剂和被受试者吸收并且可以包括在本发明的组合物中而不对患者造成显著的不良毒理学影响的物质。药学上可接受的赋形剂的非限制性实例包括水、NaCl、生理盐水溶液、乳酸林格氏液、普通蔗糖、普通葡萄糖、粘合剂、填充剂、崩解剂、润滑剂、包衣、甜味剂、香料、盐溶液(诸如林格氏液)、醇、油、明胶、碳水化合物诸如乳糖、直链淀粉或淀粉、脂肪酸酯、羟基甲基纤维素、聚乙烯吡咯烷和染料(color)等。此类制品可以被灭菌,并且如果需要,可以与不与本发明的化合物有害地反应的助剂混合,该助剂为诸如润滑剂、防腐剂、稳定剂、润湿剂、乳化剂、影响渗透压的盐、缓冲剂、着色剂和/或芳香物质等。本领域技术人员将认识到,其它药学赋形剂也可用于本发明。
[0161] 本文提供的微生物组合物(包括其实施方案)可以口服、经胃肠或经直肠施用。施用可以是单次大剂量(single bolus dose)的形式,或者可以例如通过连续灌注进行。在实施方案中,本文提供的微生物聚生体与一种或更多种赋形剂例如崩解剂、填充剂、助流剂或防腐剂组合。在实施方案中,本文提供的微生物聚生体形成胶囊的一部分。合适的胶囊包括硬壳胶囊或软壳胶囊两者。任何基于脂质或基于聚合物的胶体都可以用于形成胶囊。可
用于胶体制品的示例性聚合物包括明胶、植物多糖或其衍生物诸如叉菜胶和淀粉和纤维
素的改性形式,例如羟丙甲纤维素。任选地,可以向胶凝剂溶液添加其它成分,例如降低胶囊的硬度的增塑剂诸如甘油和/或山梨糖醇、着色剂、防腐剂、崩解剂、润滑剂和表面处理
[0162] 微生物组合物可以配制成单位剂型,每个剂量含有例如从约0.005mg至约2000mg的每剂量具有最小脲酶活性的定义的微生物聚生体。术语“单位剂型”是指适合作为用于人类受试者和其它哺乳动物的单位剂量的物理上离散的单位,每个单位含有经计算以产生期
望治疗效果的预定量的活性物质以及合适的药学赋形剂。为了制备固体组合物诸如片剂,
将主要活性成分与药学赋形剂混合,以形成含有本发明化合物的均质混合物的固体预制剂
组合物。当将这些预制剂组合物称为均质时,活性成分典型地均匀分散在整个组合物中,使得组合物可以容易地细分为同等有效的单位剂型,诸如片剂、丸剂和胶囊。然后该固体预制剂被细分成上述类型的单位剂型,含有从例如0.005mg至约1000mg的本文提供的微生物组
合物。
[0163] 微生物组合物可以配制成单位剂型,每个剂量单独或组合含有例如从约0.1mg至约50mg、从约0.1mg至约40mg、从约0.1mg至约20mg、从约0.1mg至约10mg、从约0.2mg至约
20mg、从约0.3mg至约15mg、从约0.4mg至约10mg、从约0.5mg至约1mg;从约0.5mg至约100mg、从约0.5mg至约50mg、从约0.5mg至约30mg、从约0.5mg至约20mg、从约0.5mg至约10mg、从约
0.5mg至约5mg;从约1mg至约50mg、从约1mg至约30mg、从约1mg至约20mg、从约1mg至约10mg、从约1mg至约5mg;从约5mg至约50mg、从约5mg至约20mg、从约5mg至约10mg;从约10mg至约
100mg、从约20mg至约200mg、从约30mg至约150mg、从约40mg至约100mg、从约50mg至约100mg的乳杆菌属种(例如约氏乳杆菌)、栖粪杆菌属种(例如普氏栖粪杆菌)、阿克曼氏菌属种(例如嗜粘蛋白阿克曼氏菌)、粘球菌属种(例如黄色粘球菌)和/或片球菌属种(例如戊糖片球
菌)。
[0164] 在一些实施方案中,本发明的片剂或丸剂可以被包衣或以其他方式复合以提供给予延长作用的优点的剂型。例如,片剂或丸剂可以包括内剂量和外剂量组分,后者是前者上的包膜形式。两种组分可以通过用来抵抗胃中的崩解的肠溶层分开,并且准许内部组分完
整地穿过十二指肠或延迟释放。各种材料可用于此类肠溶层或包衣,此类材料包括许多聚
合酸和聚合酸与材料如虫胶、十六醇和醋酸纤维素的混合物。
[0165] 本发明的组合物可掺入其中用于口服或通过注射施用的液体形式包括水溶液、适当调味的糖浆、水或油悬液,以及具有食用油诸如籽油、芝麻油、椰子油花生油的调味的乳剂,以及酏剂和类似的药物媒介物。
[0166] IV.治疗方法
[0167] 根据本文提供的方法,向受试者施用有效量的一种或更多种本文提供的剂。术语有效量和有效剂量可互换使用。术语有效量被定义为产生期望生理应答(例如,炎症、感染或菌群失调的减少)所需的任何量。施用剂的有效量和时间表可以由本领域技术人员凭经
验确定。施用的剂量范围为足够大以产生期望效果的那些剂量范围,其中疾病或状况的一
种或更多种症状受到影响(例如,减少或延迟)。剂量不应该太大以至于引起实质性的不良
副作用,诸如不想要的交叉反应、过敏反应等。一般来说,剂量将随着年龄、状况、性别、疾病类型、疾病或紊乱的程度、施用途径或在方案中是否包括其它药物而变化,并且可以由本领域技术人员确定。如果发生任何禁忌症,剂量可以由个别医师调整。剂量可以变化,并且可以以每日一次或更多次剂量施用、持续一天或几天施用。文献中可以找到针对给定类别药
物产品的适当剂量的指南。例如,对于给定参数,有效量将示出增加或降低至少5%、10%、
15%、20%、25%、40%、50%、60%、75%、80%、90%或至少100%。效力也可以表示为“-倍”增加或降低。例如,治疗有效量可以相对于对照具有至少1.2倍、1.5倍、2倍、5倍或更多倍的效果。确切的剂量和制剂将取决于治疗的目的,并且将由本领域技术人员使用已知技术可
确定(参见,例如Lieberman,Pharmaceutical Dosage Forms(第1-3卷,1992);Lloyd,The 
Art,Science and Technology of Pharmaceutical Compounding(1999);Remington:The 
Science and Practice of Pharmacy,第20版,Gennaro,Editor(2003)和Pickar,Dosage 
Calculations(1999))。
[0168] 对于预防用途,在早期发作之前或期间(例如,在自身免疫疾病的初始体征和症状时),向受试者施用治疗有效量的本文所述的微生物组合物。治疗性治疗包括在疾病诊断或发展后向受试者施用治疗有效量的本文所述的剂。因此,在另一方面,提供了治疗有需要的受试者中疾病(例如炎性疾病、感染或菌群失调)的方法。
[0169] 术语“受试者”、“患者”、“个体”等不旨在为限制性的,并且通常可以互换。也就是说,被描述为“患者”的个体不一定患有给定疾病,而可以只是寻求医嘱。
[0170] 如本文所用,“治疗(treating、treatment of)”状况、疾病或紊乱或与该状况、疾病或紊乱相关的症状是指获得有益或期望结果,包括临床结果的方法。有益或期望临床结果可以包括但不限于缓解或改善一种或更多种症状或状况,减轻状况、紊乱或疾病的程度,稳定状况、紊乱或疾病的状态,预防状况、紊乱或疾病的发展,预防状况、紊乱或疾病的传播,延迟或减慢状况、紊乱或疾病的进展,延迟或减慢状况、紊乱或疾病发作,改善或减缓状况、紊乱或疾病状态,以及缓解,无论是部分的还是全部的。“治疗”也可以意指在不存在治疗的情况下使受试者的存活延长超过预期。“治疗”也可以意指抑制状况、紊乱或疾病的进展,暂时减慢状况、紊乱或疾病的进展,尽管在一些情况中,它涉及永久停止状况、紊乱或疾病的进展。如本文所用,术语治疗(treatment、treat或treating)是指减少以蛋白酶表达为特征的疾病或状况的一种或更多种症状或以蛋白酶表达为特征的疾病或状况的症状的影
响的方法。因此,在所公开的方法中,治疗可以是指确立的疾病或状况(例如炎症、感染或菌群失调)或疾病或状况的症状的严重程度减少10%、20%、30%、40%、50%、60%、70%、
80%、90%或100%。例如,如果与对照相比,受试者的疾病的一种或更多种症状减少10%,那么治疗疾病的方法被认为是治疗。因此,与天然或对照水平相比,减少可以是10%、20%、
30%、40%、50%、60%、70%、80%、90%、100%,或者在10%和100%之间的任何百分比减少。应当理解,治疗不一定是指疾病、状况,或者疾病或状况的症状的治愈或完全消融。此外,如本文所用,提及降低、减少或抑制包括与对照水平相比的10%、20%、30%、40%、
50%、60%、70%、80%、90%或更大的改变,并且此类术语可以包括但不一定包括完全消除。
[0171] 包括限定的微生物组合物的组合物可以通过鼻十二指肠导管、通过灌肠法、或通过内窥镜检查、肠镜检查或结肠镜检查或口服以可消耗胶囊或丸剂向受试者的胃肠道施
用。在某些实施方案中,将定义的微生物组合物稀释在合适的赋形剂(例如盐水溶液)中。在优选实施方案中,细菌以冻干形式递送。
[0172] 不管组合物是如何配制的,所需剂量将取决于施用途径、制剂的性质、受试者状况的性质,例如免疫系统不成熟或胃肠紊乱、受试者的大小、体重、表面积、年龄和性别、正在施用的其它药物以及主治医师的判断。在实施方案中,合适的剂量在0.01mg/kg-1,000mg/kg的范围内。一些典型的剂量范围为从每天约1μg/kg至每天约1g/kg体重。在实施方案中,剂量范围为从每天约0.01mg/kg至每天约100mg/kg体重。在实施方案中,剂量可以为例如
1mg/kg、2mg/kg、5mg/kg、10mg/kg、20mg/kg、50mg/kg或100mg/kg。可选地或另外地,剂量可以表示为cfu或cfu/g干重。在实施方案中,剂量可以变化,但是可以在约102至约1012cfu/g的(单独地)施用的细菌的任一种或总细菌群体中的干重的当量范围内,例如1×102cfu/g、
2 3 3 4 4 5
5×10 cfu/g、1×10 cfu/g、5×10 cfu/g、1×10 cfu/g、5×10cfu/g、1×10 cfu/g、5×
105cfu/g、1×106cfu/g、5×106cfu/g、1×107cfu/g、5×107cfu/g、1×108cfu/g、5×108cfu/g、1×109cfu/g、5×109cfu/g、1×1010cfu/g、5×1010cfu/g、1×1011cfu/g、5×1011cfu/g或1×1012cfu/g。在实施方案中,剂量可以在从约102至约1012cfu的(单独地)施用的细菌的任一种或总细菌群体中的范围内,例如1×102cfu、5×102cfu、1×103cfu、5×103cfu、1×104cfu、
5×104cfu、1×105cfu、5×105cfu、1×106cfu、5×106cfu、1×107cfu、5×107cfu、1×108cfu、
5×108cfu、1×109cfu、5×109cfu、1×1010cfu、5×1010cfu、1×1011cfu、5×1011cfu或1×
1012cfu。
[0173] 施用可以是单次或多次(例如,2-或3-、4-、6-、8-、10-、20-、50-、100-、150-或更多次)。用本文提供的任何组合物治疗的持续时间可以为从短至一天到长至宿主寿命的任何时间长度(例如,许多年)。例如,组合物可以每周施用1、2、3、4、5、6或7次(例如,持续4周至几个月或几年);每月一次(例如,三到十二个月或持续许多年);或在5年、十年或更长时段内每年一次。还注意到,治疗的频率可以为可变的。例如,本发明的组合物可以每日、每周、每月或每年施用一次(或两次、三次等)。
[0174] 组合物也可以与其它治疗剂结合施用。其它治疗剂将根据特定紊乱而变化,但是可以包括例如饮食改变、血液透析、治疗剂诸如苯甲酸钠、乙酸苯酯、精氨酸或外科治疗。两种或更多种治疗剂的同时施用并不需要剂在同时或通过相同的途径施用,只要在剂发挥其
治疗效果的时间段中存在重叠。考虑同时或顺序施用,也可以在不同的日子或星期施用。
[0175] 本文提供了治疗和预防炎性疾病、感染(诸如呼吸道或胃肠感染)和菌群失调的方法,包括施用本文所述的细菌群体或微生物组合物,包括其实施方案。
[0176] 在一方面,提供了治疗或预防有需要的受试者中菌群失调、炎性疾病或病毒性呼吸道感染的方法。
[0177] 在一方面,提供了在有需要的受试者中增加抗炎化合物的水平和/或降低促炎化合物的水平的方法。
[0178] 在一方面,提供了更改有需要的受试者中代谢的方法。
[0179] 在实施方案中,方法包括向受试者施用有效量的细菌群体,该细菌群体包括1、2、3、4、5、6、7或8(或至少1、2、3、4、5、6、7或8)个细菌物种、基本上由其组成或由其组成。在实施方案中,细菌群体包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种、片球菌属种、双歧杆菌属种和梭菌属种中的任1、2、3、4、5、6、7或8种、基本上由其组成或由其组成。在实施方案中,细菌群体包括乳杆菌属种和普氏栖粪杆菌。在实施方案中,细菌群体包括乳杆菌属种和嗜粘蛋白阿克曼氏菌。在实施方案中,细菌群体包括乳杆菌属
种和黄色粘球菌。在实施方案中,细菌群体包括乳杆菌属种和深褐孢囊杆菌。在实施方案
中,细菌群体包括乳杆菌属种和戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。在实施方案中,细菌群体包括乳杆菌属种和两歧双歧杆菌、假长双歧杆菌、世纪双歧杆菌或细长双歧杆菌。在实施方案中,细菌群体包括乳杆菌属种和Clostridium 
hiranonis。在实施方案中,乳杆菌种为约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、Lactobacillus crustorum、弯曲乳杆菌、Lactobacillus diolivorans、
Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌。在实施方案中,乳杆菌属种为约氏乳杆菌。在实施方案中,细菌群体包括以下的任何组合中的至少1、
2、3、4、5、6、7、8、9或10个,或1-5、1-10、1-5或1-20个:约氏乳杆菌、鼠李糖乳杆菌、玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus 
coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、
Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌、乳酸乳球菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌、深褐孢囊杆菌、戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌和小片球菌。在实施方案中,细菌群体包括约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和/或戊糖片球菌。在实施方案中,细菌为分离的细菌。
[0180] 在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。在实施方案中,(i)乳杆菌属种为约氏乳杆菌;(ii)栖粪杆菌属种为普氏栖粪杆菌;(iii)阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)粘球菌属种为黄色粘球菌;并且(v)片球菌属种为戊糖片球菌。在实施方案中,(i)乳杆菌属种为玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌;(ii)栖粪杆菌属种为普氏栖粪杆菌;(iii)阿克曼氏菌属种为嗜粘蛋白阿克曼氏
菌;(iv)粘球菌属种为黄色粘球菌;并且(v)片球菌属种为戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。
[0181] 在实施方案中,粘球菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。在实施方案中,粘球菌属种呈包含孢子的粉末的形式。在实施方案中,梭菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。在实施方案中,梭菌属种呈包含孢子的粉末的
形式。
[0182] 在实施方案中,向受试者施用少于约20、15、10、9、8、7或6个不同物种的细菌。在实施方案中,向受试者施用少于约20个不同物种的细菌。在实施方案中,向受试者施用少于20个不同物种的细菌。在实施方案中,向受试者施用少于约15个不同物种的细菌。在实施方案中,向受试者施用少于15个不同物种的细菌。在实施方案中,向受试者施用少于约10个不同物种的细菌。在实施方案中,向受试者施用少于10个不同物种的细菌。在实施方案中,向受试者施用少于约9个不同物种的细菌。在实施方案中,向受试者施用少于9个不同物种的细菌。在实施方案中,向受试者施用少于约8个不同物种的细菌。在实施方案中,向受试者施用少于8个不同物种的细菌。在实施方案中,向受试者施用少于约7个不同物种的细菌。在实施方案中,向受试者施用少于7个不同物种的细菌。在实施方案中,向受试者施用少于约6个不同物种的细菌。在实施方案中,向受试者施用少于6个不同物种的细菌。
[0183] 在实施方案中,细菌群体形成细菌组合物的一部分。在实施方案中,细菌组合物包括少于约20、15、10、9、8、7或6个物种的细菌。在实施方案中,细菌组合物包括少于约20个物种的细菌。在实施方案中,细菌组合物包括少于20个物种的细菌。在实施方案中,细菌组合物包括少于约15个物种的细菌。在实施方案中,细菌组合物包括少于15个物种的细菌。在实施方案中,细菌组合物包括少于约10个物种的细菌。在实施方案中,细菌组合物包括少于10个物种的细菌。在实施方案中,细菌组合物包括少于约9个物种的细菌。在实施方案中,细菌组合物包括少于9个物种的细菌。在实施方案中,细菌组合物包括少于约8个物种的细菌。在实施方案中,细菌组合物包括少于8个物种的细菌。在实施方案中,细菌组合物包括少于约7个物种的细菌。在实施方案中,细菌组合物包括少于7个物种的细菌。在实施方案中,细菌组合物包括少于约6个物种的细菌。在实施方案中,细菌组合物包括少于6个物种的细菌。
[0184] 在实施方案中,细菌组合物另外包含药学上可接受的赋形剂。在实施方案中,细菌组合物不是粪便移植物。在实施方案中,细菌组合物为胶囊、片剂、悬液、栓剂、粉末、霜剂、油、水包油乳液、油包水乳液或水溶液。在实施方案中,细菌组合物呈粉末、固体、半固体或液体的形式。
[0185] 在实施方案中,细菌组合物在20℃具有小于约0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1的水活度(aw)。在实施方案中,细菌组合物在20℃具有小于约0.9的aw。在实施方案中,细菌组合物在20℃具有小于0.9的aw。在实施方案中,细菌组合物在20℃具有小于约0.8的aw。在实施方案中,细菌组合物在20℃具有小于0.8的aw。在实施方案中,细菌组合物在20℃具有小于约0.7的aw。在实施方案中,细菌组合物在20℃具有小于0.7的aw。在实施方案中,细菌组合物在20℃具有小于约0.6的aw。在实施方案中,细菌组合物在20℃具有小于0.6的
aw。在实施方案中,细菌组合物在20℃具有小于约0.5的aw。在实施方案中,细菌组合物在20℃具有小于0.5的aw。在实施方案中,细菌组合物在20℃具有小于约0.4的aw。在实施方案中,细菌组合物在20℃具有小于0.4的aw。在实施方案中,细菌组合物在20℃具有小于约0.3的
aw。在实施方案中,细菌组合物在20℃具有小于0.3的aw。在实施方案中,细菌组合物在20℃具有小于约0.2的aw。在实施方案中,细菌组合物在20℃具有小于0.2的aw。在实施方案中,细菌组合物在20℃具有小于约0.1的aw。在实施方案中,细菌组合物在20℃具有小于0.1的aw。
[0186] 在实施方案中,细菌组合物为食物或饮料。
[0187] 在实施方案中,细菌组合物口服或经直肠施用。
[0188] 在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种呈粉末的形式。在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种已被冻干。
[0189] 在实施方案中,受试者为人类。在实施方案中,受试者患有细菌、病毒或真菌胃肠感染或与患有细菌、病毒或真菌胃肠感染的人住在一起。
[0190] 在实施方案中,受试者患有炎性疾病。在实施方案中,受试者具有患有炎性疾病的风险。在实施方案中,受试者具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。在实施方案中,受试者具有被诊断患有炎性疾病的至少4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。在实施方案中,受试者具有被诊断患有炎性疾病的至少3名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。在实施方案中,受试者具有被诊断患有炎性疾病的至少2名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。在实施方案中,受试者具有被诊断患有炎性疾病的至少1名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹。
[0191] 在实施方案中,炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0192] 在实施方案中,炎性疾病为儿童过敏性哮喘或炎性肠病。在实施方案中,受试者患有便秘、腹泻、腹胀、尿急和/或腹痛。
[0193] 在实施方案中,受试者已经在最近1、2、3或4个月内被施用抗生素。在实施方案中,受试者已经在最近4个月内被施用抗生素。在实施方案中,受试者已经在最近3个月内被施用抗生素。在实施方案中,受试者已经在最近2个月内被施用抗生素。在实施方案中,受试者已经在最近1个月内被施用抗生素。
[0194] 在实施方案中,受试者为新生儿。在实施方案中,受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。在实施方案中,受试者小于约1个月。在实施方案中,受试者小于1个月。
在实施方案中,受试者小于约2个月。在实施方案中,受试者小于2个月。在实施方案中,受试者小于约3个月。在实施方案中,受试者小于3个月。在实施方案中,受试者小于约4个月。在实施方案中,受试者小于4个月。在实施方案中,受试者小于约5个月。在实施方案中,受试者小于5个月。在实施方案中,受试者小于约6个月。在实施方案中,受试者小于6个月。在实施方案中,受试者小于约7个月。在实施方案中,受试者小于7个月。在实施方案中,受试者小于约8个月。在实施方案中,受试者小于8个月。在实施方案中,受试者小于约9个月。在实施方案中,受试者小于9个月。在实施方案中,受试者小于约12个月。在实施方案中,受试者小于
12个月。在实施方案中,受试者小于约18个月。在实施方案中,受试者小于18个月。在实施方案中,受试者小于约24个月。在实施方案中,受试者小于24个月。
[0195] 在实施方案中,受试者在约2和约18岁之间,或至少约18岁。在实施方案中,受试者在2和18岁之间,或至少18岁。在实施方案中,受试者在约2和约18岁之间,或至少约18(例如19、20、25、30、40、50、60、70、80、90)岁。在实施方案中,受试者在约2和约18岁之间,或约19岁。在实施方案中,受试者在约2和约18岁之间,或19岁。在实施方案中,受试者在约2和约18岁之间,或约20岁。在实施方案中,受试者在约2和约18岁之间,或20岁。在实施方案中,受试者在约2和约18岁之间,或约25岁。在实施方案中,受试者在约2和约18岁之间,或25岁。在实施方案中,受试者在约2和约18岁之间,或约30岁。在实施方案中,受试者在约2和约18岁之间,或30岁。在实施方案中,受试者在约2和约18岁之间,或约40岁。在实施方案中,受试者在约2和约18岁之间,或40岁。在实施方案中,受试者在约2和约18岁之间,或约50岁。在实施方案中,受试者在约2和约18岁之间,或50岁。在实施方案中,受试者在约2和约18岁之间,或约
60岁。在实施方案中,受试者在约2和约18岁之间,或60岁。在实施方案中,受试者在约2和约
18岁之间,或约70岁。在实施方案中,受试者在约2和约18岁之间,或70岁。在实施方案中,受试者在约2和约18岁之间,或约80岁。在实施方案中,受试者在约2和约18岁之间,或80岁。在实施方案中,受试者在约2和约18岁之间,或约90岁。在实施方案中,受试者在约2和约18岁之间,或90岁。
[0196] 在实施方案中,受试者包括这样的胃肠微生物组,所述胃肠微生物组:(a)与健康或普通群体相比,具有比例增加的链球菌属(Streptococcus spp.)、双歧杆菌属和肠球菌
属(Enterococcus spp.);(b)与健康或普通群体相比,具有比例减少的链格孢(Alternaria alternata)、黄曲霉(Aspergillus flavus)、Aspergillus cibarius和大豆念珠菌
(Candida sojae);(c)与健康或普通群体相比,具有比例增加的白色念珠菌(Candida 
albicans)和德巴利酵母属(Debaryomyces spp.);(d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;(e)与健康或普通群体相比,具有比例减少的马拉色菌属(Malassezia spp.);(f)与健康或普通群体相比,具有比例增加的
拟杆菌属(Bacterioides spp)、瘤胃球菌属(Ruminococcus spp.)、普雷沃菌属
(Prevotella spp.)或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球
菌、屎肠球菌或艰难梭菌。
[0197] 在实施方案中,有效量对于以下有效:(i)在受试者中增加双歧杆菌属种、属于进化枝IV和XIV的梭菌属种、毛螺菌属种和/或瘤胃球菌属种的水平;(ii)降低受试者的粪便
的pH;(iii)增加受试者的粪便中乳酸的水平;(iv)在受试者中增加循环衣康酸的水平;(v)治疗、减少或预防受试者中的过敏性炎症;(vi)减少受试者的气道中的适应性免疫应答;
(vii)减少胃肠相关的肠系膜淋巴结中的树突细胞活化;(viii)增加受试者的肺、血液、血清或血浆中修复巨噬细胞的水平;(ix)在受试者中增加抗炎化合物的水平;(x)降低受试者中促炎化合物的水平;(xi)降低受试者中嗜酸细胞活化趋化因子表达和/或分泌的水平;
和/或(xii)降低受试者中粘蛋白表达和/或分泌的水平。
[0198] 在实施方案中,有效量对于降低受试者的肺中粘蛋白分泌和/或分泌的水平有效。
[0199] 在实施方案中,抗炎化合物为细胞因子、微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,抗炎化合物为IL-17。
[0200] 在实施方案中,促炎化合物为细胞因子、微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,促炎化合物为IL-4、IL-10、IL-8、IL-13、TNF-α或MUC5B。
[0201] 在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种为代谢活性的。在实施方案中,乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种为无代谢活性的。
[0202] 在实施方案中,方法还包括向受试者施用(a)双歧杆菌属种、(b)孢囊杆菌属种或(c)真菌微生物。
[0203] 在实施方案中,有效量对于更改受试者的代谢有效。在实施方案中,更改受试者的代谢包括增加脂质、磷脂或缩醛磷脂的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的2种化合物的任何
组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的3种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在
受试者中增加表3中列出的任何化合物或表3中列出的4种化合物的任何组合的水平。在实
施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的
5种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3
中列出的任何化合物或表3中列出的6种化合物的任何组合的水平。在实施方案中,更改受
试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的7种化合物的任何
组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的8种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在
受试者中增加表3中列出的任何化合物或表3中列出的9种化合物的任何组合的水平。在实
施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的
10种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的11种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的12种化合物的任
何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的13种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的14种化合物的任何组合的水平。在
实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出
的15种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加
表3中列出的任何化合物或表3中列出的16种化合物的任何组合的水平。在实施方案中,更
改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的17种化合物
的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的18种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的19种化合物的任何组合的水
平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3
中列出的20种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者
中增加表3中列出的任何化合物或表3中列出的21种化合物的任何组合的水平。在实施方案
中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的22种化
合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的23种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的24种化合物的任何组合
的水平。在实施方案中,更改受试者的代谢包括在受试者中增加表3中列出的任何化合物或表3中列出的25种化合物的任何组合的水平。在实施方案中,增加受试者的粪便中的水平。
在实施方案中,增加受试者的体液中的水平。在实施方案中,更改受试者的代谢包括在受试者中降低碳水化合物、脂质或能量化合物的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的至少2、3、4、5、6、7、8、9、10、11、12、
13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45或50种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4
中列出的2种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的3种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的4种化合物
的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的5种化合物的任何组合的水平。在实施方案中,更改受试者的代谢
包括在受试者中降低表4中列出的任何化合物或表4中列出的6种化合物的任何组合的水
平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4
中列出的7种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的8种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的9种化合物
的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的10种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的11种化合物的任何组合的水
平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4
中列出的12种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者
中降低表4中列出的任何化合物或表4中列出的13种化合物的任何组合的水平。在实施方案
中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的14种化
合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的15种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的16种化合物的任何组合
的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的17种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的18种化合物的任何组合的水平。在实施方
案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的19种
化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的20种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的21种化合物的任何组
合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的22种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的23种化合物的任何组合的水平。在实施
方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的24
种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的25种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的30种化合物的任何
组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的35种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的40种化合物的任何组合的水平。在实
施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的
45种化合物的任何组合的水平。在实施方案中,更改受试者的代谢包括在受试者中降低表4中列出的任何化合物或表4中列出的50种化合物的任何组合的水平。在实施方案中,降低受试者的粪便中的水平。在实施方案中,降低受试者的体液中的水平。
[0204] 在一方面,提供了治疗或预防有需要的受试者中炎性疾病的方法。方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成如本文提供的微生物组合物。当约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成微生物组合物时,细菌形成组合物的一部分,该组合物包括用于肠道施用和定植的药学上可接受的载体。可接受的载体包括但不限于菊粉。在
实施方案中,肠道为健康受试者的肠道。在实施方案中,肠道为需要治疗或预防炎性疾病的受试者的肠道。在实施方案中,受试者为新生儿。如本文提供的“新生儿”是指初生儿或初生的哺乳动物。在实施方案中,新生儿小于约四周。
[0205] 在一方面,提供了治疗或预防有需要的受试者中炎性疾病的方法。方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0206] 在实施方案中,炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0207] 在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为代谢活性的。如本文提供的“代谢活性的”是指能够进行细胞分裂的细胞(例如细菌)。在实施方案中,代谢活性的细胞能够进行底物(例如葡萄糖)消耗。在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为无代谢活性的。在实施方案中,微生物组合物对于向肠道施用有效。在实施方案中,微生物组合物不包括鼠李糖乳杆菌。
[0208] 在实施方案中,微生物组合物对于增加抗炎代谢物(例如微生物脂质、微生物碳水化合物或微生物氨基酸)有效。如本文所述,抗炎代谢物可以为微生物脂质(例如磷脂、多不饱和脂肪酸)。在实施方案中,抗炎代谢物为磷脂。在实施方案中,抗炎代谢物为多不饱和脂肪酸。在实施方案中,抗炎代谢物为微生物碳水化合物(例如衣康酸、n-乙酰葡萄糖胺、n-乙酰半乳糖胺、岩藻糖乳糖)。在实施方案中,抗炎代谢物为衣康酸。在实施方案中,抗炎代谢物为n-乙酰葡萄糖胺。在实施方案中,抗炎代谢物为n-乙酰半乳糖胺。在实施方案中,抗炎代谢物为岩藻糖乳糖。在实施方案中,抗炎代谢物为微生物氨基酸(例如色氨酸)。在实施方案中,抗炎代谢物为色氨酸。如本文提供的能够增加抗炎代谢物的组合物是指与对照相比
导致可检测地更高水平的抗炎代谢物的组合物。增加的活性可以比对照中的活性高10%、
20%、30%、40%、50%、60%、70%、80%、90%或更多。在某些情况下,与对照相比,增加为
1.5倍、2倍、3倍、4倍、5倍、10倍或更多。在实施方案中,微生物组合物对于增加分泌IL-17的T辅助细胞的数量有效。
[0209] 在实施方案中,微生物组合物对于减少促炎代谢物有效。如本文所述,促炎代谢物可以为微生物脂质(例如,二羟基十八碳-12-烯酸、胆酸酯或甲基丙二酸酯)。在实施方案中,促炎代谢物为二羟基十八碳-12-烯酸。在实施方案中,促炎代谢物为胆酸酯。在实施方案中,促炎代谢物为甲基丙二酸酯。在实施方案中,促炎代谢物为微生物碳水化合物(例如,n-乙酰胞壁酸酯、乳糖醛酸酯或麦芽三糖)。在实施方案中,促炎代谢物为n-乙酰胞壁酸酯。
在实施方案中,促炎代谢物为乳糖醛酸酯。在实施方案中,促炎代谢物为麦芽三糖。在实施方案中,促炎代谢物为微生物氨基酸(例如鸟氨酸或牛磺酸)。在实施方案中,促炎代谢物为鸟氨酸。在实施方案中,促炎代谢物为牛磺酸。如本文提供的能够减少促炎代谢物的组合物是指与对照相比导致可检测地较低水平的促炎代谢物的组合物。降低的活性可以比对照中
的活性低10%、20%、30%、40%、50%、60%、70%、80%、90%或更少。在某些情况下,与对照相比,降低为1.5倍、2倍、3倍、4倍、5倍、10倍或更少。
[0210] 在实施方案中,促炎代谢物为IL-4、IL-10、IL-13或MUC5B。在实施方案中,促炎代谢物为IL-4。在实施方案中,促炎代谢物为IL-10。在实施方案中,促炎代谢物为IL-13。在实施方案中,促炎代谢物为MUC5B。在实施方案中,促炎代谢物为MUC5AC。在实施方案中,微生物组合物有效降低T辅助细胞2型细胞因子表达。
[0211] 如本文提供的术语“IL-4”包括任何重组或天然存在形式的白细胞介素4(IL-4)细胞因子或其维持IL-4蛋白活性(例如,与IL-4相比,在至少50%、80%、90%、95%、96%、
97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的IL-4多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,IL-4为如由NCBI序列参考GI:4504669(登记号NP_000580.1;SEQ ID NO:1)鉴定的蛋
白质,或其同种型、同系物或功能片段
[0212] 如本文提供的术语“IL-10”包括任何重组或天然存在形式的白细胞介素10(IL-10)细胞因子或其维持IL-10蛋白活性(例如,与IL-10相比,在至少50%、80%、90%、95%、
96%、97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的IL-
10多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,IL-10为如由NCBI序列参考GI:10835141(登记号NP_000563.1;SEQ ID NO:2)
鉴定的蛋白质,或其同种型、同系物或功能片段。
[0213] 如本文提供的术语“IL-13”包括任何重组或天然存在形式的白细胞介素13(IL-13)细胞因子或其维持IL-13蛋白活性(例如,与IL-13相比,在至少50%、80%、90%、95%、
96%、97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的IL-
13多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,IL-13为如由NCBI序列参考GI:26787978(登记号NP_002179.2;SEQ ID NO:3)
鉴定的蛋白质,或其同种型、同系物或功能片段。
[0214] 如本文提供的术语“IL-17”包括任何重组或天然存在形式的白细胞介素17(IL-17)细胞因子或其维持IL-17蛋白活性(例如,与IL-17相比,在至少50%、80%、90%、95%、
96%、97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的IL-
17多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,IL-17为如由UniProt序列参考Q16552(SEQ ID NO:4)鉴定的蛋白质,或其同系物或功能片段。在实施方案中,IL-17为如由UniProt序列参考Q9UHF5鉴定的蛋白质,或其同种型、同系物或功能片段。
[0215] 如本文提供的术语“MUC5AC”包括任何重组或天然存在形式的粘蛋白5AC(MUC5AC)蛋白质或其维持MUC5AC蛋白活性(例如,与MUC5AC相比,在至少50%、80%、90%、95%、
96%、97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的
MUC5AC多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,MUC5AC为如由UniProt序列参考P98088(SEQ ID NO:5)鉴定的蛋白质,或其同种型、同系物或功能片段。
[0216] 如本文提供的术语“MUC5B”包括任何重组或天然存在形式的粘蛋白5B(MUC5B)蛋白质或其维持MUC5B蛋白活性(例如,与MUC5B相比,在至少50%、80%、90%、95%、96%、
97%、98%、99%或100%活性以内)的变体或同系物。在一些方面,与天然存在的MUC5B多肽相比,变体或同系物在整个序列或序列的一部分(例如,50、100、150或200个连续氨基酸部分)上具有至少90%、95%、96%、97%、98%、99%或100%的氨基酸序列同一性。在实施方案中,MUC5B为如由UniProt序列参考Q9HC84(SEQ ID NO:6)鉴定的蛋白质,或其同种型、同系物或功能片段。
[0217] 在实施方案中,方法还包括施用治疗有效量的真菌。在实施方案中,真菌是马拉色菌属真菌。在实施方案中,微生物组合物对于降低致病真菌活性有效。如本文提及的“致病真菌活性”为来源于致病真菌的代谢活性。在实施方案中,致病真菌为白色念珠菌。在实施方案中,致病真菌形成促炎脂质。
[0218] 在实施方案中,受试者为新生儿。在实施方案中,新生儿小于约四周。在实施方案中,新生儿被治疗持续至少约一个月。在实施方案中,新生儿被治疗持续至少约两个月。在实施方案中,新生儿被治疗持续至少约三个月。在实施方案中,新生儿被治疗持续至少约四个月。在实施方案中,新生儿被治疗持续至少约五个月。在实施方案中,新生儿被治疗持续至少约六个月。
[0219] 在实施方案中,新生儿被治疗持续约一个月。在实施方案中,新生儿被治疗持续约两个月。在实施方案中,新生儿被治疗持续约三个月。在实施方案中,新生儿被治疗持续约四个月。在实施方案中,新生儿被治疗持续约五个月。在实施方案中,新生儿被治疗持续约六个月。
[0220] 在实施方案中,新生儿被治疗持续少于约一个月。在实施方案中,新生儿被治疗持续少于约两个月。在实施方案中,新生儿被治疗持续少于约三个月。在实施方案中,新生儿被治疗持续少于约四个月。在实施方案中,新生儿被治疗持续少于约五个月。在实施方案中,新生儿被治疗持续少于约六个月。
[0221] 在实施方案中,新生儿被治疗持续约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、
41、42、43、44、45、46、47、48、49、50、51、52、53或54周。
[0222] 在实施方案中,炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。在实施方案中,炎性疾病为哮喘。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0223] 在一方面,提供了在有需要的受试者中增加抗炎代谢物的方法。方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,方法还包括如本文提供的药学活性赋形剂。约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌可形成本文提供的微生物组合物,包括其实施方案。因此,在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成微生物组合物。
[0224] 抗炎代谢物可以为如本文提供的微生物脂质(例如磷脂、多不饱和脂肪酸)、微生物碳水化合物(例如衣康酸、n-乙酰葡萄糖胺、n-乙酰半乳糖胺、岩藻糖乳糖)或微生物氨基酸(例如色氨酸)。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为微生物氨基酸。
[0225] 在一方面,提供了在有需要的受试者中减少促炎代谢物的方法。方法包括向受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。在实施方案中,方法还包括如本文提供的药学活性赋形剂。约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌可形成本文提供的微生物组合物,包括其实施方案。因此,在实施方案中,约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成微生物组合物。
[0226] 如本文所述,促炎代谢物可以为微生物脂质(例如,二羟基十八碳-12-烯酸、胆酸酯或甲基丙二酸酯)。在实施方案中,促炎代谢物为二羟基十八碳-12-烯酸。在实施方案中,促炎代谢物为胆酸酯。在实施方案中,促炎代谢物为甲基丙二酸酯。在实施方案中,促炎代谢物为微生物碳水化合物(例如,n-乙酰胞壁酸酯、乳糖醛酸酯或麦芽三糖)。在实施方案
中,促炎代谢物为n-乙酰胞壁酸酯。在实施方案中,促炎代谢物为乳糖醛酸酯。在实施方案中,促炎代谢物为麦芽三糖。在实施方案中,促炎代谢物为微生物氨基酸(例如鸟氨酸或牛磺酸)。在实施方案中,促炎代谢物为鸟氨酸。在实施方案中,促炎代谢物为牛磺酸。
[0227] 在一方面,提供了在有需要的受试者中增加抗炎化合物的水平和/或降低促炎化合物的水平的方法。在实施方案中,方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0228] 在实施方案中,用于增加抗炎化合物的水平的方法增加和/或降低受试者的粪便、血液、血浆、血清、支气管肺泡灌洗液、汗液、唾液、痰液、淋巴液、脊髓液、尿液、眼泪、胆汁、房水、玻璃体液、羊水母乳脑脊液、耵聍、鼻粘液、粘痰或皮脂中促炎化合物的水平。
[0229] 在实施方案中,抗炎化合物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0230] 在实施方案中,受试者患有菌群失调或炎性疾病。
[0231] 在实施方案中,炎性疾病为如本文所述的疾病。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0232] 在一方面,提供了治疗或预防有需要的受试者中病毒性呼吸道感染的方法。方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0233] 在实施方案中,其中病毒性呼吸道感染由呼吸道合胞病毒、流感病毒、副流感病毒、腺病毒、冠状病毒或鼻病毒引起。在实施方案中,病毒性呼吸道感染为毛细支气管炎、感冒、哮吼或肺炎。
[0234] 在各方面,提供了治疗或预防有需要的受试者中过敏的方法。方法包括向受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0235] 在实施方案中,过敏为对奶、蛋、鱼、贝类、坚果、花生、小麦、猫、犬或啮齿动物的皮屑、昆虫叮咬、花粉、乳胶、尘螨或大豆的过敏。在实施方案中,过敏为儿童过敏性哮喘、枯草热或过敏性气道致敏。
[0236] V.检测方法
[0237] 在一方面,提供了检测患有炎性疾病或具有发展炎性疾病的风险的受试者中抗炎代谢物的方法。方法包括(i)从受试者获得生物样品;和(ii)确定生物样品中抗炎代谢物的表达水平。抗炎代谢物可以为如本文提供的微生物脂质(例如磷脂、多不饱和脂肪酸)、微生物碳水化合物(例如衣康酸、n-乙酰葡萄糖胺、n-乙酰半乳糖胺、岩藻糖乳糖)或微生物氨基酸(例如色氨酸)。因此,在实施方案中,抗炎代谢物为如本文所述的微生物脂质或微生物碳水化合物。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。
[0238] 在实施方案中,化合物(例如代谢物)的表达水平为化合物的量(例如,重量)。在实施方案中,化合物(例如蛋白质诸如细胞因子)的表达水平为mRNA表达的水平。
[0239] 在一方面,提供检测患有炎性疾病或具有发展炎性疾病的风险的受试者中促炎代谢物的方法。方法包括(i)从受试者获得生物样品;和(ii)确定生物样品中促炎代谢物的表达水平。促炎代谢物可以为如本文提供的微生物脂质(例如,二羟基十八碳-12-烯酸、胆酸酯或甲基丙二酸酯)、微生物碳水化合物(例如,n-乙酰胞壁酸酯、乳糖醛酸酯或麦芽三糖)或微生物氨基酸(例如鸟氨酸或牛磺酸)。
[0240] 在一方面,提供了检测有需要的受试者中促炎化合物的方法。在实施方案中,方法包括(i)从受试者获得生物样品;和(ii)检测生物样品中的促炎化合物。
[0241] 在一方面,提供了监测菌群失调或炎性疾病的治疗效果的方法。在实施方案中,方法包括:(i)从受试者获得生物样品;和(ii)检测生物样品是否为促炎的。
[0242] 在一方面,提供了确定受试者中炎性疾病活性的方法。在实施方案中,方法包括:(i)从受试者获得生物样品;和(ii)检测生物样品是否为促炎的。
[0243] 在一方面,提供了检测患有炎性疾病或具有发展炎性疾病的风险的受试者中抗炎代谢物的方法。在实施方案中,方法包括:(i)从受试者获得生物样品;和(ii)确定生物样品中抗炎代谢物的表达水平。
[0244] 在实施方案中,受试者患有菌群失调或具有发展菌群失调的风险。在实施方案中,受试者患有炎性疾病。在实施方案中,受试者具有患有炎性疾病的风险。
[0245] 在实施方案中,受试者(i)具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹;(ii)患有便秘、腹泻、腹胀、尿急和/或腹痛;和/或(iii)已经在最近1、2或4个月内被施用抗生素。
[0246] 在实施方案中,炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0247] 在实施方案中,受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。在实施方案中,受试者小于约1个月。在实施方案中,受试者小于1个月。在实施方案中,受试者小于约2个月。在实施方案中,受试者小于2个月。在实施方案中,受试者小于约3个月。在实施方案中,受试者小于3个月。在实施方案中,受试者小于约4个月。在实施方案中,受试者小于4个月。在实施方案中,受试者小于约5个月大。在实施方案中,受试者小于5个月。在实施方案中,受试者小于约6个月。在实施方案中,受试者小于6个月。在实施方案中,受试者小于约7个月。在实施方案中,受试者小于7个月。在实施方案中,受试者小于约8个月。在实施方案中,受试者小于8个月。在实施方案中,受试者小于约9个月。在实施方案中,受试者小于9个月。在实施方案中,受试者小于约12个月。在实施方案中,受试者小于12个月。在实施方案中,受试者小于约18个月。在实施方案中,受试者小于18个月。在实施方案中,受试者小于约24个月。在实施方案中,受试者小于24个月。
[0248] 在实施方案中,受试者在约2和约18岁之间,或至少约18岁。在实施方案中,受试者在2和18岁之间,或至少18岁。在实施方案中,受试者在约2和约18岁之间,或至少约18(例如19、20、25、30、40、50、60、70、80、90)岁。在实施方案中,受试者在约2和约18岁之间,或约19岁。在实施方案中,受试者在约2和约18岁之间,或19岁。在实施方案中,受试者在约2和约18岁之间,或约20岁。在实施方案中,受试者在约2和约18岁之间,或20岁。在实施方案中,受试者在约2和约18岁之间,或约25岁。在实施方案中,受试者在约2和约18岁之间,或25岁。在实施方案中,受试者在约2和约18岁之间,或约30岁。在实施方案中,受试者在约2和约18岁之间,或30岁。在实施方案中,受试者在约2和约18岁之间,或约40岁。在实施方案中,受试者在约2和约18岁之间,或40岁。在实施方案中,受试者在约2和约18岁之间,或约50岁。在实施方案中,受试者在约2和约18岁之间,或50岁。在实施方案中,受试者在约2和约18岁之间,或约
60岁。在实施方案中,受试者在约2和约18岁之间,或60岁。在实施方案中,受试者在约2和约
18岁之间,或约70岁。在实施方案中,受试者在约2和约18岁之间,或70岁。在实施方案中,受试者在约2和约18岁之间,或约80岁。在实施方案中,受试者在约2和约18岁之间,或80岁。在实施方案中,受试者在约2和约18岁之间,或约90岁。在实施方案中,受试者在约2和约18岁之间,或90岁。
[0249] 在实施方案中,受试者包括这样的胃肠微生物组,所述胃肠微生物组:(a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;(d)与健康或普通群体相
比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;(e)与健康或普通群体相比,具有比例减少的马拉色菌属;(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0250] 在实施方案中,生物样品为体液。在实施方案中,其中体液为血液、血浆、血清、粪便水或支气管肺泡灌洗液。在实施方案中,体液为粪便水。
[0251] 在实施方案中,检测促炎化合物包括使抗原呈递细胞与生物样品接触。在实施方案中,抗原呈递细胞为树突细胞。在实施方案中,树突细胞已经从血液中分离。在实施方案中,树突细胞已经从健康受试者(例如,不患有炎性疾病、感染并且在约1、2、3、4、5或6个月内没有施用抗生素的受试者)的血液中分离。在实施方案中,树突细胞已经从外周血单核细胞中获得(例如,分离、选择或富集)。在实施方案中,树突细胞为树突细胞原代培养物的一部分。在实施方案中,树突细胞为已经传代少于约1、2、3、4、5、6、7、8、9或10次的树突细胞培养物的一部分。在实施方案中,树突细胞没有永生化。在实施方案中,树突细胞为永生化树突细胞。
[0252] 在实施方案中,检测促炎化合物还包括使幼稚T细胞与抗原呈递细胞接触以产生接触的T细胞。在实施方案中,方法还包括检测由接触的T细胞和/或接触的T细胞的后代产
生的细胞因子。在实施方案中,T细胞已经从血液中分离。在实施方案中,T细胞已经从健康受试者(例如,没有炎性疾病、感染并且在约1、2、3、4、5或6个月内没有施用抗生素的受试者)的血液中分离。在实施方案中,T细胞已经从外周血单核细胞中获得(例如,分离、选择或富集)。在实施方案中,T细胞为T细胞原代培养物的一部分。在实施方案中,T细胞为已经传代少于约1、2、3、4、5、6、7、8、9或10次的T细胞培养物的一部分。在实施方案中,T细胞没有永生化。在实施方案中,T细胞为永生化T细胞。
[0253] 在实施方案中,如果(i)与对照相比,接触的T细胞的后代中T-辅助(TH)-2细胞的比例增加;(ii)与对照相比,接触的T细胞的后代中TH-1、TH-17和/或TH22细胞的比例增加;
(iii)与对照相比,接触的T细胞的后代中TH-1细胞与TH-2细胞的比率降低;(iv)与对照相
比,接触的T细胞的后代中产生IL-17的CD8+T细胞的比例增加;和/或(v)与对照相比,由接触的T细胞的后代和/或其后代产生的IL-4、IL-10和/或IL-13的量增加,那么检测到促炎化合物。
[0254] 在实施方案中,对照为(i)已经与无菌培养基接触的对应T细胞和/或其后代的对应比例、比率和/或量;(ii)已经与和来自不患有菌群失调、炎性疾病或胃肠感染的受试者的生物样品接触的抗原呈递细胞接触的对应T细胞和/或其后代的对应比例、比率和/或量;
和/或(iii)对应于普通群体或不患有菌群失调、炎性疾病或胃肠感染的受试者群体中的比
例、比率和/或量的参考值。
[0255] 在实施方案中,方法还包括如果在受试者中检测到促炎化合物,那么指导受试者接受治疗或者另外测试或监测菌群失调或炎性疾病。
[0256] 在实施方案中,方法还包括如果在受试者中检测到促炎化合物,那么向受试者施用如本文所述的所述组合物,包括其实施方案。
[0257] 在实施方案中,方法还包括如果在受试者中检测到促炎化合物,那么将受试者诊断为患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险。
[0258] 在实施方案中,提供了确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法。在实施方案中,方法包括(i)从受试者获得生物样品;和
(ii)根据本文描述的方法检测促炎化合物,包括其实施方案。
[0259] 在所公开方法的一些实例中,当评估抗炎代谢物或促炎代谢物的表达水平时,将该水平与抗炎代谢物或促炎代谢物的对照表达水平进行比较。对照水平意指来自缺少疾病
(例如炎性疾病)、处于疾病或疾病状态的选定阶段、或不存在特定变量诸如治疗剂的样品
或受试者的特定抗炎代谢物或促炎代谢物的表达水平。可选地,对照水平包括已知量的抗
炎代谢物或促炎代谢物。此类已知量与缺少疾病、处于疾病或疾病状态的选定阶段、或不存在特定变量诸如治疗剂的受试者的平均水平相关。对照水平还包括来自如本文所述的一个
或更多个选定样品或受试者的一种或更多种抗炎代谢物或促炎代谢物的表达水平。例如,
对照水平包括评估一种或更多种抗炎代谢物或促炎代谢物在来自不患有疾病(例如炎性疾
病)、处于疾病(例如炎性疾病)进展的选定阶段或没有接受疾病治疗的受试者的样品中的
表达水平。另一个示例性对照水平包括评估从不患有疾病、处于疾病进展的选定阶段或没
有接受疾病治疗的多个受试者采集的样品中一种或更多种抗炎代谢物或促炎代谢物的表
达水平。
[0260] 当对照水平包括在不存在治疗剂(例如,本文提供的微生物组合物,包括其实施方案)的情况下样品或受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平时,对照
样品或受试者任选地为在用治疗剂治疗之前或之后待测试的相同样品或受试者,或者为在
不存在治疗剂的情况下选定的样品或受试者。可选地,对照水平为从许多没有特定疾病的
受试者计算出的平均表达水平。对照水平还包括本领域已知的已知对照水平或值。
[0261] 在实施方案中,生物样品为体液。在实施方案中,体液为血清、粪便水或支气管肺泡灌洗液。在实施方案中,体液为血清。在实施方案中,体液为粪便水。在实施方案中,体液为支气管肺泡灌洗液。在实施方案中,生物样品为组织。在实施方案中,组织为肺、脾脏或回肠组织。在实施方案中,生物样品为细胞。在实施方案中,生物样品为肺细胞。在实施方案中,生物样品为脾细胞。在实施方案中,生物样品为回肠细胞。在实施方案中,样品包括一种或更多种细菌细胞。
[0262] 在实施方案中,生物样品为通过过滤和/或离心获得的体液。例如,生物样品可以为例如血液或粪便的滤液或离心血液或粪便的上清液。在实施方案中,将滤液离心。在实施方案中,将上清液过滤。在实施方案中,离心用于增加流体通过过滤器的通过。过滤器的非限制性实例包括限制直径(或平均直径)大于例如50、100、200、300、400、500、50-500、50-
100、100-500nm或直径(例如平均直径)大于0.5、1、1.5、2、2.5、5、10、15、25、50、100或200微米的任何分子的过滤器。在实施方案中,过滤器具有直径约50、100、200、300、400、500、50-
500、50-100、100-500nm或直径约0.5、1、1.5、2、2.5、5、10、15、25、50、100或200微米的孔。
[0263] 在实施方案中,检测化合物(例如代谢物)和/或其表达水平包括高效液相色谱(HPLC)、气相色谱、液相色谱、质谱(MS)、电感耦合等离子体质谱(ICP-MS)、加速器质谱
(AMS)、热电离质谱(TIMS)和火花源质谱(SSMS)、基质辅助激光解吸/电离(MALDI)和/或
MALDI-TOF。
[0264] 在实施方案中,检测化合物的表达水平包括裂解细胞。在实施方案中,检测化合物的表达水平包括聚合酶链式反应(例如逆转录酶聚合酶链式反应)、微阵列分析、免疫组织化学或流式细胞术。
[0265] 在实施方案中,确定包括:(a)在体外使抗炎代谢物与抗原呈递细胞接触,从而形成代谢物-抗原呈递细胞;(b)使代谢物-抗原呈递细胞与T细胞接触,从而形成接触的T细
胞;和(c)检测由接触的T细胞产生的细胞因子。在实施方案中,细胞因子由活化或分化的T细胞产生。
[0266] 在实施方案中,确定包括:(a)在体外使促炎代谢物与抗原呈递细胞接触,从而形成代谢物-抗原呈递细胞;(b)使代谢物-抗原呈递细胞与T细胞接触,从而形成接触的T细
胞;(c)检测由接触的T细胞产生的细胞因子。
[0267] 在实施方案中,炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。在实施方案中,炎性疾病为哮喘。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0268] 在一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的促炎代谢物的表达水
平升高或抗炎代谢物的表达水平降低指示受试者患有炎性疾病或具有发展炎性疾病的风
险;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0269] 在一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种促炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的促炎代谢物的表达水平增加指示受
试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的表
达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0270] 在另一方面,提供了确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对照的抗炎代谢物的表达水平降低指示
受试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的
表达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0271] 在实施方案中,抗炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。抗炎代谢物可以为如本文提供的微生物脂质(例如磷脂、多不饱和脂肪酸)、微生物碳水化合物(例如衣康酸、n-乙酰葡萄糖胺、n-乙酰半乳糖胺、岩藻糖乳糖)或微生物氨基酸(例如色氨酸)。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为微生物氨基酸。
[0272] 在实施方案中,促炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。促炎代谢物可以为如本文提供的微生物脂质(例如,二羟基十八碳-12-烯酸、胆酸酯或甲基丙二酸酯)、微生物碳水化合物(例如,n-乙酰胞壁酸酯、乳糖醛酸酯或麦芽三糖)或微生物氨基酸(例如鸟氨酸或牛磺酸)。
[0273] 在实施方案中,炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。在实施方案中,炎性疾病为哮喘。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0274] 在一方面,提供了监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法。方法包括(i)在第一时间点确定受试者中抗炎代谢物的
第一表达水平;(ii)在第二时间点确定受试者中抗炎代谢物的第二表达水平;和(iii)将抗炎代谢物的第二表达水平与抗炎代谢物的第一表达水平进行比较,从而确定受试者中炎性
疾病的治疗效果。
[0275] 在实施方案中,抗炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为微生物氨基酸。
[0276] 在一方面,提供了监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法。方法包括(i)在第一时间点确定受试者中促炎代谢物的
第一表达水平;(ii)在第二时间点确定受试者中促炎代谢物的第二表达水平;和(iii)将促炎代谢物的第二表达水平与促炎代谢物的第一表达水平进行比较,从而确定受试者中炎性
疾病的治疗效果。
[0277] 在实施方案中,促炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,促炎代谢物为微生物脂质。在实施方案中,促炎代谢物为微生物碳水化合物。在实施方案中,促炎代谢物为微生物氨基酸。
[0278] 在实施方案中,炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。在实施方案中,炎性疾病为哮喘。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0279] 在一方面,提供了确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法。方法包括:(i)从受试者获得生物样品;和(ii)检测生物样品是否为促炎的。
[0280] 在实施方案中,受试者患有细菌、病毒或真菌胃肠感染或与患有细菌、病毒或真菌胃肠感染的人住在一起。
[0281] 在实施方案中,受试者(i)具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹;(ii)患有便秘、腹泻、腹胀、尿急和/或腹痛;和/或(iii)已经在最近1、2或4个月内被施用抗生素。
[0282] 在实施方案中,炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0283] 在实施方案中,受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。在实施方案中,受试者小于约1个月。在实施方案中,受试者小于1个月。在实施方案中,受试者小于约2个月。在实施方案中,受试者小于2个月。在实施方案中,受试者小于约3个月。在实施方案中,受试者小于3个月。在实施方案中,受试者小于约4个月。在实施方案中,受试者小于4个月。在实施方案中,受试者小于约5个月。在实施方案中,受试者小于5个月。在实施方案中,受试者小于约6个月。在实施方案中,受试者小于6个月。在实施方案中,受试者小于约7个月。在实施方案中,受试者小于7个月。在实施方案中,受试者小于约8个月。在实施方案中,受试者小于8个月。在实施方案中,受试者小于约9个月。在实施方案中,受试者小于9个月。在实施方案中,受试者小于约12个月。在实施方案中,受试者小于12个月。在实施方案中,受试者小于约18个月。在实施方案中,受试者小于18个月。在实施方案中,受试者小于约24个月。在实施方案中,受试者小于24个月。
[0284] 在实施方案中,受试者在约2和约18岁之间,或至少约18岁。在实施方案中,受试者在2和18岁之间,或至少18岁。在实施方案中,受试者在约2和约18岁之间,或至少约18(例如19、20、25、30、40、50、60、70、80、90)岁。在实施方案中,受试者在约2和约18岁之间,或约19岁。在实施方案中,受试者在约2和约18岁之间,或19岁。在实施方案中,受试者在约2和约18岁之间,或约20岁。在实施方案中,受试者在约2和约18岁之间,或20岁。在实施方案中,受试者在约2和约18岁之间,或约25岁。在实施方案中,受试者在约2和约18岁之间,或25岁。在实施方案中,受试者在约2和约18岁之间,或约30岁。在实施方案中,受试者在约2和约18岁之间,或30岁。在实施方案中,受试者在约2和约18岁之间,或约40岁。在实施方案中,受试者在约2和约18岁之间,或40岁。在实施方案中,受试者在约2和约18岁之间,或约50岁。在实施方案中,受试者在约2和约18岁之间,或50岁。在实施方案中,受试者在约2和约18岁之间,或约
60岁。在实施方案中,受试者在约2和约18岁之间,或60岁。在实施方案中,受试者在约2和约
18岁之间,或约70岁。在实施方案中,受试者在约2和约18岁之间,或70岁。在实施方案中,受试者在约2和约18岁之间,或约80岁。在实施方案中,受试者在约2和约18岁之间,或80岁。在实施方案中,受试者在约2和约18岁之间,或约90岁。在实施方案中,受试者在约2和约18岁之间,或90岁。
[0285] 在实施方案中,受试者包括这样的胃肠微生物组,所述胃肠微生物组:(a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;(d)与健康或普通群体相
比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;(e)与健康或普通群体相比,具有比例减少的马拉色菌属;(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0286] 在实施方案中,生物样品为体液。在实施方案中,体液为血液、血浆、血清、粪便水或支气管肺泡灌洗液。在实施方案中,体液为粪便水。
[0287] 在实施方案中,检测生物样品是否为促炎的包括使抗原呈递细胞与生物样品接触。在实施方案中,抗原呈递细胞为树突细胞。
[0288] 在实施方案中,检测生物样品是否为促炎的还包括使幼稚T细胞与抗原呈递细胞接触以产生接触的T细胞。
[0289] 在实施方案中,方法还包括检测由接触的T细胞和/或接触的T细胞的后代产生的细胞因子。
[0290] 在实施方案中,如果(i)与对照相比,接触的T细胞的后代中T-辅助(TH)-2细胞的比例增加;(ii)与对照相比,接触的T细胞的后代中TH-1、TH-17和/或TH22细胞的比例增加;
(iii)与对照相比,接触的T细胞的后代中TH-1细胞与TH-2细胞的比率降低;(iv)与对照相
比,接触的T细胞的后代中产生IL-17的CD8+T细胞的比例增加;和/或(v)与对照相比,由接触的T细胞的后代和/或其后代产生的IL-4、IL-10和/或IL-13的量增加,那么生物样品被检测为促炎的。
[0291] 在实施方案中,对照为(i)已经与无菌培养基接触的对应T细胞和/或其后代的对应比例、比率和/或量;(ii)已经与和来自不患有菌群失调、炎性疾病或胃肠感染的受试者的生物样品接触的抗原呈递细胞接触的对应T细胞和/或其后代的对应比例、比率和/或量;
和/或(iii)对应于普通群体或不患有菌群失调、炎性疾病或胃肠感染的受试者群体中的比
例、比率和/或量的参考值。
[0292] 在实施方案中,如果生物样品被检测为促炎的,那么方法还包括指导受试者接受治疗或者另外测试或监测菌群失调或炎性疾病。
[0293] 在实施方案中,如果生物样品被检测为促炎的,那么方法还包括向受试者施用如本文所述的细菌群体或组合物,包括其实施方案。
[0294] 在实施方案中,受试者包括这样的胃肠微生物组,所述胃肠微生物组:(a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;(d)与健康或普通群体相
比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;(e)与健康或普通群体相比,具有比例减少的马拉色菌属;(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0295] 在实施方案中,方法还包括确定受试者是否具有这样的胃肠微生物组,所述胃肠微生物组:(a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;
(b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;(c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;(d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌
属;(e)与健康或普通群体相比,具有比例减少的马拉色菌属;(f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或(g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0296] 在实施方案中,提供了治疗或预防根据本文描述的方法包括其实施方案被确定患有菌群失调、病毒性呼吸道感染或炎性疾病或具有发展菌群失调、病毒性呼吸道感染或炎
性疾病的风险的受试者中菌群失调、病毒性呼吸道感染或炎性疾病的方法。在实施方案中,方法包括向受试者施用本文公开的细菌群体。
[0297] 在另一方面,提供了确定受试者中炎性疾病活性的方法。方法包括(i)检测受试者中一种或更多种抗炎代谢物的表达水平;(ii)确定表达水平是否相对于标准对照被调节,
从而确定受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者中炎性疾病活性。
[0298] 在实施方案中,抗炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为微生物氨基酸。
[0299] 在另一方面,提供了确定受试者中炎性疾病活性的方法。方法包括(i)检测受试者中一种或更多种促炎代谢物的表达水平;(ii)确定表达水平是否相对于标准对照被调节,
从而确定受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者中炎性疾病活性。
[0300] 在实施方案中,促炎代谢物为如本文提供的微生物脂质、微生物碳水化合物或微生物氨基酸。在实施方案中,抗炎代谢物为微生物脂质。在实施方案中,抗炎代谢物为微生物碳水化合物。在实施方案中,抗炎代谢物为微生物氨基酸。
[0301] 在实施方案中,炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。在实施方案中,炎性疾病为哮喘。在实施方案中,炎性疾病为溃疡性结肠炎。在实施方案中,炎性疾病为肠易激综合征。在实施方案中,炎性疾病为关节炎。在实施方案中,炎性疾病为葡萄膜炎。在实施方案中,炎性疾病为坏疽性脓皮病。在实施方案中,炎性疾病为结节性红斑。
[0302] 在一方面,提供了确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法。方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定表达水平相对于标准对照是增加还是降低,其中相对于标准对
照的促炎代谢物的表达水平升高或抗炎代谢物的表达水平降低指示受试者患有炎性疾病
或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0303] 在一方面,提供了监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法,该方法包括:(i)在第一时间点确定受试者中抗炎代谢物或促炎代谢物的第一表达水平;(ii)在第二时间点确定受试者中抗炎代谢物或促炎代谢物
的第二表达水平;和(iii)将抗炎代谢物或促炎代谢物的第二表达水平与抗炎代谢物或促
炎代谢物的第一表达水平进行比较,从而确定受试者中炎性疾病的治疗效果。
[0304] 在一方面,提供了确定受试者中炎性疾病活性的方法。方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定表达水平是否相对于标准
对照被调节,从而确定受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的表达水平,确定受试者中炎性疾病活性。
[0305] 表1:可单独或以任何组合在本文提供的方法和组合物的细菌群体中使用的乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种、孢囊杆菌属种和片球菌属种的非限制性实例。
[0306]
[0307]
[0308]
[0309] 应当理解,本文描述的实例和实施方案仅仅是为了说明的目的,并且本领域技术人员将想到根据这些实例和实施方案的各种修改或改变,并且这些修改或改变将包括在本
申请的精神和权限以及所附权利要求的范围内。本文引用的所有出版物、专利和专利申请
均出于所有目以其全文通过引用并入本文中。
[0310] 实施方案
[0311] 实施方案包括以下P1至P34。
[0312] 实施方案P1.一种治疗或预防有需要的受试者中炎性疾病的方法,所述方法包括向所述受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。
[0313] 实施方案P2.根据实施方案1所述的方法,还包括药学活性赋形剂。
[0314] 实施方案P3.根据实施方案1或2所述的方法,其中所述约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成微生物组合物。
[0315] 实施方案P4.根据实施方案3所述的方法,其中所述微生物组合物对于向肠道施用有效。
[0316] 实施方案P5.根据实施方案3所述的方法,其中所述微生物组合物对于增加抗炎代谢物有效。
[0317] 实施方案P6.根据实施方案3所述的方法,其中所述微生物组合物对于减少促炎代谢物有效。
[0318] 实施方案P7.根据实施方案5所述的方法,其中所述抗炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0319] 实施方案P8.根据实施方案6所述的方法,其中所述促炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0320] 实施方案P9.根据实施方案8所述的方法,其中所述促炎代谢物为IL-4、IL-10、IL-13或MUC5B。
[0321] 实施方案P10.根据实施方案1或9中一项所述的方法,其中所述约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为代谢活性的。
[0322] 实施方案P11.根据实施方案1或9中一项所述的方法,其中所述约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌为无代谢活性的。
[0323] 实施方案P12.根据实施方案1-11中一项所述的方法,还包括施用治疗有效量的真菌。
[0324] 实施方案P13.根据实施方案1-12中一项所述的方法,其中所述受试者为新生儿。
[0325] 实施方案P14.根据实施方案1-13中一项所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0326] 实施方案P15.一种在有需要的受试者中增加抗炎代谢物的方法,所述方法包括向所述受试者施用治疗有效量的约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌。
[0327] 实施方案P16.根据实施方案15所述的方法,还包括药学活性赋形剂。
[0328] 实施方案P17.根据实施方案15或16所述的方法,其中所述约氏乳杆菌、普氏栖粪杆菌、嗜粘蛋白阿克曼氏菌、黄色粘球菌和戊糖片球菌形成微生物组合物。
[0329] 实施方案P18.根据实施方案15-17中一项所述的方法,其中所述抗炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0330] 实施方案P19.根据实施方案15-18中一项所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0331] 实施方案P20.一种检测患有炎性疾病或具有发展炎性疾病的风险的受试者中抗炎代谢物的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)确定所述生物样品中抗炎代谢物的表达水平。
[0332] 实施方案P21.根据实施方案20所述的方法,其中所述抗炎代谢物为微生物脂质或微生物碳水化合物。
[0333] 实施方案P22.根据实施方案20或21所述的方法,其中所述生物样品为体液。
[0334] 实施方案P23.根据实施方案22所述的方法,其中所述体液为血清、粪便水或支气管肺泡灌洗液。
[0335] 实施方案P24.根据实施方案20-23中一项所述的方法,其中所述确定包括:(a)在体外使所述抗炎代谢物与抗原呈递细胞接触,从而形成代谢物-抗原呈递细胞;(b)使所述
代谢物-抗原呈递细胞与T细胞接触,从而形成接触的T细胞;和(c)检测由所述接触的T细胞产生的细胞因子。
[0336] 实施方案P25.根据实施方案20-24中一项所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0337] 实施方案P26.一种确定受试者是否患有炎性疾病或具有发展炎性疾病的风险的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水
平;(ii)确定所述表达水平相对于标准对照是增加还是降低,其中相对于所述标准对照的
促炎代谢物的表达水平升高或抗炎代谢物的表达水平降低指示所述受试者患有炎性疾病
或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的所述表达水平,确定所述受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0338] 实施方案P27.根据实施方案26所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0339] 实施方案P28.根据实施方案26所述的方法,其中所述抗炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0340] 实施方案P29.一种监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法,所述方法包括:(i)在第一时间点确定所述受试者中抗炎代谢物的第一表达水平;(ii)在第二时间点确定所述受试者中抗炎代谢物的第二表达水
平;和(iii)将抗炎代谢物的所述第二表达水平与抗炎代谢物的所述第一表达水平进行比
较,从而确定所述受试者中炎性疾病的所述治疗效果。
[0341] 实施方案P30.根据实施方案29所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0342] 实施方案P31.根据实施方案29所述的方法,其中所述抗炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0343] 实施方案P32.一种确定受试者中炎性疾病活性的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物的表达水平;(ii)确定所述表达水平是否相对于标准对照
被调节,从而确定所述受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的所述表达水平,确定所述受试者中所述炎性疾病活性。
[0344] 实施方案P33.根据实施方案32所述的方法,其中所述炎性疾病为哮喘、溃疡性结肠炎、肠易激综合征、关节炎、葡萄膜炎、坏疽性脓皮病或结节性红斑。
[0345] 实施方案P34.根据实施方案32所述的方法,其中所述抗炎代谢物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0346] 另外的实施方案包括以下实施方案1至111。
[0347] 实施方案1.一种治疗或预防有需要的受试者中菌群失调的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0348] 实施方案2.根据实施方案1所述的方法,其中(i)所述乳杆菌属种为约氏乳杆菌;(ii)所述栖粪杆菌属种为普氏栖粪杆菌;(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏
菌;(iv)所述粘球菌属种为黄色粘球菌;并且(v)所述片球菌属种为戊糖片球菌。
[0349] 实施方案3.根据实施方案1或2所述的方法,其中(i)所述乳杆菌种为玉米乳杆菌、酸鱼乳杆菌、嗜酸乳杆菌、能动乳杆菌、鸟乳杆菌、短乳杆菌、Lactobacillus 
coleohominis、卷曲乳杆菌、面包乳杆菌、弯曲乳杆菌、Lactobacillus diolivorans、
Lactobacillus farraginis、发酵乳杆菌、果糖乳杆菌、哈尔滨乳杆菌、瑞士乳杆菌、希氏乳杆菌、肠乳杆菌、詹氏乳杆菌、马乳酒样乳杆菌、高加索酸奶乳杆菌、林氏乳杆菌、马里乳杆菌、食木薯乳杆菌、粘膜乳杆菌、Lactobacillus oeni、寡发酵乳杆菌、面包乳杆菌、德式乳杆菌、类短乳杆菌、类丘状乳杆菌、类高加索酸奶乳杆菌、类植物乳杆菌、戊糖乳杆菌、桥乳杆菌、罗伊氏乳杆菌、罗氏乳杆菌、唾液乳杆菌、Lactobacillus siliginis、Lactobacillus sucicola、牛痘乳杆菌、阴道乳杆菌、嗜葡萄酒乳杆菌、格氏乳球菌或乳酸乳球菌;(ii)所述栖粪杆菌属种为普氏栖粪杆菌;(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)所述粘球菌属种为黄色粘球菌;并且(v)所述片球菌属种为戊糖片球菌、乳酸片球菌、有害片球菌、耐乙醇片球菌或小片球菌。
[0350] 实施方案4.根据实施方案1至3中任一项所述的方法,其中所述粘球菌属种呈孢子、营养细菌或孢子和营养细菌的混合物的形式。
[0351] 实施方案5.根据实施方案4所述的方法,其中所述粘球菌属种呈包含孢子的粉末的形式。
[0352] 实施方案6.根据实施方案1至5中任一项所述的方法,其中向所述受试者施用少于约20、15、10、9、8、7或6个不同物种的细菌。
[0353] 实施方案7.根据实施方案1所述的方法,其中所述细菌群体形成细菌组合物的一部分。
[0354] 实施方案8.根据实施方案7所述的方法,其中所述细菌组合物包括少于约20、15、10、9、8、7或6个物种的细菌。
[0355] 实施方案9.根据实施方案7或8所述的方法,其中所述细菌组合物不是粪便移植物。
[0356] 实施方案10.根据实施方案7至9中任一项所述的方法,其中所述细菌组合物另外包含药学上可接受的赋形剂。
[0357] 实施方案11.根据实施方案7至10中任一项所述的方法,其中所述细菌组合物为胶囊、片剂、悬液、栓剂、粉末、霜剂、油、水包油乳液、油包水乳液或水溶液。
[0358] 实施方案12.根据实施方案7至10中任一项所述的方法,其中所述细菌组合物呈粉末、固体、半固体或液体的形式。
[0359] 实施方案13.根据实施方案7至12中任一项所述的方法,其中所述细菌组合物在20℃具有小于约0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1的水活度(aw)。
[0360] 实施方案14.根据实施方案7至13中任一项所述的方法,其中所述细菌组合物为食物或饮料。
[0361] 实施方案15.根据实施方案7至14中任一项所述的方法,其中所述细菌组合物口服或经直肠施用。
[0362] 实施方案16.根据实施方案1至15中任一项所述的方法,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种呈粉末的形式。
[0363] 实施方案17.根据实施方案1至16中任一项所述的方法,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种已被冻干。
[0364] 实施方案18.根据实施方案1至17中任一项所述的方法,其中所述受试者为人类。
[0365] 实施方案19.根据实施方案1至18中任一项所述的方法,其中所述受试者患有细菌、病毒或真菌胃肠感染或与患有所述细菌、病毒或真菌胃肠感染的人住在一起。
[0366] 实施方案20.根据实施方案1至19中任一项所述的方法,其中所述受试者患有炎性疾病。
[0367] 实施方案21.根据实施方案1至20中任一项所述的方法,其中所述受试者具有患有炎性疾病的风险。
[0368] 实施方案22.根据实施方案1至21中任一项所述的方法,其中所述受试者具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫叔和/或兄弟姐妹。
[0369] 实施方案23.根据实施方案20至22中任一项所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0370] 实施方案24.根据实施方案23所述的方法,其中所述炎性疾病为儿童过敏性哮喘或炎性肠病。
[0371] 实施方案25.根据实施方案1至24中任一项所述的方法,其中所述受试者患有便秘、腹泻、腹胀、尿急和/或腹痛。
[0372] 实施方案26.根据实施方案1至25中任一项所述的方法,其中所述受试者已经在最近1、2、3或4个月内被施用抗生素。
[0373] 实施方案27.根据实施方案1至26中任一项所述的方法,其中所述受试者为新生儿。
[0374] 实施方案28.根据实施方案1至26中任一项所述的方法,其中所述受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。
[0375] 实施方案29.根据实施方案1至26中任一项所述的方法,其中所述受试者在约2和约18岁之间,或至少约18岁。
[0376] 实施方案30.根据实施方案1至29中任一项所述的方法,其中所述受试者包括胃肠微生物组,所述胃肠微生物组:
[0377] (a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;
[0378] (b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
[0379] (c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
[0380] (d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
[0381] (e)与健康或普通群体相比,具有比例减少的马拉色菌属;
[0382] (f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
[0383] (g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0384] 实施方案31.根据实施方案1至30中任一项所述的方法,其中所述有效量对于以下有效
[0385] (i)增加所述受试者中双歧杆菌属种、属于进化枝IV和XIV的梭菌属种、毛螺菌属种和/或瘤胃球菌属种的水平;
[0386] (ii)降低所述受试者的粪便的pH;
[0387] (iii)增加所述受试者的所述粪便中乳酸的水平;
[0388] (iv)增加所述受试者中循环衣康酸的水平;
[0389] (v)治疗、减少或预防受试者中的过敏性炎症;
[0390] (vi)减少所述受试者的气道中的适应性免疫应答;
[0391] (vii)减少胃肠相关肠系膜淋巴结中的树突细胞活化;
[0392] (viii)增加所述受试者的肺、血液、血清或血浆中修复巨噬细胞的水平;
[0393] (ix)增加所述受试者中抗炎化合物的水平;
[0394] (x)降低所述受试者中促炎化合物的水平;
[0395] (xi)降低所述受试者中嗜酸细胞活化趋化因子表达和/或分泌的水平;和/或降低所述受试者中粘蛋白表达和/或分泌的水平。
[0396] 实施方案32.根据实施方案31所述的方法,其中所述有效量对于降低所述受试者的所述肺中所述粘蛋白分泌和/或分泌的水平有效。
[0397] 实施方案33.根据实施方案31或32所述的方法,其中所述抗炎化合物为细胞因子、微生物脂质、微生物碳水化合物或微生物氨基酸。
[0398] 实施方案34.根据实施方案33所述的方法,其中所述抗炎化合物为IL-17。
[0399] 实施方案35.根据实施方案31至34中任一项所述的方法,其中所述促炎化合物为细胞因子、微生物脂质、微生物碳水化合物或微生物氨基酸。
[0400] 实施方案36.根据实施方案35所述的方法,其中所述促炎化合物为IL-4、IL-10、IL-8、IL-13、TNF-α或MUC5B。
[0401] 实施方案37.根据实施方案1或36中一项所述的方法,其中所述乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种为代谢活性的。
[0402] 实施方案38.根据实施方案1或36中一项所述的方法,其中所述乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和/或片球菌属种为无代谢活性的。
[0403] 实施方案39.根据实施方案1至38中任一项所述的方法,还包括向所述受试者施用(a)双歧杆菌属种、(b)孢囊杆菌属种或(c)真菌微生物。
[0404] 实施方案40.一种治疗或预防有需要的受试者中炎性疾病的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0405] 实施方案41.根据实施方案40所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0406] 实施方案42.一种治疗或预防有需要的受试者中病毒性呼吸道感染的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0407] 实施方案43.根据实施方案42所述的方法,其中所述病毒性呼吸道感染由呼吸道合胞病毒、流感病毒、副流感病毒、腺病毒、冠状病毒或鼻病毒引起。
[0408] 实施方案44.根据实施方案42或43所述的方法,其中所述病毒性呼吸道感染为毛细支气管炎、感冒、哮吼或肺炎。
[0409] 实施方案45.一种治疗或预防有需要的受试者中过敏的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0410] 实施方案46.根据实施方案45所述的方法,其中所述过敏为对奶、蛋、鱼、贝类、坚果、花生、小麦、猫、犬或啮齿动物的皮屑、昆虫叮咬、花粉、乳胶、尘螨或大豆的过敏。
[0411] 实施方案47.根据实施方案45或46所述的方法,其中所述过敏为儿童过敏性哮喘、枯草热或过敏性气道致敏。
[0412] 实施方案48.一种在有需要的受试者中增加抗炎化合物的水平和/或降低促炎化合物的水平的方法,所述方法包括向所述受试者施用有效量的包括乳杆菌属种、栖粪杆菌
属种、阿克曼氏菌属种、粘球菌属种和片球菌属种的细菌群体。
[0413] 实施方案49.根据实施方案48所述的方法,为了增加所述抗炎化合物的所述水平,增加和/或降低所述受试者的粪便、血液、血浆、血清、支气管肺泡灌洗液、汗液、唾液、痰液、淋巴液、脊髓液、尿液、眼泪、胆汁、房水、玻璃体液、羊水、母乳、脑脊液、耵聍、鼻粘液、粘痰或皮脂中所述促炎化合物的所述水平。
[0414] 实施方案50.根据实施方案48或49中一项所述的方法,其中所述抗炎化合物为微生物脂质、微生物碳水化合物或微生物氨基酸。
[0415] 实施方案51.根据实施方案48至50中任一项所述的方法,其中受试者患有菌群失调或炎性疾病。
[0416] 实施方案52.一种组合物,所述组合物包括乳杆菌属种、栖粪杆菌属种、阿克曼氏菌属种、粘球菌属种和片球菌属种。
[0417] 实施方案53.根据实施方案52所述的组合物,其中(i)所述乳杆菌属种为约氏乳杆菌;(ii)所述栖粪杆菌属种为普氏栖粪杆菌;(iii)所述阿克曼氏菌属种为嗜粘蛋白阿克曼氏菌;(iv)所述粘球菌属种为黄色粘球菌;并且(v)所述片球菌属种为戊糖片球菌。
[0418] 实施方案54.根据实施方案52或53所述的组合物,其中所述组合物包括少于约20、15、10、9、8、7或6个不同物种的细菌。
[0419] 实施方案55.根据实施方案52至54中任一项所述的组合物,其中所述组合物不是粪便移植物。
[0420] 实施方案56.根据实施方案52至55中任一项所述的组合物,另外包含药学上可接受的赋形剂。
[0421] 实施方案57.根据实施方案52至56中任一项所述的组合物,所述组合物为胶囊、片剂、悬液、栓剂、粉末、霜剂、油、水包油乳液、油包水乳液或水溶液。
[0422] 实施方案58.根据实施方案52至57中任一项所述的组合物,所述组合物呈粉末、固体、半固体或液体的形式。
[0423] 实施方案59.根据实施方案52至58中任一项所述的组合物,所述组合物在20℃具有小于约0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1的水活度(aw)。
[0424] 实施方案60.根据实施方案52至59中任一项所述的组合物,所述组合物为食物或饮料。
[0425] 实施方案61.根据实施方案52至60中任一项所述的组合物,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种呈粉末的形式。
[0426] 实施方案62.根据实施方案52至61中任一项所述的组合物,其中所述乳杆菌属种、所述栖粪杆菌属种、所述阿克曼氏菌属种、所述粘球菌属种和/或所述片球菌属种已被冻
干。
[0427] 实施方案63.一种检测有需要的受试者中促炎化合物的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品中的所述促炎化合物。
[0428] 实施方案64.根据实施方案63所述的方法,其中所述受试者患有菌群失调或具有发展菌群失调的风险。
[0429] 实施方案65.根据实施方案63或64所述的方法,其中所述受试者患有炎性疾病。
[0430] 实施方案66.根据实施方案63至65中任一项所述的方法,其中所述受试者具有患有炎性疾病的风险。
[0431] 实施方案67.根据实施方案63至66中任一项所述的方法,其中所述受试者
[0432] (i)具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹;
[0433] (ii)患有便秘、腹泻、腹胀、尿急和/或腹痛;和/或
[0434] (iii)已经在最近1、2或4个月内被施用抗生素。
[0435] 实施方案68.根据实施方案63至67中任一项所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0436] 实施方案69.根据实施方案63至69中任一项所述的方法,其中所述受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。
[0437] 实施方案70.根据实施方案63至69中任一项所述的方法,其中所述受试者在约2和约18岁之间,或至少约18岁。
[0438] 实施方案71.根据实施方案63至70中任一项所述的方法,其中所述受试者包括这样胃肠微生物组,所述胃肠微生物组:
[0439] (a)与健康或普通群体相比,具有比例增加的链球菌属、双歧杆菌属和肠球菌属;
[0440] (b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
[0441] (c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
[0442] (d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
[0443] (e)与健康或普通群体相比,具有比例减少的马拉色菌属;
[0444] (f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
[0445] (g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0446] 实施方案72.根据实施方案63至71中任一项所述的方法,其中所述生物样品为体液。
[0447] 实施方案73.根据实施方案72所述的方法,其中所述体液为血液、血浆、血清、粪便水或支气管肺泡灌洗液。
[0448] 实施方案74.根据实施方案72或73所述的方法,其中所述体液为粪便水。
[0449] 实施方案75.根据实施方案63至74中任一项所述的方法,其中检测所述促炎化合物包括使抗原呈递细胞与所述生物样品接触。
[0450] 实施方案76.根据实施方案75所述的方法,其中所述抗原呈递细胞为树突细胞。
[0451] 实施方案77.根据实施方案63至74中任一项所述的方法,其中检测所述促炎化合物还包括使幼稚T细胞与所述抗原呈递细胞接触以产生接触的T细胞。
[0452] 实施方案78.根据实施方案77所述的方法,还包括检测由所述接触的T细胞和/或所述接触的T细胞的后代产生的细胞因子。
[0453] 实施方案79.根据实施方案77或78中任一项所述的方法,其中如果(i)与对照相比,所述接触的T细胞的所述后代中T-辅助(TH)-2细胞的比例增加;
[0454] (ii)与对照相比,所述接触的T细胞的所述后代中TH-1、TH-17和/或TH22细胞的比例增加;
[0455] (iii)与对照相比,所述接触的T细胞的所述后代中TH-1细胞与TH-2细胞的比率降低;
[0456] (iv)与对照相比,所述接触的T细胞的所述后代中产生IL-17的CD8+T细胞的比例增加;和/或
[0457] (v)与对照相比,由所述接触的T细胞的所述后代和/或其所述后代产生的IL-4、IL-10和/或IL-13的量增加,
[0458] 那么检测到所述促炎化合物。
[0459] 实施方案80.根据实施方案79所述的方法,其中所述对照为(i)已经与无菌培养基接触的对应T细胞和/或其所述后代的对应比例、比率和/或量;(ii)已经与和来自不患有菌群失调、炎性疾病或胃肠感染的受试者的生物样品接触的抗原呈递细胞接触的对应T细胞
和/或其所述后代的所述对应比例、比率和/或量;和/或(iii)对应于普通群体或不患有菌
群失调、炎性疾病或胃肠感染的受试者群体中的所述比例、比率和/或量的参考值。
[0460] 实施方案81.根据实施方案63至80中任一项所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括指导所述受试者接受治疗或者另外测试或监测菌群失调
或炎性疾病。
[0461] 实施方案82.根据实施方案63至81中任一项所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括向所述受试者施用根据实施方案52至62中任一项所述的
组合物。
[0462] 实施方案83.根据实施方案63至82中任一项所述的方法,如果在所述受试者中检测到所述促炎化合物,那么还包括将所述受试者诊断为患有菌群失调或炎性疾病或具有发
展菌群失调或炎性疾病的风险。
[0463] 实施方案84.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)根据实施方案63至80中任一项所述的方法检测促炎化合物。
[0464] 实施方案85.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
[0465] 实施方案86.根据实施方案85所述的方法,其中所述受试者患有细菌、病毒或真菌胃肠感染或与患有所述细菌、病毒或真菌胃肠感染的人住在一起。
[0466] 实施方案87.根据实施方案85或86所述的方法,其中所述受试者
[0467] (i)具有被诊断患有炎性疾病的至少1、2、3或4名堂兄弟姐妹或表兄弟姐妹、祖父母或外祖父母、父母、姑或姨或婶或舅妈、叔或舅或姑父或姨夫和/或兄弟姐妹;
[0468] (ii)患有便秘、腹泻、腹胀、尿急和/或腹痛;和/或
[0469] (iii)已经在最近1、2或4个月内被施用抗生素。
[0470] 实施方案88.根据实施方案85至87中任一项所述的方法,其中所述炎性疾病为过敏、特应症、哮喘、自身免疫性疾病、自身炎性疾病、超敏反应、儿童过敏性哮喘、过敏性哮喘、炎性肠病、乳糜泻、克罗恩病、结肠炎、溃疡性结肠炎、胶原性结肠炎、淋巴细胞性结肠炎、憩室炎、肠易激综合征、短肠综合征、肠袢淤滞综合征、慢性持续性腹泻、婴儿顽固性腹泻、旅行者腹泻、免疫增生性小肠疾病、慢性前列腺炎、后肠炎综合征、热带口炎性腹泻、惠普尔病、沃尔曼病、关节炎、类风湿性关节炎、贝赛特氏病、葡萄膜炎、坏疽性脓皮病、结节性红斑、创伤性脑损伤、牛皮癣关节炎、青少年特发性关节炎、多发性硬化、系统性红斑狼疮(SLE)、重症肌无力、青少年型糖尿病、1型糖尿病、格林-巴利综合征、桥本氏脑炎、桥本氏甲状腺炎、强直性脊柱炎、牛皮癣、干燥综合征、血管炎、肾小球性肾炎、自身免疫性甲状腺炎、大疱类天疱疮、肉样瘤病、鱼鳞癣、格雷夫斯氏眼病、阿狄森氏病、白癜风、寻常痤疮、盆腔炎、再灌注损伤、肉样瘤病、移植排斥、间质性膀胱炎、动脉粥样硬化和特应性皮炎。
[0471] 实施方案89.根据实施方案85至88中任一项所述的方法,其中所述受试者小于约1、2、3、4、5、6、7、8、9、12、18或24个月。
[0472] 实施方案90.根据实施方案85至88中任一项所述的方法,其中所述受试者在约2和约18岁之间,或至少约18岁。
[0473] 实施方案91.根据实施方案85至90中任一项所述的方法,其中所述受试者包括这样的胃肠微生物组,所述胃肠微生物组:
[0474] (a)与健康或普通群体相比,具有比例增加的链球菌属种、双歧杆菌属种和肠球菌属种;
[0475] (b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
[0476] (c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
[0477] (d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
[0478] (e)与健康或普通群体相比,具有比例减少的马拉色菌属;
[0479] (f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
[0480] (g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0481] 实施方案92.根据实施方案85至91中任一项所述的方法,其中所述生物样品为体液。
[0482] 实施方案93.根据实施方案92所述的方法,其中所述体液为血液、血浆、血清、粪便水或支气管肺泡灌洗液。
[0483] 实施方案94.根据实施方案92或93所述的方法,其中所述体液为粪便水。
[0484] 实施方案95.根据实施方案93至94中任一项所述的方法,其中检测所述生物样品是否为促炎的包括使抗原呈递细胞与所述生物样品接触。
[0485] 实施方案96.根据实施方案95所述的方法,其中所述抗原呈递细胞为树突细胞。
[0486] 实施方案97.根据实施方案95或96所述的方法,其中检测所述生物样品是否为促炎的还包括使幼稚T细胞与所述抗原呈递细胞接触以产生接触的T细胞。
[0487] 实施方案98.根据实施方案97所述的方法,还包括检测由所述接触的T细胞和/或所述接触的T细胞的后代产生的细胞因子。
[0488] 实施方案99.根据实施方案97或98所述的方法,其中如果
[0489] (i)与对照相比,所述接触的T细胞的所述后代中T-辅助(TH)-2细胞的比例增加;
[0490] (ii)与对照相比,所述接触的T细胞的所述后代中TH-1、TH-17和/或TH22细胞的比例增加;
[0491] (iii)与对照相比,所述接触的T细胞的所述后代中TH-1细胞与TH-2细胞的比率降低;
[0492] (iv)与对照相比,所述接触的T细胞的所述后代中产生IL-17的CD8+T细胞的比例增加;和/或
[0493] (v)与对照相比,由所述接触的T细胞的所述后代和/或其所述后代产生的IL-4、IL-10和/或IL-13的量增加,
[0494] 那么生物样品被检测为促炎的。
[0495] 实施方案100.根据实施方案99所述的方法,其中所述对照为(i)已经与无菌培养基接触的对应T细胞和/或其所述后代的对应比例、比率和/或量;(ii)已经与和来自不患有菌群失调、炎性疾病或胃肠感染的受试者的生物样品接触的抗原呈递细胞接触的对应T细
胞和/或其所述后代的所述对应比例、比率和/或量;和/或(iii)对应于所述普通群体或不
患有菌群失调、炎性疾病或胃肠感染的受试者群体中的所述比例、比率和/或量的参考值。
[0496] 实施方案101.根据实施方案85至100中任一项所述的方法,如果所述生物样品被检测为促炎的,那么还包括指导所述受试者接受治疗或者另外测试或监测菌群失调或炎性
疾病。
[0497] 实施方案102.根据实施方案85至101中任一项所述的方法,如果所述生物样品被检测为促炎的,那么还包括向所述受试者施用根据实施方案52至62中任一项所述的组合
物。
[0498] 实施方案103.根据实施方案95至102中任一项所述的方法,其中所述受试者包括这样的胃肠微生物组,所述胃肠微生物组:
[0499] (a)与健康或普通群体相比,具有比例增加的链球菌属种、双歧杆菌属种和肠球菌属种;
[0500] (b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
[0501] (c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
[0502] (d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
[0503] (e)与健康或普通群体相比,具有比例减少的马拉色菌属;
[0504] (f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
[0505] (g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0506] 实施方案104.根据实施方案63至103中任一项所述的方法,还包括确定所述受试者是否具有这样的胃肠微生物组,所述胃肠微生物组:
[0507] (a)与健康或普通群体相比,具有比例增加的链球菌属种、双歧杆菌属种和肠球菌属种;
[0508] (b)与健康或普通群体相比,具有比例减少的链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌;
[0509] (c)与健康或普通群体相比,具有比例增加的白色念珠菌和德巴利酵母属;
[0510] (d)与健康或普通群体相比,具有比例减少的双歧杆菌属、乳杆菌属、栖粪杆菌属和阿克曼氏菌属;
[0511] (e)与健康或普通群体相比,具有比例减少的马拉色菌属;
[0512] (f)与健康或普通群体相比,具有比例增加的拟杆菌属、瘤胃球菌属、普雷沃菌属或双歧杆菌属;或
[0513] (g)与健康或普通群体相比,具有比例增加的粪肠球菌、屎肠球菌或艰难梭菌。
[0514] 实施方案105.一种治疗或预防根据实施方案85至103中任一项所述的方法被确定患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的受试者中菌群失调或
炎性疾病的方法,所述方法包括向所述受试者施用针对菌群失调或所述炎性疾病的治疗。
[0515] 实施方案106.一种监测菌群失调或炎性疾病的治疗效果的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
[0516] 实施方案107.一种确定受试者中炎性疾病活性的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)检测所述生物样品是否为促炎的。
[0517] 实施方案108.一种检测患有炎性疾病或具有发展炎性疾病的风险的受试者中抗炎代谢物的方法,所述方法包括:(i)从所述受试者获得生物样品;和(ii)确定所述生物样品中抗炎代谢物的表达水平。
[0518] 实施方案109.一种确定受试者是否患有菌群失调或炎性疾病或具有发展菌群失调或炎性疾病的风险的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定所述表达水平相对于标准对照是增加还是降低,其中相
对于所述标准对照的促炎代谢物的表达水平升高或抗炎代谢物的表达水平降低指示所述
受试者患有炎性疾病或具有发展炎性疾病的风险;以及(iii)至少部分基于步骤(ii)中的
所述表达水平,确定所述受试者是否患有炎性疾病或具有发展炎性疾病的风险。
[0519] 实施方案110.一种监测正经历炎性疾病治疗的受试者或已接受炎性疾病治疗的患者中炎性疾病的治疗效果的方法,所述方法包括(i)在第一时间点确定所述受试者中抗
炎代谢物或促炎代谢物的第一表达水平;(ii)在第二时间点确定所述受试者中抗炎代谢物
或促炎代谢物的第二表达水平;和(iii)将抗炎代谢物或促炎代谢物的所述第二表达水平
与抗炎代谢物或促炎代谢物的所述第一表达水平进行比较,从而确定所述受试者中炎性疾
病的所述治疗效果。
[0520] 实施方案111.一种确定受试者中炎性疾病活性的方法,所述方法包括:(i)检测受试者中一种或更多种抗炎代谢物或促炎代谢物的表达水平;(ii)确定所述表达水平是否相
对于标准对照被调节,从而确定所述受试者中炎性疾病活性;以及(iii)至少部分基于步骤(ii)中的所述表达水平,确定所述受试者中所述炎性疾病活性。
实施例
[0521] 提供以下实施例以说明而不限制所要求保护的发明。
[0522] 实施例1.合理设计的用于胃肠微生物组修复的微生物聚生体
[0523] 不受任何科学理论的束缚,约氏乳杆菌改变肠道微生物组的组成,并且增加胃肠道中特定抗炎脂肪酸和碳水化合物代谢物。尽管一些有益的代谢物被预测为是微生物产生
的(例如,由约氏乳杆菌和它在肠道微生物组中共同富集的细菌物种),但其它代谢物也可
能是宿主响应于更改的肠道微生物组衍生的。在出生后六个月对新生儿每天补充鼠李糖乳
杆菌GG的研究中,在停止补充乳杆菌后,与类似代谢富集相关的肠道微生物组更改持续长
达12个月。
[0524] 令人惊讶的是,包括细菌物种聚生体的细菌群体可以用于通过引入或恢复调节炎性应答的代谢能力来预防或治疗慢性炎性疾病。细菌物种的聚生体(“聚生体”)通过更改胃肠道中的微生物定植模式,并且最重要的是,引入或恢复产生对于下调促炎应答所必需的
一套抗炎代谢物的能力来达到这一目的。儿童期疾病的大部分风险与微生物发育中的早期
生命事件相关,并且该聚生体提供治疗高危新生儿和幼儿的机会。
[0525] 聚生体可用作治疗级制剂或非处方补充剂,以例如指导适当的新生儿肠道微生物组发育和免疫成熟。聚生体也可用作其中聚生体的成员特征性地耗竭的慢性炎性疾病的粪
便移植的替代品,或者作为扰动后(例如邻近抗生素或抗微生物剂施用或抗生素或抗微生
物剂施用后)指导肠道微生物组重新发育的补充剂。
[0526] 不受任何科学理论的束缚,示例性聚生体中的物种以共生方式与主要的锚定益生物种(约氏乳杆菌)一起起作用,各自为该细菌共位群(bacterial guild)的其它成员的生
存和调节宿主免疫提供营养物和辅因子。使用微生物聚生体方案(约氏乳杆菌、嗜粘蛋白阿克曼氏菌、普氏栖粪杆菌和黄色粘球菌)的干预提供对抗过敏性致敏的改进保护,因为其效果大于单独施用时单独的聚生体成员的效果之和。使用与先前出版(Fujimura等人,
(2014).Proc.Natl.Acad.Sci.111(2)805-810)的类似的小鼠模型,过敏性攻击与示例性微
生物聚生体的补充相结合。本文提出,宿主免疫应答和过敏性应答使用组织学、qRT-PCR和流式细胞术评价。
[0527] 蟑螂过敏原(CRA)鼠模型。为了调查补充的保护作用,将C57BL/6小鼠(7-8周)经气管内敏化(第1-3天),并且随后每周用蟑螂过敏原(CRA)攻击一次,持续总计三周。同时给小鼠补充磷酸盐缓冲盐水(PBS,阴性媒介物对照)、约氏乳杆菌(Lj)、缺少约氏乳杆菌的微生物聚生体(C-Lj)、完整聚生体(C+Lj)或热杀死的完整聚生体(C+Lj热杀死,无代谢活性聚生体的对照)。在第一周,每天进行补充,然后在剩余的两周内每周两次地进行补充。所有补充均使用重悬在100μl的PBS中的细菌通过口服灌胃执行。研究结束时,小鼠被安乐死,并且收集各种组织(肺、脾脏、回肠)用于下游分析。
[0528] 肺组织学。从每只动物收集肺组织,并且立即固定在卡诺依(Carnoy’s)溶液中过夜,并且随后在70%乙醇中脱水。从每组随机挑选三个样品用于包埋在石蜡中,并且用苏木精和伊红(H&E)或过碘酸-希夫(PAS)染色。使用Aperio Scanscope XT(Leica Biosystems)
以20X放大倍数捕获每个染色样品的图像。ImageJ也用于使用基于绿色通道的RGB堆栈中的
设定阈值参数来定量每个PAS染色的载玻片中表示的粘蛋白染色的量。测量落入阈值内的
图像的百分比,并且表示分析的每幅图像内阳性染色的百分比。
[0529] 基因表达的qRT-PCR。来自小鼠肺的mRNA使用AllPrep DNA/RNA迷你试剂盒(Qiagen)提取。在RNA分离之前,将肺样品放置在具有600μl缓冲液RLT的裂解基质A试管(MP Bio)中。使用MPBio FastPrep-24均质机以5.5m/s将样品珠打持续30s。剩余的RNA分离程序遵循制造商的说明。根据制造商的说明,使用RT2第一链试剂盒(Qiagen)对每个样品总计
1.0μg RNA进行DNA酶处理和逆转录。过敏相关的基因表达的定量PCR在QuantStudio 6Flex系统上使用定制RT探查PCR阵列(Custom RT Profiler PCR Array)(Qiagen)进行。反应条
件如下:95℃持续10min,接着95℃持续15s和60℃持续1min的40次循环。细胞因子的基因表达被对GAPDH归一化,并且表达为与CRA攻击的PBS媒介物灌胃小鼠的基因表达相比的改变
倍数。细胞因子表达水平的统计学分析使用Prism 6软件进行。使用Mann-Whitney U检验比较实验组之间的基因表达,p值≤0.05被认为是显著的。
[0530] CD4+T细胞分离和流式细胞术分析。取出小鼠脾脏并且放置在冷的R10培养基中(补充有10%热灭活FCS、2mM L-谷氨酰胺和100U/ml青霉素-链霉素的RPMI 1640)(Life 
Technologies,Carlsbad,CA)。组织使用无菌解剖刀机械均质化,然后是在1:1R10-PBS溶液中在37℃的胶原酶消化(C6885,Sigma,1mg/ml)持续30分钟。单细胞悬液通过将消化物10次通过16号钝头套管,然后通过40μm过滤器过滤获得。细胞悬液用冰冷的PBS(2%FCS,2mM EDTA)洗涤两次,并且在1200rpm、4℃离心10min以使其成团,并且在冰上重新悬浮在R10-
EDTA培养基(具有2mM EDTA的R10)中。一百万个细胞被分配到每个试管中,用于随后的抗体染色和分析。将来自每只小鼠的脾细胞的单细胞悬液等分(每孔100万个细胞),并且随后用抗体CD4(RM4-5,BD Biosciences,Franklin Lakes,NJ)、CD8a(53-6.7,BD)、CXCR5(SPRCL5,eBioscience,San Diego,CA)、PD-1(RMP1-30,BioLegend,San Diego,CA)、CD25(PC61,BD)
和活/死水染色(live/dead aqua stain)(Life Technologies)染色。表面染色后,细胞使
用BD Cytofix/Cytoperm渗透,并且用CD3e(500A2,BD)、IFNγ(XMG1.2,BD)、IL-4(11B11,BD)、IL-17DEC(eBio17B7,eBioscience)和FoxP3(FJK-16s,eBioscience)特异性抗体孵育,用于内部染色。染色细胞经由流式细胞术在BD LSR II(BD Biosciences)上进行测定。
[0531] 统计学分析。统计学分析使用GraphPad Prism 6软件进行。实验组通过克鲁斯卡尔-沃利斯检验和Dun多重比较后检验进行比较,以确定样品组之间是否存在显著差异。此
外,在某些情况中使用Mann-Whitney检验来直接比较两组值。P值≤0.05被认为是显著的。
[0532] 结果。补充完整聚生体(C+Lj)提供针对过敏性致敏的最强有力的保护。保护与肺粘蛋白分泌(图1A-1B)、Muc5基因表达(图2)和Th2细胞因子表达(图3A-3C)的显著降低相
关。通过C+Lj的针对过敏性致敏的保护与分泌IL-17的T辅助细胞的系统性增加相关(图4)。
约氏乳杆菌比鼠李糖乳杆菌GG更有效,并且对于减弱与CRA攻击C57BL/6小鼠肺部中与过敏
性致敏相关的Muc5ac表达是必需的(图5A-5B)。肠道微生物群形成影响个体微生物成员和
宿主免疫应答两者的复杂的功能网络。合理设计的微生物胃肠聚生体比单独的益生菌种提
供了过敏性气道致敏的更大减弱。
[0533] 实施例2.聚生体补充对鼠气道过敏性致敏模型的影响
[0534] 不受任何科学理论的束缚,治疗性聚生体(TC)表示有助于健康人类肠道微生物组发育的种子微生物共位群。设计了C57BL/6小鼠中的研究,以确定TC补充对过敏性气道致敏的影响,所述C57BL/6小鼠具有不同于BALB/c动物的肠道微生物组,并且在补充单独的约氏乳杆菌后未能保护以免过敏性气道致敏。
[0535] 为了调查TC补充剂的保护作用,C57BL/6小鼠被气管内敏化(第0-2天),并且随后在三周的时间段的过程中在第14天和第20天用蟑螂过敏原(CRA)攻击(图10)。小鼠在第0-
5、8、12、16和19天经由口服灌胃补充磷酸盐缓冲盐水(PBS,阴性媒介物对照)或TC(图10)。
表2和图17示出了本研究中利用的治疗组。
[0536] 申请人使用16S rRNA测序检查不同治疗组中的动物粪便中的微生物群落组成。存在于TC补充的动物中的群落在组成上显著不同于对照组(图11A)。重要的是,TC补充的组富集具有免疫调节活性潜力的物种。例如,双歧杆菌属和属于进化枝IV和XIV的特定梭菌属物种已经示出诱导T调节细胞。此外,毛螺菌属物种已被鉴定为保护免于过敏性致敏疾病发
展。拟杆菌属的扩增是对照动物中过敏性致敏的特征。总之,用TC口服补充小鼠促进与诱导免疫耐受相关的属的相对丰度的增加(例如双歧杆菌属、梭菌属、毛螺菌属和瘤胃球菌属;
图11A和11B)。
[0537] 口服补充TC促进肠腔和外周两者的代谢重新编程(图12A-12B和图18A-18C)。在补充TC的动物中还鉴定出与修复巨噬细胞效应表型相关的衣康酸水平增加。
[0538] 与用PBS治疗的CRA攻击的动物相比,TC补充的小鼠证明了响应于CRA攻击的显著减少的过敏性炎症(图13A-13B;图14A-14B;图15A-15C)。因此,TC补充显著减少鼠气道过敏性致敏模型中的过敏性炎症。
[0539] 小鼠口服补充TC导致修复巨噬细胞效应表型(图16A-16F)。因此,TC补充能够启动鼠气道过敏性致敏模型中的修复巨噬细胞效应表型。
[0540] 实施例3.使用人类粪便水或微生物产物对免疫活化状态的评估的体外测定。
[0541] 人类微生物组研究的缺点之一是缺少平行的客观免疫状态信息。本文提供了用于人类微生物组研究的配偶体测定(partner assay),以确定与各种体液(诸如粪便水或支气
管肺泡灌洗液)相关的免疫活化程度,或评估微生物物种或微生物物种的组合诱导免疫活
化或相反诱导免疫耐受的能力。本文提供的测定可用作慢性炎性疾病的诊断,以及用于筛
选诱导与疾病相关的免疫表型(并且延伸为鉴定用于治疗干预的靶途径)或表示新型微生
物生物治疗剂的生物活性微生物产物。迄今为止,还没有已知的测定具有该能力。
[0542] 将粪便样品(250mg)以1g/1ml(w/v)添加到温暖的PBS(250μl,含有20%FCS)中,随后剧烈涡旋1分钟。将粪便混合物在37℃孵育10分钟,然后在14,000rpm持续5分钟通过微量离心去除细胞物质。所得粪便水通过0.2μm过滤器灭菌,并且在DC共孵育中使用。
[0543] 外周血单核细胞(PBMC)通过Ficoll-Hypaque梯度离心从健康成年供体的外周血中分离。DC首先使用EasySepTM人类Pan-DC预富集试剂盒(STEMCELL Technologies,
6
Vancouver,Canada)从PBMC富集。富集的DC(0.5×10细胞/ml)与粪便水(25μL)共孵育48小
时,并且在96孔板中在补充10ng/ml GM-CSF和20ng/ml IL-4的R10培养基(具有10%热灭活
FCS与2mM L-谷氨酰胺和100U/ml青霉素-链霉素的RPMI 1640;Life Technologies,
Carlsbad,CA)中培养前24小时。将DC生长因子的组合(10ng/ml TNF-α、10ng/ml IL-1β、
10ng/ml IL-6和1μM PGE2)添加到培养物中,继续孵育24小时。在48小时治疗结束时,在新鲜培养基中洗涤DC(一次),然后CD4+淋巴细胞共培养。
[0544] 自体CD4+T淋巴细胞使用CD4+T细胞分离试剂盒(Miltenyi Biotec,Bergisch Gladbach,Germany)通过阴性选择从PBMC纯化。将这些分离的T细胞悬浮在TexMACS培养基
(Miltenyi Biotec)中,然后在可溶性抗-CD28和抗-CD49d(1μg/ml)的存在下,以10:1的比率添加到粪便水暴露的DC中。将DC细胞和T细胞共培养120小时并且每48小时补充新鲜的
TexMACS培养基。在共孵育的最后16小时,用佛波醇肉豆蔻酸乙酸酯-离子霉素(ionomycin)(Sigma)和GolgiPlug(BD Biosciences)刺激细胞。收集来自这些共培养物的无细胞培养
基,并且通过ELISA(BioLegend)评价人类细胞因子IL-4、IL-10和IL-13的浓度。
[0545] 使用包括BD Biosciences Ab抗-CD3(SP34-2)、抗-CD4(SK3)、抗-CD25(M-A251)、抗-IFNγ(B27)、抗-CD8a(RPA-T8,BioLegend)、Miltenyi Biotec Ab抗-IL-10(JES3-9D7)、抗-IL-4(7A3-3)、Affymatrix eBioscience Ab抗-IL-22(22URTI)、抗-IL-17A(64DEC17)和抗-FoxP3(PCH101)的抗体的两个单独的组(表型组和细胞因子组)对单细胞悬液进行染色。
使用 水死细胞染色( Aqua Dead Cell Stain)(Life 
Technologies)鉴定死细胞。细胞通过Cytofix/CytopermTM(BD Biosciences)或固定/渗透
(Fixation/Permeabilization)(Affymatrix eBioscience)进行渗透,以染色细胞内标志
物IFNγ、IL-4、IL17A、IL-22、IL-10、FoxP3。流式分析后,活T细胞被控为CD3+CD4+细胞。
在CD4+T细胞亚群体中,Th1为IFNγ+,Th2为IL-4+,Th17细胞为IL-17A+,Th22为IL-17A-阴性和IL-22+,并且T调节细胞为CD25hi和FoxP3hi两者。染色的细胞经由流式细胞仪在BD LSR II(BD Biosciences)上测定。
[0546] 来自非特应症新生儿的粪便水在体外显著减少CD4+IL4和IL13表达。特应症与生命早期胃肠细菌过度生长和鼠微生物代谢相关,因此暗示新生儿肠道微生物组在过敏性疾
病发展中的作用。对来自出生队列的298份生命早期大便样品的微生物群分析揭示了存在
三种组成上截然不同的新生儿肠道微生物类型(NGM1、NGM2和NGM3)。与NGM1(RR=2.94;
95%CI 1.42-6.09)或NGM2(RR=2.06;95%CI 1.01-4.19)相比,NGM3新生儿在两岁时表现出显著更高的优势性多敏化特应症的相对风险(p<0.03),并且更有可能报告医生诊断的哮
喘(p<0.03)。低风险NGM显著富集共栖细菌、真菌和一系列腔抗炎脂质和碳水化合物。NGM3新生儿表现出共栖微生物耗竭、真菌扩增和代谢重新编程,表现为与真菌感染相关的促炎
脂质和宿主衍生甾醇增加。
[0547] 来自新生儿和幼儿肠道微生物组的本研究的发现指示,新生儿代谢重新编程与在两岁时的特应症发展的风险相关,以及其腔内容物中的抗炎碳水化合物和脂质表现出显著
增加的新生儿的过敏性致敏的风险显著降低。先前的鼠研究已经指示,微生物衍生的短链
脂肪酸提供针对气道过敏原攻击的保护。申请人科学地说明了富集已知的抗炎脂质和碳水
化合物的来自低风险新生儿(NGM1)的粪便水将表现出降低过敏相关的细胞因子表达的能
力。因此,申请人将来自NGM1新生儿的过滤灭菌的粪便水与从两个截然不同的健康成年供
体分离的外周血单核细胞衍生的树突细胞一起孵育,然后将它们与自体纯化的幼稚T细胞
共孵育随后进行离子霉素刺激。分别用于检查T-辅助2(CD4+、IL4+)细胞和细胞因子产生的流式细胞术和ELISA分析指示,粪便水基本上不影响Th2细胞的数量(图6A),但显著并且持
续地抑制两个供体中促炎IL4和IL13表达(对于两者p<0.01;图6B和图6C)。
[0548] 体外DC-T细胞活性测定允许鉴定具有促炎潜力的微生物。在我们对新生儿肠道微生物组和特应症的研究中,念珠菌属富集和宿主对真菌感染的应答(β-谷甾醇和豆甾醇)是表征特应症NGM3参与者的高风险的特征。采用共栖胃肠微生物组的抗微生物消融随后注入
白色念珠菌孢子的鼠研究先前已经证明了,即使不存在过敏原暴露,过敏性致敏也增强。不希望受任何科学理论的束缚,科学地说明了NGM3新生儿的肠道微生物组中的念珠菌属富集
可促进与特应症相关的适应性T-辅助细胞亚群。使用念珠菌属选择性沙氏(Sabouraud)培
养基,从NGM3新生儿大便样品中分离四个不同的物种,并且使用全长ITS测序鉴定为似平滑念珠菌(C.metapsilosis)、近平滑念珠菌(C.parapsilosis)、拟平滑念珠菌
(C.orthopsilosis)和热带念珠菌(C.tropicalis)。来自这四个念珠菌属物种的培养物的
过滤灭菌无细胞上清液(CFS)用于刺激外周血单核细胞衍生的树突细胞,然后在存在或不
存在蟑螂抗原刺激的情况下与幼稚T细胞共孵育。流式细胞术分析用于检查T-辅助2(CD4+,IL4+)和T-调节(CD4+,IL10+)亚群。与对照(无菌培养基)暴露相比,来自每种胃肠念珠菌属物种的CFS诱导Th-2细胞增生的显著增加,而与蟑螂过敏原攻击无关(图7A)。还观察到其它产生促炎细胞因子的T-辅助细胞亚群(TH1、TH17和TH22)的显著增加。然而,T-调节亚群没有表现出数量上的持续显著增加,事实上大多数物种并不影响T-reg数量,只有在存在蟑螂过敏原刺激的情况下,一种热带念珠菌诱导T-reg,并且另一种似平滑念珠菌诱导T-reg细
胞数量显著减少(图7B)。因此,这些体外分析证实了先前的动物研究,并且指示在2岁时具有显著较高的特应症相对风险的新生儿肠道微生物组中富集的截然不同的念珠菌属物种
的分泌产物具有与DC的抗原呈递无关的驱动Th-2增生和细胞因子分泌的能力。
[0549] 体外DC/T细胞粪便水测定可用于区别溃疡性结肠炎患者的亚群,这些患者表现出截然不同的粪便微生物类型,并且疾病严重程度显著不同。统计分析允许我们基于微生物
群组成(细菌和真菌谱分析)来鉴定UC患者的三个亚组,称为MBT-1至MBT-3。我们的UC患者
基于肠道微生物群分层的临床相关性通过疾病严重程度(简单临床结肠炎活性(SCCA)指数
持续时间(自UC诊断以来的年数)、结肠外表现(关节炎、坏疽性脓皮病、结节性红斑和葡萄膜炎)以及患有IBD的一级和二级亲属数量的微生物类型间比较来评估。与MBT-2和MBT-3组
相比,MBT-1患者表现出更高的中位数SCCA得分(图8A)。这些患者还表现出更多的结肠外表现,并且趋向于更长的病程和更大数量的被诊断患有IBD的一级和二级亲属(图8B-8D)。
[0550] 为了确定健康和疾病相关的微生物群影响适应性免疫应答的能力,我们接着开发体外测定,其包括将树突细胞(DC;从健康人类供体获得)暴露于来自我们的研究的参与者
的过滤的无菌粪便水,然后将暴露的DC与从同一供体获得的幼稚T细胞共培养。使用流式细胞术评估所得T细胞群体和表型。与健康对照受试者相比,UC患者的特征在于CD4+Th1和Th2细胞比率的显著差异;患者表现出显著降低的Th1:Th2比率(图9A)。其它CD4+群体(Th17、
Th22和T调节细胞)丰度在相对数量上没有表现出显著差异,CD8+细胞数量也没有基于健康
状况分化。虽然在健康受试者和UC患者中存在Th1:Th2比率的差异,但我们假定与疾病严重程度评分显著不同相关的UC相关的肠道微生物类型也将以该比率表现出伴随差异。因此,
我们检查了基于UC微生物类型的细胞因子产生模式。表现出最高疾病严重程度评分的MBT-
1组表现出显著降低的Th1:Th2比率(图9B),这与CD4+、表达IL4的T细胞的扩增相关(图9C)。
与MBT2和MBT3组相比,其它CD4+T细胞群体(Th17、Th22和Treg)也趋向于在MBT-1组中扩增。
另外,与MBT-2和MBT-3患者样品中任一者相比,MBT-1组表现出产生IL-17的CD8+T细胞的显著增加(图9D)。这些体外数据与临床观察结果一致,因为与健康受试者相比,UC患者明显偏向CD4+细胞的富集Th2的群体,并且UC微生物类型在产生IL17的细胞毒性CD8+细胞的Th2偏
斜和扩增的程度两者上表现出显著差异。因此,微生物分层允许鉴定免疫学上不同的UC患
者群体。
[0551] 表2:用于鼠气道过敏性致敏研究模型中的治疗组。
[0552]蟑螂过敏原(CRA) 灌胃干预 组
-(PBS) PBS媒介物 无CRA
+ PBS媒介物 CRA+PBS
+ 治疗聚生体(TC) CRA+TC
+ 约氏乳杆菌(Lj) CRA+Lj
+ 无Lj的聚生体(C) CRA+C
+ 热杀死的TC(HKTC) CRA+HKTC
[0553] 表3:补充治疗行聚生体导致引起特定脂质化合物增加的代谢重编程。
[0554]
[0555]
[0556] 表4:补充治疗性聚生体导致引起特定碳水化合物、脂质、能量化合物减少的代谢重编程。
[0557]
[0558]
[0559] 实施例4.新生儿肠道微生物群与儿童期多敏化特应症和T细胞分化相关
[0560] 3个月时肠道微生物群细菌耗竭和更改的代谢活性牵涉到儿童期特应症和哮喘1。我们假设存在组成上不同的人类新生儿肠道微生物群(NGM),并且有差别地涉及儿童期特
应症和哮喘的相对风险(RR)。使用来自美国出生队列的大便样品(n=298;年龄1-11个月)
和16S rRNA测序,新生儿(中位数年龄,35d)可分为三种微生物群组成状态(NGM1-3)。对于2岁时的多敏化特应症和4岁时的医生诊断的哮喘,每一种都引起基本上不同的RR。标记为
NGM3的最高风险组示出了某些细菌(例如双歧杆菌属、阿克曼氏菌属和栖粪杆菌属)的较低
相对丰度、特定真菌(念珠菌属和红酵母属)的较高相对丰度,以及富集促炎代谢物的不同
的粪便代谢组。用来自NGM3受试者的无菌粪便水离体培养人类成人外周T细胞增加产生白
+ + + +
细胞介素(IL)-4的CD4 细胞的比例,并降低CD4CD25FOXP3 细胞的相对丰度。富集在NGM3
比低风险NGM状态的12,13-DiHOME概述了NGM3粪便水对相对CD4+CD25+叉头框P3(FOXP3)+细
胞丰度的影响。这些发现表明,新生儿肠道微生物组失调可能促进与儿童期特应症相关的
CD4+T细胞功能障碍。
[0561] 特应症是响应于过敏原产生IgE抗体的倾向,是最常见的慢性健康问题之一2,并且被认为是儿童期哮喘发展的重要危险因素3。最近,这种状况已经与3个月而非12个月时
人类肠道微生物群中的细菌分类耗竭有关1。因此,我们假设在组成上和功能上不同的新生儿(约1个月)肠道微生物群状态存在,并且它们的相关产物以与在儿童期特应症和哮喘发
展的RR相关的方式特殊地影响CD4+群体。我们研究了针对来自在种族和社会经济多样化的
韦恩县健康、环境、过敏和哮喘纵向研究(Wayne County Health,Environment,Allergy 
and Asthma Longitudinal Study)出生队列的参与者的1个月(中位数年龄35d;范围为16-
138d;n=130;‘新生儿’)或6个月(中位数年龄201d;范围为170-322d;n=168;‘幼儿’)的研究访问期间收集的单独的粪便样品4。2岁时的优势性多敏化特应症(PM特应症)使用潜在类
别分析定义,该潜在类别分析为无监督的统计算法,根据受试者对一组十种食物和空气过
敏原的血清特异性IgE(sIgE)反应模式对受试者进行聚类5(图26)。
[0562] 在群体水平(独立于特应症状况),细菌群落α-多样性(分类单元数量和分布)随着年龄增长而扩大(皮尔逊相关,r=0.47,P<0.001)。与此同时,真菌α-多样性减少(皮尔逊相关,r=-0.23,P=0.0014),并且这些微生物界之间存在互惠关系(香农指数;皮尔逊相关,r=-0.24,P<0.001;图19)。细菌和真菌β-多样性(人际分类组成)两者都与参与者年龄相关(PERMANOVA;分别为R2=0.056,P<0.001;和R2=0.034,P<0.001)。新生儿粪便微生物群典型地以双歧杆菌科、肠杆菌科(Enterobacteriaceae)、马拉色菌目(Malasseziales)(马拉色
菌属)和酵母菌目(Saccharomycetales)(酵母菌属(Saccharomyces))为主。幼儿参与者表
现出双歧杆菌科和肠杆菌科的持续存在,但相对丰度减少,毛螺菌科(Lachnospiraceae)
(Blautia和瘤胃球菌属)的扩增,以及以酵母菌目(酵母菌属和念珠菌属)特征性地为主的
真菌群落,酵母菌目是健康成人的优势真菌目6。这些发现指示,在生命的第一年,跨界肠道微生物沿着年龄相关的发育梯度共同进化。
[0563] 为了解决我们的主要假设,狄利克雷多项式混合物(DMM)模型用于基于细菌群落7
组成对参与者进行分组 ;三种不同的NGM状态(NGM1、2和3)代表最佳模型拟合(图23)。
PERMANOVA证实,NGM命名解释了小但并非不重要的比例的细菌β-多样性(PERMANOVA;R2=
0.09,P<0.001,表明NGM[其为年龄无差异的(克鲁斯卡尔-沃利斯;P=0.256;图20A)]可以表示生命早期的微生物群配置的梯度。NGM趋向于与真菌β-多样性具有显著关系(布雷-柯
2
蒂斯;PERMANOVA,R =0.037,P=0.068),意味着每个NGM与主要在存在的优势真菌分类单元的相对丰度上变化的真菌区系共同关联。幼儿样品可分为两种组成上不同的肠道微生物
群状态,IGM1(通常以双歧杆菌科为主)和IGM2(通常以毛螺菌科为主(未加权的UniFrac;
PERMANOVA,R2=0.032,P=0.001)),它们年龄不同(Wilcoxon秩和,P=0.0257);IGM1参与者更年轻。IGM状态与真菌群落β-多样性无关(布雷-柯蒂斯;PERMANOVA,R2=0.011,P=
0.33),大概是因为幼儿受试者持续地富集酵母菌目。
[0564] 根据特应症的常规定义(IgE>0.35IU/ml),观察到NGM组之间的RR没有显著差异(图21)。然而,当使用预测哮喘的5PM特应症定义时,与NGM1组(RR=2.94;95%CI 1.42-
6.09,P=0.004;图21)或NGM2组(RR=2.06;95%CI 1.01-4.19,P=0.048;图21)任一者相比,NGM3参与者在2岁时引起特应症的更高RR。对于在4岁时父母报告的、医生诊断的哮喘的RR,观察到NGM3甚至更大的效应大小(图21)。在2岁时特异性IgE应答的总和支持PM特应症
的NGM相关的RR(图20B)。IGM参与者对PM特应症(RR=1.02;95%CI 0.59-1.75,P=0.94;图
27)或哮喘(RR=0.51;95%CI 0.22-1.17,P=0.11)没有表现出不同RR,这可能是由于在该组内年龄范围和微生物的异质性的增加。使用可用的生命早期特征,我们鉴定了跨IGM状态相当不同的因素,包括出生季节、样品采集年龄和母乳喂养。在新生儿研究访问期间家中可检测的犬过敏原(Can f 1)浓度(P=0.045)(在NGM3组中最低)和婴儿性别(NGM3几乎完全
是男性)跨NGM显著不同(P=0.038)。尽管对这些和其它通常与过敏性疾病相关的生命早期
因素进行调整,但NGM与特应症或哮喘之间的关系仍然存在。只存在另一项大型儿童肠道微生物群特应症研究1,其中最年轻的参与者基本上比我们队列中的新生儿(中位数年龄,
35d)大(约100d)。将我们的DMM模型参数应用于该数据集,鉴定了两个组成上不同的组(双
歧杆菌属为主的NGM1和毛螺菌科为主的IGM2);表明检查新生儿大便样品对于鉴定与差异
RR相关的不同的先锋微生物群是必要的。
[0565] 当与NGM1组(零膨胀负二项式回归(ZINB),Benjamini-Hochberg,q<0.05)相比时,NGM3参与者特征性地耗竭细菌分类单元,包括双歧杆菌属(双歧杆菌科)、乳杆菌属(乳杆菌科(Lactobacillaceae))、栖粪杆菌属(梭菌科(Clostridiaceae))和阿克曼氏菌属(疣微菌科(Verrucomicrobiaceae))。当将NGM3与NGM2相比较时,这些观察结果是一致的,并且也与先前描述的特应症相关的分类耗竭一致1。真菌学上,NGM3受试者持续耗竭多种马拉色菌属分类单元(ZINB;Benjamini-Hochberg,q<0.20;图28和图29)——令人吃惊的是,鉴于我们基于群体的观察结果,该属特征性地富集在新生儿肠道微生物群中。当与任一较低风险组
相比时,NGM3组中真菌分类富集也是一致的,并且包括红酵母属和念珠菌属(图28和图29)。
因此,新生儿跨界微生物群菌群失调是儿童期PM特应症和哮喘发展的特征。
[0566] 预测NGM3相关的细菌分类更改8导致氨基酸、脂质和异生物质代谢途径缺陷。非靶向液相色谱质谱鉴定了存在于来自每个NGM(具有最高后验概率的NGM成员资格的那些)的
代表性受试者的子集(n=28)中的粪便代谢物。16S rRNA谱、预测的宏基因组和NGM代谢组
之间存在显著相关(Procrustes;图30),表明细菌群落组成和新生儿肠道代谢微环境之间
的确定性关系。组间比较鉴定每个NGM中富集的特定代谢物(韦尔奇t-检验;P<0.05)。如先前对患有特应症的受试者尿液的分析所报告的1,NGM3参与者表现出初级和次级胆汁代谢
物的粪便富集。然而,更广泛的代谢功能障碍,包括脂质、氨基酸、碳水化合物、肽、异生物质、核苷酸、维生素和能量代谢途径——本质上为预测NGM3缺陷的细菌途径——是明显的。
尽管NGM1和NGM2组表现出不同的代谢程序,但共同的代谢物子集将它们与NGM3区分开。这
些包括抗炎多不饱和脂肪酸、二十二碳五烯酸(n3DPA;22n5)和双同-γ-亚麻酸9、10(DGLA;
20:3n3或n6)、琥珀酸和母乳寡糖、3-岩藻糖乳糖和乳-N-岩藻五糖II,已知它们影响肠道上皮定植11、12。相比之下,NGM3参与者持续地富集12,13-DiHOME、豆甾醇和谷甾醇、8-羟基辛酸酯、α-CEHC和γ-生育酚。
[0567] 来自NGM3参与者的无菌粪便水(与来自NGM1的相比)降低CD4+IFNγ+:CD4+IL-4+细胞的比率(线性混合效应模型(LME),P=0.095;图24),增加CD4+IL-4+细胞的比例(LME,P<
0.001;图22A)和释放的IL-4的浓度(LME,P=0.045;图22B)并且降低离体CD4+CD25+FOXP3+细胞的百分比(与对照相比;LME,P<0.017;图22C),表明NGM3肠道微环境促进与确定的特应性哮喘相关的适应性免疫功能障碍。加权相关网络分析鉴定32个代谢模块,其中一个区别
三个NGM(ANOVA;P=0.038;图22D)并且含有12,13-DiHOME,其被鉴定为中枢代谢物(最高模块成员资格(MM)值=0.91;图22E)和最能区别NGM的(nost NGM-discriminatory)(代谢物
显著性相关的最高MM(r=0.86,P<0.001;图22E)。与NGM1和NGM2相比,NGM3受试者中NGM3的相对富集支持观察结果(对于两者P<0.05;图25)。与媒介物治疗相比,检查的所有12,13-
DiHOME浓度降低CD4+CD25+FOXP3+细胞的比例(LME,分别为P=0.04,P<0.001,P=0.001;图
22F)。
[0568] 这些发现指示,新生儿肠道微生物群潜在地经由影响CD4+T细胞群体和功能的肠道微环境更改,影响儿童期过敏性哮喘的易感性。这表明,操纵肠道微生物组的组成和功能的生命非常早期干预可能为疾病预防提供可行的策略。
[0569] 方法
[0570] 登记代码。与本研究相关的所有序列数据均可以登记号PRJEB13896从欧洲核苷酸档案馆(European Nucleotide Archive)(ENA)获得。附加信息可在Fujimura等人.2016中
获得。
[0571] 研究群体。从2003年8月至2007年11月,作为韦恩县健康、环境、过敏和哮喘纵向研究(WHEALS)的一部分,募集21和49岁之间的孕妇(n=1,258)。WHEALS是来自密歇根州东南部的预期出生队列,旨在调查过敏性疾病的生命早期风险因素,如前所述4。简而言之,如果妇女居住在预定义的相邻邮政编码群的密歇根州底特律市(Detroit,Michigan)及其周边,
没有迁出该地区的意图,并且提供知情的书面同意,那么她们就被认为符合资格。在她们的孩子出生后的1、6、12、24和48个月进行五次后续会诊,第24个月的会面是在标准化的研究诊所进行的,使得孩子可以由通过职业验证的过敏症专科医师评价。在第1个月和第6个月
的家访时,收集来自孩子的大便样品。本研究的所有方面都由亨利福特医院机构审查委员
会(Henry Ford Hospital Institutional Review Board)批准。
[0572] 大便微生物组分析的WHEALS受试者样品标准。对于本研究,我们选择完成第24个月门诊随访的儿童,其中包括用于IgE测量的抽血,并且在进行他们的大便样品收集的同时从他们的家中收集灰尘样品(n=308)。来自年龄范围为1-11个月的儿童的大便样品由现场
工作人员在家访期间收集,并且储存在-80℃。样品在干冰上被随机化,然后运送到旧金山加利福尼亚大学(University of California,San Francisco)(UCSF),在那里它们也储存
在-80℃直到被处理。
[0573] PM-特应症和哮喘定义。在2年门诊随访时抽取的血液用于确定参与者的总IgE和十种过敏原特异性IgE(sIgE)的水平:链格孢属(链格孢)、德国蟑螂(德国小蠊(Blattella germanica)Bla g 2)、犬(中华田园犬(Canis lupus familiaris)Can f 1)、屋尘螨(粉尘
螨(Dermatophagoides farinae)Der f 1)、母鸡的蛋(蛋)、猫(家猫(Felis domesticus)
Fel d 1)、奶牛的奶(奶)、花生(落花生(Arachis hypogaea))、普通豚草(美洲豚草
(Ambrosia artemisiifolia))和猫尾草(Timothy grass)(梯牧草(Phleum pratense))。使
用Pharmacia UniCAP系统(ThermoFisher Scientific,Waltham,MA,USA)测量特异性IgE。
潜在类别分析用于根据十种过敏原sIgE的致敏模式将参与者分成四个离散的特应症类别,
就像整个WHEALS组一样5。我们的子集被分配到四个潜在类别中的一个:(i)低致敏或无致
敏(n=226);(ii)高度致敏(食物和吸入性过敏原两者;n=9);(iii)奶和蛋为主的(n=50)致敏或(iv)花生和吸入剂为主的(n=13)致敏。由于样品大小,潜在类别ii-iv收缩
(collapsed),并且被认为是“优势性多敏化的”(PM特应症;n=72);剩余的受试者表示“低致敏或无致敏”组。特应症的常规定义(对十种过敏原中的任一种的至少一种阳性测试
(sIgE≥0.35IU ml-1))也用于比较目的。根据在4年会诊时父母报告的医生诊断的哮喘,儿童被定义为患有哮喘。
[0574] 细菌和真菌群落谱分析、PICRUSt和代谢组学分析。DNA提取。来自308名幼儿的大便样品通过使用基于改性的十六烷基三甲基溴化铵(CTAB)缓冲液的方案提取13。简而言之,将0.5ml改性的CTAB提取缓冲液添加到2ml裂解基质E试管(Lysing Matrix E tube)(MP 
Biomedicals,Santa Ana,CA)中的25mg大便中,并且然后孵育(65℃,15min)。样品在
Fastprep-24(MP Biomedicals,Santa Ana,CA)中被珠打(5.5m s-1,30s),随后添加0.5ml苯酚:氯仿:异戊醇(25:24:1)。离心(14,000rpm,5min)后,将上清液添加到重的相凝胶管
(5Prime,Gaithersburg,MD)中,并且添加氯仿(v:v)。离心样品(14,000rpm,5min),并且将所得上清液添加到新鲜试管中,随后添加1μl线性丙烯酰胺,然后添加PEG-NaCl(2v:v)。孵育样品(21℃,2h),用70%EtOH洗涤,并且重新悬浮在pH 8.5的10mM Tris-Cl中。
[0575] 测序准备。如由Caporaso等人设计的,16S rRNA基因的V4区域被扩增14。使用0.025U Takara热启动ExTaq(Takara Mirus Bio Inc,Madison,WI)、1X Takara缓冲液与
MgCl2、0.4pmol/μl的F515和R806引物、0.56mg/ml的牛血清白蛋白(BSA;Roche Applied Science,Indianapolis,IN)、200μM的dNTP和10ng的gDNA在25μl反应中进行PCR反应。反应按以下一式三份地进行:初始变性(98℃,2min),98℃(20s)、50℃退火(30s)、72℃延伸
(45s)的30次循环和72℃的最终延伸(10min)。扩增子使用2%TBE琼脂糖e-凝胶(Life 
Technologies,Grand Island,NY)进行汇集和验证,然后使用AMPure  SPRI珠
(BeckmanCoulter,Brea,CA)进行纯化,用生物分析仪DNA 1000试剂盒(Agilent,Santa 
Clara,CA)进行质量校验,并且使用Qubit 2.0荧光计和dsDNA HS测定试剂盒(Life 
Technologies,Grand Island,NY)进行定量。如前所述,样品被汇集并在Illumina MiSeq平台上测序15。
[0576] rRNA基因的内部转录间隔区2(ITS2)使用引物对fITS7(5′-GTGARTCATCGAATCTTTG-3′)(SEQ ID NO:7)和ITS4(5′-TCCTCCGCTTATTGATATGC-3′)(SEQ ID NO:8)扩增。如上所述,引物为针对Illumina MiSeq平台设计的。PCR反应在25μl反应中,使用1X Takara缓冲液(Takara Mirus Bio)、200nM的每种引物、200μM dNTP、2.75mM的MgCl2、
0.56mg ml-1的BSA(Roche Applied Science,Indianapolis,IN)、0.025U Takara热启动
ExTaq和50ng的gDNA一式三份地进行。反应在以下条件下进行:初始变性(94℃,5min),94℃(30s)、54℃退火(30s)、72℃延伸(30s)的30次循环和72℃的最终延伸(7min)。PCR验证和纯化如上文所述地进行。遵循制造商的方案,使用KAPA SYBR(KAPA Biosystems,Wilmington,MA)qPCR对样品进行定量。样品以等摩尔(50ng)汇集,并且如上所述,将具有PhiX加标对照的准备好的和变性的文库装载到Illumina MiSeq盒上。
[0577] 测序-数据处理和质量控制。对于细菌序列,配对的末端序列使用FLASH16v.1.2.7组装,并且通过条形码去多路复用(de-multiplexed),并在QIIME17 1.8中丢弃低质量读段(Q评分,<30)。如果三个连续的97%的序列鉴定挑选操作分类单元(OTU)使用UCLUST19相对于绿色基因数据库2013_5版之
前从数据集中过滤。在实施方案中,密切相关的微生物基于序列相似性阈值(例如,97%)分组在一起。OTU表示用户定义的16S rRNA序列同一性的截止,例如97%同一性;在基因的测序区域共享至少97%序列同一性的所有序列形成一个OTU。未能与参考序列聚类的测序读
段被重新聚类。使用PyNAST比对序列21,并且使用RDP分类器和绿色基因参考数据库13_5版来分配分类20。为了去掉OTU表的噪声,移除了在所有样品中总序列少于五个的分类单元。细菌系统发育树使用FastTree22 2.1.3构建。
[0578] 对真菌序列进行质量修整(Q评分,<25),并且使用cutadapt23去除衔接子序列,之16
后用FLASH组装配对的末端读段 。序列通过条形码去多路复用,并且将序列截短至150bp,然后使用USEARCH第7版管线(特别是UPARSE24功能)进行聚类,并且使用UCHIME进行嵌合体
校验。使用UNITE第6版分配分类25。
[0579] 为了归一化样品间读段深度的变化,数据被精简为对于细菌(n=298),每个样品的最小读段深度为202,367个序列,且对于真菌(n=188),最小读段深度为30,590个序列。
为了确保真正有代表性的群落用于针对每个样品的分析,在这些定义深度处的序列子采样
被精简100倍。每个样品的代表性群落组成被定义为表现出到从该特定样品的所有子采样
生成的所有其它OTU向量的最小平均欧几里德(Euclidean)距离的组成。UCSF的研究院对样
品身份不知情,直到微生物群数据集经历上述处理并且准备好进行统计学分析。
[0580] 未观察到状态的系统发育重建(PICRUSt)。根据零膨胀负二项式回归,PICRUSt8用于预测在每个NGM状态下显著富集的那些分类单元的路径,并且使用Benjamini-Hochberg
错误发现率26(q<0.05)对多重测试进行校正。这些分类单元用于生成在PICRUSt中被归一化的新的OTU表,并且有区别的路径在R中构建的热图中说明。
[0581] 代谢组学谱分析。来自三个微生物群状态中的每一个、八个NGM3受试者以及来自NGM1和NGM2组中每一组的十个的大便样品(200mg)被提供给Metabolon(Durham,NC)用于使
用它们的标准方案(在World Wide Web.metabolon.com/上)的超高效液相色谱-串联质谱
(UPLC-MS/MS)和气相色谱-质谱(GC-MS)。选择这些样品是因为它们表现出属于给定NGM组
的最高后验概率,并且具有足够的样品体积用于UPLC-MS/MS分析。将化合物与包括多于
3300种商购可得的化合物的Metabolon的内部纯化标准品库进行比较。
[0582] 离体树突细胞攻击和T细胞共培养。使用来自已经经历代谢谱分析的十名NGM1新生儿中的五名和已经经历代谢谱分析的八名NGM3新生儿中的七名的粪便样品(生物重复)。
从这些组排除的样品没有足够的体积用于分析。将粪便样品在含有20%FBS(FBS)的预先温
-1
热的磷酸盐缓冲盐水(PBS)中均质化1g ml (w:v)。将样品涡旋、孵育(37℃,10min)并且离心(14,000rpm,30min)。将上清液通过0.2μm过滤器过滤灭菌,然后用于下述树突细胞(DC)T细胞测定。PBS被用作阴性对照。用于DiHOME实验的处理条件包括:分别在0.4%、0.15%和
0.05%DMSO中溶解的75μM、130μM和200μM 12,13 DiHOME(Cayman Chemical,Ann Arbor,MI)。将DiHOME溶液添加到R10培养基中(添加了10%热灭活FBS(抗原活化剂)和2mM l-谷氨
酰胺以及100U ml-1青霉素-链霉素的洛斯维·帕克纪念研究所(Roswell Park Memorial 
Institute)培养基1640;Life Technologies)并且在制备后1h内暴露于DC。包括对应比例
的PBS和DMSO(在R10培养基中递送)的对照用于溶解不同浓度的DiHOME。治疗组的大小基于
初步测定确定,该初步测定证明了使用130μM的12,13DiHOME抑制CD4+CD25+FOXP3+的效果大小约为七,这指示需要每组至少两个样品以达到>0.80的功效。
[0583] 外周血单核细胞(PBMC)是通过确保供体保密性的细胞来源计划从健康、身份不明的人类供体(Blood Centers of the Pacific,San Francisco,CA)获得的血浆纯化的。供
体签署了协议,承认他们的血液可以用于研究。PBMC使用Ficoll-Hypaque梯度离心分离,用R10培养基洗涤两次并孵育18h。树突细胞(DC)使用EasySep人类Pan-DC预富集试剂盒
(STEMCELL Technologies,Vancouver,BC)从PBMC分离。来自两个供体(生物重复)的DC(0.5
×106个细胞ml-1)用无细胞粪便水(0.22μM过滤的)或不同浓度的DiHOME一式三份地处理
(处理重复),并且在补充10ng ml-1GM-CSF和20ng ml-1IL-4的R10培养基中在37℃27培养2d用于粪便-水测定,或培养5d用于DiHOME实验。对于DiHOME实验,每48h更换含有DiHOME或对照暴露的新制备的培养基。对于粪便-水实验,测定在一个供体(技术重复)上重复两次并且在供体B上进行一次,这是由于从供体B回收的细胞数量不足。处理重复也被认为是生物重
复,因为人类供体细胞不是克隆的。
[0584] 在与CD4+T细胞共培养前24小时,通过使用DC生长中介物(10ng ml-1肿瘤核因子-α[(TNF-α)、10ng ml-1IL-1b、10ng ml-1IL-6和1mM前列腺素E2(PGE2)]刺激DC成熟。为了准备共培养,将DC在新鲜R10培养基中洗涤,通过流式细胞术计数,并且以每孔0.5×106个活CD45+细胞铺板于TexMACs培养基(Miltenyi Biotec,San Diego,CA)中。
[0585] 使用初始CD4+T细胞分离试剂盒(Miltenyi Biotec)从PBMC纯化自体T淋巴细胞。纯化后,将初始自体CD4+T细胞悬浮在TexMACS培养基(Miltenyi Biotec)中,并且在可溶性抗CD28和抗CD49d(1mg ml-1)的存在下以10:1的比率添加到处理的DC中。将T细胞和DC细胞
在37℃共培养5d,并且每48h补充新鲜的TexMACS培养基。为了评估细胞因子的产生,将共培养物与佛波醇肉豆蔻酸乙酸酯-离子霉素(SIGSa,St.Louis,MO)和GolgiPlug(Gplug;BD 
Biosciences,San Jose,CA)混合16h,然后进行流式细胞术。在添加PMA-Gplug之前的48h和
5d收集来自共培养物的无细胞培养基以评估细胞因子分泌。遵循制造商的方案(BD 
Biosciences),细胞因子分泌通过细胞计数珠阵列进行评价。
[0586] 对于流式细胞术,将单细胞悬液使用一组抗体染色,所述一组抗体包括抗-CD3(SP34-2,1:100)、抗-CD4(L200,1:100)、抗-CD25(M-A251,1:25)、抗-IFN-γ(B27,1:200;BD Biosciences);抗-CD8a(RPA-T8,1:100;BioLegend,San Diego,CA);抗-IL4(7A3-3,1:20;
Miltenyi Biotec);抗-IL-17A(64DEC17,1:20)和抗-FOXP3(PCH101,1:20;Affymetrix 
eBioscience,Santa Clara,CA)。每种初级抗体的验证在制造商网站上提供。死细胞用
LIVE-DEAD水死细胞染色(Life Technologies)阳性染色。渗透缓冲液(Affymetrix 
eBioscience)用于在染色细胞内标记物IFN-γ、IL-4、IL-17A和FoxP3之前渗透细胞。对于流式分析,活T细胞被门控为CD3+CD4+细胞,含有<50%活细胞的孔被排除在分析之外。在CD4+T细胞亚群体中,T辅助1(Th 1)为IFN-γ+,T辅助2(Th2)为IL-4+;T辅助17(Th17)为IL-17A+,并且T调节(T reg)细胞为CD25hi和FOXP3hi二者。染色细胞经由流式细胞仪在BD LSR II(BD Biosciences)上测定。
[0587] 统计学分析。香农多样性指数使用QIIME计算。皮尔逊相关用于测试细菌香农多样性和真菌香农多样性之间的关系。距离矩阵(未加权的UniFrac28和布雷-柯蒂斯)在QIIME中计算,以评估样品之间的组成差异性,并且使用在Emperor中构建的PCoA图可视化29。在R环境中使用Adonis执行置换多元方差分析(PERMANOVA),以确定显著(P<0.05)解释微生物群
β-多样性变化的因素。
[0588] 为了在细菌分类的基础上鉴定受试者的聚类,使用实现基于狄利克雷先验7的无监督贝叶斯方法的DMM模型。使用负对数模型证据的拉普拉斯近似来确定最佳拟合的DMM模
型,测试多达十种潜在的微生物群状态。在NGM成员资格的最大后验概率的基础上,每个样品被分配到特定的新生儿肠道微生物群(NGM)状态。克鲁斯卡尔-沃利斯用于检验年龄是否
区分微生物群状态。使用SAS 9.4版(Cary,NC)中的PROC GENMOD计算相对风险(RR)比率和
对应的95%置信区间。当流行率接近1或当对数二项式模型不收敛时,基于对数二项式回归使用最大似然估计或稳健泊松回归计算未调整的和调整的RR。双尾韦尔奇t检验用于检验
三种NGM状态之间sIgE浓度(对数变换的)是否有显著差异。
[0589] 为了确定哪些OTU在NGM组之间相对丰度不同,零膨胀负二项式回归(pscl包)被用作主要建模策略,适用于序列计数数据。在其中OTU分布不为零膨胀的且模型不收敛的情况中,标准负二项式被用作二次建模策略。这些用最小阳性错误发现率(对于细菌q<0.05;对
26 30
于真菌q<0.20)对多重测试进行校正 。使用iTOL  3.0版对结果进行自然对数变换,用于
说明系统发育树。当检查早期生命因素和NGM之间的关联时,P值是在ANOVA(数值,正态分
布)、克鲁斯卡尔-沃利斯(数值,偏斜)、卡方(分类)或费舍尔精确(稀疏分类)的协变量分布的基础上计算的。对数二项式回归模型用于在评估具有发展特应症或哮喘的不同微生物群
状态的个体的RR时测试混淆因素(SAS 9.4版中的PROC GENMOD)。进行费舍尔精确双尾检验
以测试母乳喂养是否在任何特定NGM中更经常地被显著实践(P<0.05)。
[0590] 使用双尾韦尔奇t检验鉴定在低风险NGM状态和NGM3之间表现出显著(P<0.05)不同浓度(对数变换)的代谢物。使用Cytoscape 3.2.1版说明NGM中共享的和不同的超和亚途
径产物。(参考文献31)。使用加权相关网络分析(WGCNA)与R包WGCNA构建代谢物共现网络,以找到高度互联、相互排斥的代谢物的模块。皮尔逊相关用于确定中间代谢物的关系,其中模块由正相关的代谢物组成。为了避免虚假模块(spurious module),最小模块大小被设置为5。模块“本征代谢物”(被称为本征基因)被定义为给定模块的第一主要组分,并且被认为是该模块的联合代谢谱的代表性测量。每个本征代谢物用于测试(ANOVA)其各自模块和NGM
之间的关联,模块成员资格用于确定每种代谢物与其分配的模块的互联性和鉴定“中枢”代谢物:这被定义为每种代谢物和本征代谢物之间的关联(强正值指示高度互联性)。
[0591] Procrustes用于测试由16S系统发育、PICRUSt和代谢组学数据集描述的群落之间的一致性。
[0592] 为了测试T细胞和细胞因子的差异,使用线性混合效应模型(LME)(R包lmerTest),并且对供体进行调整。除非另有指示,所有分析都是用R统计编程语言进行的。
[0593] AOP:幼儿肠道微生物群组成的差异与儿童中的特应症的相对风险相关,并且与这些不同微生物状态相关的代谢物更改T细胞的体外分化。
[0594] 问题:幼儿肠道微生物群组成的差异与儿童中的特应症的相对风险相关,并且与这些不同微生物状态相关的代谢物更改T细胞的体外分化。
[0595] 独立队列中肠道微生物群-状态验证。为了评估我们的DMM模型的有效性,使用Arrieta等人1公布的16S rRNA数据(在加拿大健康幼儿纵向发育(Canadian Healthy 
Infant Longitudinal Development)(CHILD)研究中,在约3-12个月时收集n=319份独立
粪便样品)。每个参与者的具体年龄不详,并且该队列中最年轻的参与者为3个月,基本上比WHEALS队列中的新生儿大。因此,数据集可能不像我们的韦恩县健康、环境、过敏和哮喘纵向研究(WHEALS)队列已经执行的那样被分成>6个月或<6个月的样品。这限制我们鉴定与随
后的儿童特应症和哮喘结果相关的新生儿微生物群状态的能力。尽管如此,我们使用队列
来确定在我们的研究中鉴定的任何微生物群状态是否在CHILD队列中复制。由于CHILD队列
的年龄范围,我们将我们的NGM和IGM模型参数两者应用于整个数据集。当CHILD数据与IGM
模型相比拟合至NGM模型时(模型拟合:分别为32,502(NGM模型)对174,610(IGM模型)),获
得更好的模型拟合(即,对负对数模型证据的较小拉普拉斯近似),并且两组解决方案表示
CHILD数据的最佳拟合。第1组(G1)包括221名(69%)参与者,并且第2组(G2)包括98名
(31%)。G1的后验概率平均高于G2(分别为0.98比0.95)。与我们的发现一致,被分配到G1的CHILD参与者典型地被定义为高双歧杆菌科相对丰度(平均相对丰度(aRA):75%)。G2参与
者的特征为毛螺菌科(aRA:39%)、梭菌科(aRA:29%)和瘤胃球菌科(Ruminococcaceae)
(aRA:12%),更能反映我们队列中鉴定的IGM2聚簇。
[0596] 代码可用性。下面的脚本可以用于从非精简OTU表计算代表性多重精简OTU表,这是对单一精简表的替代。该方法稳定随机采样的效果,并且产生更能代表群落组成的OTU
表。为每个样品计算多个单一精简OTU表,并且计算受试者-特定精简向量之间的距离。精简向量是从其自身到所有其它精简向量的最小平均(或中位数)距离,被认为是该受试者最具
代表性的向量,并且用于在所得多重精简OTU表中表示该样品的群落组成。
[0597] 库(vegan)库(GUNifFrac)
[0598] ##参数
[0599] #指定原始OTU计数表,其中样品=行,分类单元=列#rawtab=otu_tab_t
[0600] #指定希望将表精简到默认值的深度是仅使用最小测序#深度raredepth=最小(rowSums(rawtab))
[0601] #指定希望生成的精简表的数量以从ntables=100计算代表性精简#表
[0602] #指定用于计算每个受试者的精简数据集之间距离的距离测量
[0603] #可以是vegan distmethod=“欧几里德”的vegdist函数中可用的任何方法
[0604] #指定方法用于跨距离汇总,如果为平均距离,那么summarymeasure(汇总测量)=平均值
[0605] #如果为中位数距离,那么summarymeasure(汇总测量)=中位数
[0606] #summarymeasure(汇总测量)=平均值
[0607] #指定用于精简表的种子开始
[0608] #对于每个后续表,前一个种子将添加1
[0609] #对于再现性,请保存seedstart(种子开始)值(或者为了简单起见仅使用默认值)。
[0610] #seedstart(种子开始)=500
[0611] #指定是否希望打印进度更新#verbose(冗余)=TRUE(真)##返回类别矩阵.##函数的代表性精简OTU表
[0612] reprare<–函数(rawtab=otu_tab_t,raredepth=最小(rowSums(otu_tab_t)),ntables=100,distmethod=欧几里德”,
[0613] summarymeasure(汇总测量)=平均值,seedstart(种子开始)=500,verbose(冗余)=TRUE(真)){
[0614] raretabs=列出()
[0615] 对于(在1:ntables中的z){
[0616] 如果(verbose(冗余)==TRUE(真)){
[0617] 打印(粘贴(“计算精简表编号”,z,sep=""))
[0618] }
[0619] 设定.种子(seedstart(种子开始)+z)
[0620] raretabs[[z]]=精简(rawtab,深度=raredepth)[[1]]
[0621] }
[0622] raretabsa=阵列(未列出(raretabs),dim=c(nrow(raretabs[[z]]),ncol(rawtab),ntables))
[0623] final_tab(最终_tab)=c()
[0624] 对于(在1:nrow(raretabs[[z]])中的y){
[0625] 如果(verbose(冗余)==TRUE(真)){
[0626] 打印(粘贴(“确定受试者编号的rep精简向量”,y,sep=""))
[0627] }
[0628] distmat=作为.矩阵(vegdist(t(raretabsa[y,,]),方法=distmethod))#对于受试者y跨reps的距离
[0629] distsummary=应用(distmat,2,summarymeasure(汇总测量))
[0630] whichbestrep=其中(distsummary==最小(distsummary))[1]#最佳rep为具有到所有其它rep的最小平均/中值距离的一个rep(在持平的情况下,仅选择第一个)
[0631] bestrep=raretabsa[y,,whichbestrep]#仅为受试者y选择该rep
[0632] 最终_tab=rbind(最终_tab,bestrep)#构建该rep用于受试者y进入最终表}
[0633] rownames(最终_tab)=rownames(raretabs[[z]])
[0634] colnames(最终_tab)=colnames(rawtab)
[0635] 返回(最终_tab)
[0636] }
[0637] ######函数的实施例运行:######
[0638] ###实施例的虚拟数据集###
[0639] ntaxa=200
[0640] nsubj=50
[0641] 设定.种子(444)
[0642] dummyOTU<–矩阵(样品(0:500,ntaxa*nsubj,prob=c(0.7,0.1,0.1,rep(0.1/498,498)),代替=TRUE(真)),ncol=ntaxa)
[0643] colnames(dummyOTU)=粘贴("OTU",1:ntaxa,sep="")
[0644] rownames(dummyOTU)=粘贴("subj",1:nsubj,sep="")
[0645] 排序(rowSums(dummyOTU))#测序深度不均匀
[0646] #指定最小深度
[0647] repraretable=reprare(rawtab=dummyOTU,raredepth=最小(rowSums(dummyOTU)),
[0648] ntables=100,distmethod="欧几里德",
[0649] summarymeasure(汇总测量)=平均值,seedstart(种子开始)=500,verbose(冗余)=TRUE(真))
[0650] dim(repraretable)
[0651] 排序(rowSums(repraretable))#测序深度现在均匀
[0652] #指定除了最小深度以外的深度
[0653] repraretable=reprare(rawtab=dummyOTU,raredepth=3380,ntables=100,distmethod="欧几里德",
[0654] summarymeasure(汇总测量)=平均值,seedstart(种子开始)=500,verbose(冗余)=TRUE(真))
[0655] dim(repraretable)#小于最小值的受试者不再在表格中
[0656] 排序(rowSums(repraretable))#测序深度现在均匀
[0657] 实施例5.疾病严重程度和免疫活性与种族不同的溃疡性结肠炎患者中不同的跨界肠道微生物组状态相关
[0658] 溃疡性结肠炎(UC)患者中存在明显的肠道微生物群异质性,尽管这种变化的临床意义是未知的。我们假设种族不同的UC患者表现出离散的肠道微生物群,其具有差异性地
影响免疫活动和临床状况的独特代谢编程。使用粪便样品(UC,30名;健康,13名)的平行16S rRNA和内部转录间隔物2测序,我们确证UC相关的细菌多样性耗竭的先前观察结果,并且证明显著的酵母菌目扩增作为UC肠道菌群失调的特征。此外,我们在我们的队列中鉴定四种
不同的微生物群落状态(MCS),证实它们在独立的UC队列中的存在,并且证明它们与患者种族和疾病严重程度二者的共同关联。每种MCS都独特地富集特定的氨基酸、碳水化合物和脂质代谢途径,并且表现出这些途径的代谢产物的显著腔富集。使用新颖的离体人类树突细
胞和T细胞共培养测定,我们示出了与健康参与者的粪便水相比,暴露于来自UC患者的粪便水引起CD4+T细胞群体中显著的Th2偏斜。此外,来自其中患者的MCS与最高水平的疾病严重程度相关的患者的粪便水导致最引人注目的Th2偏斜。在实施方案中,基于定义的微生物梯度或离散微生物特征的高分辨率UC子集的鉴定被用于有效治疗。
[0659] 尽管经过多年的研究,UC的病因仍然是个谜。诊断是困难的,并且患者群体多种多样,这是开发更有效的定制疗法的重大障碍。在本研究中,我们通过鉴定UC患者群体内四种截然不同的跨界致病微生物的存在,证明肠道微生物在UC患者分层中的临床效用,这四种截然不同的跨界致病微生物在组成上和代谢上是截然不同的,与疾病严重程度的临床标记
物共同变化,并且离体驱动离散的CD4+T细胞扩增。这些发现为肠道微生物组作为细分UC患者的工具的潜在价值提供新的见解,为开发更个性化的治疗计划和靶向治疗开辟道路。
[0660] 虽然鼠和人类的研究支持肠道微生物群参与溃疡性结肠炎(UC;炎性肠病[IBD]的常见形式)的发展和发病机理,但单一致病微生物剂尚未被鉴定,并且细菌多样性的耗竭仍然是UC肠道微生物组菌群失调的主要恒定特征(1)。越来越多的在临床定义的慢性炎性疾
病中的患者描述了疾病的内型(disease endotype)(2),表明在免疫功能障碍的情况下,不同的致病过程可能集中在常见临床紊乱上。由于UC发病机理与肠道微生物组组成相关,我
们科学地说明了决定这些群落组成和功能的因素可以导致作为离散的致病单位的不同肠
道微生物组状态的发展,以确定性地影响免疫活化状况和疾病严重程度。
[0661] 种族包括的三个因素:宿主遗传、饮食和环境暴露,影响肠道微生物组和UC病理两者(3)。事实上,美国、委内瑞拉和马拉维的健康受试者表现出种族与粪便微生物群的组成和功能二者之间的明显的关系,其中饮食表示对肠道微生物集聚的强选择性压力(4)。独立地,Frank等人证明了在美国队列中,IBD风险等位基因ATG16L1和NOD2(分别与自噬作用和宿主对微生物的应答相关)与肠道微生物组β多样性显著相关(5)。然而,对全基因组关联研究的宏分析指示,高加索群体特有的此类UC风险等位基因不给种族上不同的北印度受试者
带来增高的风险(6)。在实施方案中,UC患者中存在与患者种族和疾病严重程度两者协变的不同的致病微生物群。在实施方案中,这些不同的致病微生物群表现出诱导显著不同程度
的Th2活化的可预测的腔代谢程序。
[0662] 结果。跨界肠道微生物群扰动是UC患者的特征。我们的研究群体由43名自我报告的欧洲或南亚(SA)种族的受试者(30名UC患者和13名健康受试者)的队列组成。几项研究检
查了来自UC患者的粪便样品中的细菌群落组成;然而,迄今为止,没有人检查成人UC患者的真菌群落(mycobiome)。使用平行的高分辨率细菌(16S rRNA)和真菌(内部转录间隔物2
[ITS2])生物标记基因谱,我们证实了我们受种族上限制的UC群体表现出与前述(1)一致的
细菌微生物群菌群失调。与健康受试者相比,UC患者具有显著降低的α多样性(P=0.010;图
31A)并且在组成上不同(置换多元方差分析[PERMANOVA]:加权UniFrac,R2=0.058,P=
0.023(图31B)。健康和UC患者之间真菌α-多样性或β-多样性两者都没有差异(P=0.523;参见图34A)(PERMANOVA:布雷-柯蒂斯,R2=0.038,P=0.129;参见图34B),表明虽然严重的细菌耗竭是UC肠道微生物群的特征,但是真菌分类中更微妙的改变是这些患者的特征。
[0663] 总计165个细菌分类单元在健康参与者和UC患者中显著地差异性富集。与先前的报道一致,特定的拟杆菌属和普雷沃菌属物种以及许多未分类的毛螺菌科和瘤胃球菌科成
员是UC肠道微生物群中最显著耗竭的细菌分类单元(8、9)。UC患者也表现出链球菌属、双歧杆菌属和肠球菌属的成员的富集,这通过这些相同样品的独立系统发育微阵列谱分析验
证,并且证实先前的报道(8、9)。只有少数真菌分类单元(n=13)表现出不同的相对丰度。UC患者耗竭链格孢、黄曲霉、Aspergillus cibarius和大豆念珠菌,同时显著富集白色念珠菌和德巴利酵母属物种。总的来说,这些数据指示UC相关的肠道微生物群的特征在于跨界菌
群失调,以细菌多样性耗竭的情况下,假定致病细菌和真菌物种的显著扩增最为突出。
[0664] UC粪便微生物群按种族、优势微生物特征和疾病特征分离。接下来,我们解决我们的假设,即种族与UC患者中不同的跨界粪便微生物群相关。健康的EU和SA参与者在细菌或真菌α多样性方面没有表现出显著差异(参见图34C和图34D)。然而,SA-UC患者始终表现出比健康的种族上匹配的对照或EU UC患者更少的细菌多样性(参见图34C)。与EU UC组相比,他们也显著耗竭真菌多样性(参见图34D),表明这些患者中更严重的跨界微生物组耗竭,虽然在EU和SA-UC患者之间没有观察到临床疾病严重程度的差异(参见图34E)。当考虑所有参
与者时,种族也与细菌β多样性而非真菌β多样性显著相关(参见图34F和图34G)。因为健康状况与肠道微生物组成明显相关(图31B),所以它表示潜在的混淆因素。因此,我们仅对UC患者重复PERMANOVA,并且示出,虽然真菌群落组成不表现出与患者种族的显著关系
(PERMANOVA:布雷-柯蒂斯,R2=0.061,P=0.107),但与细菌β多样性有显著关系
(PERMANOVA:加权UniFrac,R2=0.075,P=0.039;图31C),该观察结果由PhyloChip数据验证(参见图34H)。因此,这些数据表明,尽管存在慢性结肠炎性疾病,但是种族仍然与UC肠道中组成上不同的细菌群落相关,虽然这仅解释这些患者中观察到的β多样性变化的一小部
分(7.5%)。
[0665] 最近的儿童克罗恩病研究已经证明了患者基于微生物共同关联的模式聚类成亚组(10、11)。接下来,我们询问此类模式是否存在于我们的成人UC队列中,并且与患者种族和/或疾病严重程度的临床相关因素相关。使用分层聚类分析和多尺度模拟采样
(multiscale bootstrap resampling),我们基于粪便细菌群落组成鉴定了UC患者的四个
亚组,并且将这些亚组命名为微生物群落状态1(MCS1)至MCS4。这些不同的患者亚群用16S rRNA序列和PhyloChip数据两者通过PERMANOVA证实(参见图35A和图35B)。MCS分布跨种族
明显不同,其中EU UC群体主要由MCS1和MCS2组成,而SA UC患者表现出所有四种MCS的相对相等分布(费舍尔精确检验,P=0.042)。
[0666] 基于MCS的患者分组的临床相关性通过使用临床疾病严重程度(简单临床结肠炎活性[SCCA]指数)(12)、结肠外表现(关节炎、坏疽性脓皮病、结节性红斑和葡萄膜炎)、被诊断患有IBD的一级和二级亲属的数量以及持续时间(自UC诊断以来的年数)的组间比较来评
估。MCS1患者表现出更严重的疾病,其中较高中位数SCCA评分、结肠外表现的数量显著增
加、更多数量的被诊断患有IBD的一级和二级亲属以及更长的疾病持续时间(图32)。虽然在我们的研究中的患者数量很少,但这些数据提供了不同的致病UC肠道微生物群存在且与疾
病严重程度的临床特征相关的第一指示。
[0667] UC MCS表现出不同的分类富集、宏基因组能力和代谢生产力。评估跨四个UC MCS的微生物分类单元的分布,以鉴定每一个微生物分类单元的特定细菌和真菌富集特征。每
种MCS典型地表现出不同的优势细菌家族(MCS1,拟杆菌科;MCS2,毛螺菌科/瘤胃球菌科;
MCS3普雷沃菌科植物;MCS4双歧杆菌科)。这些MCS特异性细菌富集超出优势科,并且当将最高疾病严重程度组(MCS1)与其它三个组(MCS2、MCS3或MCS4)中的每一组进行比较时,进一
步加强这些细菌富集。具体地,MCS1中富集的大多数细菌分类单元是拟杆菌属的成员,而其它亚群则富集布劳特氏菌属、瘤胃球菌属(MCS2)、普雷沃菌属(MCS3)或双歧杆菌属(MCS4,广义线性模型,P<0.05)物种。使用优势细菌科作为分类器,我们在主要从欧洲血统患者(9、
11)获得的两个公开可用的UC微生物群数据集中验证MCS1和MCS2(EU UC患者中的两种主要
MCS)的存在,表明这些MCS并非我们的研究所独有,而是存在于全国UC患者群体中。真菌学上,与其它三种MCS中的每种相比,白色念珠菌和德巴利酵母属物种在MCS1患者中最高地富集(广义线性模型,P<0.05),表明类杆菌属物种、白色念珠菌和德巴利酵母属物种的跨界肠道微生物组扩增与更严重的UC疾病相关。
[0668] 为了鉴定可调节宿主免疫应答并且有助于临床疾病的严重程度的每种MCS的微生物群衍生途径和产物特征,我们进行计算机上宏基因组预测的同时进行粪便样品的广谱气
相和液相色谱质谱。通过未观察到状态的重建进行群落的系统发育调查(PICRUSt;
picrust.github.io/picrust/)(13)用于预测细菌功能能力。目前,该算法不能用于预测真菌群落功能。预测代谢能力因MCS而显著变化(PERMANOVA:布雷-柯蒂斯,R2=0.384,P=
0.002)。总计144个细菌KEGG途径区别MCS1至MCS4,包括参与氨基酸和脂质生物合成和代谢的那些途径(克鲁斯卡尔-沃利斯检验,q<0.0006)。具体地,甘油脂、脂肪酸、肌醇和多种氨基酸代谢途径(包括苯丙氨酸、酪氨酸、色氨酸、谷氨酸和谷氨酰胺)的差异富集使这些组不同。我们还为来自Morgan等人和Gevers等人的研究中的MCS1和MCS2大便样品生成功能预测
(9、11)。在我们的研究中,总计121条KEGG途径在MCS1和MCS2之间差异富集;其中,74个途径(61.2%)也在Gevers等人和Morgan等人的两组数据集中区别MCS1和MCS2,表明在多项独立
研究中,与MCS1和MCS2相关的高度保守的微生物功能。
[0669] 我们假设跨MCS的预测功能差异将表现为不同的腔代谢程序,特别是因为区分这些群落的大多数途径都涉及氨基酸和脂质代谢。事实上,每种MCS表现出显著不同的代谢程序(PERMANOVA:堪培拉,R2=0.209,P=0.004),这些程序与存在的粪便微生物群(蒙特尔(Mantel)检验,r=0.38,P<0.0001)及其预测的宏基因组(蒙特尔检验,r=0.21,P<0.008)两者明显相关。我们特别感兴趣的是区别更严重的MCS1与剩余的MCS中的每个的那些腔代
谢物。在所有样品中检测到的805种代谢物中,207种在相对浓度上表现出显著的MCS间差异(韦尔奇t检验,P<0.05)。与具有较低疾病严重程度的MCS组相比,正如我们计算机上的预测表明的那样,MCS1显著富集视晶酸盐(ophthalmate)(增加的化应激和耗竭的谷胱甘肽的
生物标记物)(14)、氧化应激诱导的腐胺(15)、促炎性对甲酚硫酸酯(16)、9-羟基十八碳二烯酸和(9-HODE)以及13-HODE(促炎性白细胞募集单羟基脂肪酸)(17、18)和9,10-二羟基硬
脂酸(9,10-DiHOME;中性粒细胞募集的、细胞毒性二羟基脂肪酸)(19),以及参与白细胞活化的生物活性血溶性脂质(图33)(18、20)。相反,较低疾病严重程度的MCS(MCS2、MCS3和
MCS4)富集一系列潜在的保护性二肽(包括抗炎丙氨酰基-谷氨酰胺)(21、22)、指示改进的
氧化应激应对机制的y-谷氨酰二肽(23)和抗氧化免疫抑制性肌醇(24、25)。这些与高UC和
低UC严重程度相关的MCS之间观察到的肠腔代谢程序的差异指示在具有较不严重的疾病的
患者中存在控制炎症的公认机制。
[0670] T细胞体外活性与MCS和健康状态相关。最近的研究已经证明,特定的肠道微生物组衍生的代谢物影响Th2应答(7),并且独立地,由T辅助细胞群体(包括Th2细胞)产生促炎
细胞因子是UC的特征(26)。因此,我们假设与不同的MCS相关的腔周围环境以与疾病严重程度一致的方式差异性影响CD4+T细胞活化。为了评估这一点,我们开发了离体测定,所述离体测定包括将人类树突细胞(DC;从健康供体获得)与从研究参与者的粪便制备的过滤灭菌
的粪便水共孵育。随后将DC与自体CD4+T细胞共培养,然后分析T细胞表型和细胞因子生产
率。与健康参与者相比,UC患者表现出Th1与Th2细胞的比率显著降低,Th1和Th17细胞两者的数量显著增加,T-调节性细胞和Th2细胞群体两者都趋向于增加(线性混合效应,P<0.05)(图33A-33E)。CD8+T细胞亚群健康参与者和UC患者之间没有显著差异(数据未示出)。这些
发现表明,在无菌粪便水中捕获的腔微生物产物通过诱导CD4+T细胞群体的Th2偏斜扩增而
有助于UC。
[0671] 在证明UC相关的粪便水的Th2偏斜效应后,我们接着询问这种免疫反应是否在MCS和相关的症状严重程度的差异的基础上变化,特别是针对Th1和Th2群体。除了响应于MCS4
粪便水的Th1群体的轻微显著增加外,在MCS组和对照之间没有观察到总体Th1或Th2细胞群
体的显著差异(图33F和图33G)。然而,当为每组计算Th1与Th2比率时,MCS1组唯一地表现出与健康对照相比显著较低的Th1与Th2比率(图33H)。值得注意的是,当基于种族比较UC患者时,没有观察到Th1与Th2比率的差异(EU UC对SA UC,参见图36),这提供单独患者种族并不是离体观察到的T细胞活性更改的原因的证据。此外,当考虑证明疾病严重程度的最大差异的两个MCS(MCS1和MCS2)时,,仅MCS1粪便水与健康对照相比显著增加Th2相关的细胞因子
的分泌(图33I-33K)。这些离体数据提供组成上和代谢上不同的UC微生物群能够以与UC疾
病严重程度一致的方式差异性地影响CD4+T细胞群体的证据。
[0672] 讨论。对UC患者中的异质性了解不多,并且该异质性表示对更有效的治疗的显著障碍。结肠炎发展需要微生物参与,并且肠道微生物组菌群失调是成人UC患者的特征,但是虽然遗传、治疗和环境因素与UC细菌β多样性相关,它们解释了在这些微生物群落中观察到的一小部分变化(5、9)。微生物物种参与决定共同关联的微生物及其生理学的种间和种内
的相互作用(27、28)。例如,白色念珠菌与口腔微生物群中的特定细菌物种共聚集,促进更稳健、抗应激的混合物种生物膜(27)。继而,这些共同关联的细菌的产物在白色念珠菌中诱导向单细胞形态的生理转变(27)。类似地,由于代谢交叉喂养,格氏链球菌(Streptococcus gordonii)促进与核粒梭杆菌(Fusobacterium nucleatum)的共同关联(28)。因此,我们科
学地说明了在结肠炎肠道的促炎条件下,出现不同形式的致病菌共同关联,其组成和功能
在患者中相对保守,并且与免疫活化和疾病严重程度相关。我们的数据支持存在四种不同
的UC MCS,它们在种族划分中的流行程度显著不同。内部和外部验证证实主要微生物群状
态的存在,表明尽管固有的患者可变性、治疗方案和地理位置,在美国的UC体群中存在致病微生物群共同关联的保守模式。为了改进我们对这些MCS进展和发展的理解,对未来的研究来说,重要的是调查直接驱动微生物组朝向这些不同微生物状态发展的UC患者因素,无论
是时间因素、临床因素、遗传因素还是环境因素。
[0673] 在我们的研究中鉴定的四种MCS中,MCS1表示病情最重的患者组,这暗示MCS1的组成和代谢增强免疫活化并且增加疾病严重程度。MCS1特征性地表现出拟杆菌属物种的扩
增,这可以产生先前与UC相关联的肠毒素、刺激肠上皮细胞中白细胞介素-8(IL-8)和肿瘤
坏死因子α(TNF-α)的分泌,并且强化UC鼠模型中的结肠炎症状(29-31)。MCS1患者也表现出白色念珠菌和德巴利酵母属物种的最大扩增。成人和儿童克罗恩病以及儿童IBD(克罗恩病
和UC患者合并)中也描述了这些真菌物种的肠道微生物扩增(10、32、33)。连同我们的研究,这些数据表明在细菌多样性耗竭的情况下,酵母菌目真菌的扩增是儿童和成人群体中IBD
的一致特征。在我们的研究中,白色念珠菌是否直接影响患者的UC病理尚不清楚。然而,白色念珠菌的胃肠定植损害UC患者和UC鼠模型两者中的胃肠愈合,并且可在具有抗微生物耗
竭的肠道微生物群多样性的小鼠胃肠感染后诱导Th2反应(34、35)。
[0674] MCS2亚组富集布劳特氏菌属和瘤胃球菌属物种,它们一起可产生抗炎短链脂肪酸(36-38)。普雷沃氏菌属物种(在MCS3中富集)能够抑制淋巴细胞活性,而双歧杆菌属物种
(在MCS4中富集)可降低肠上皮细胞中IL-8和TNF-α两者的产生(39、40)。应该注意的是,在我们的研究中证明紫单孢菌科(Porphyromonadaceae)的显著富集(参见图35A和图35B)的
一名患者没有被分类为本文鉴定的四种主要MCS中的一种,尽管从我们的分析中去除,但可以代表附加的临床相关MCS,如果进行附加的患者入选,未来的研究可进一步表征并且从中得出结论。虽然证实在我们的研究中鉴定的MCS也存在于独立的UC微生物组研究中,这指示这些微生物状态的相对持久性,但是它们的长期稳定性无法在横向研究中评估。可能这些
MCS表示沿着与疾病进展和严重程度相关的致病微生物演替状态的非线性连续体的离散
点,类似于由Gevers等人在儿童克罗恩病中鉴定的微生物梯度(11)。尽管这些横向研究提
供信息,但更广泛的纵向研究对于确定UC发展和进展的肠道微生物组的自然史是必要的。
[0675] 虽然在大型研究中,跨界微生物分类状态表示对患者进行分层的经济手段,但是这些组成上离散的致病微生物群的功能能力和生产力对于决定宿主免疫应答和临床疾病
严重程度至关重要。事实上,在我们的研究中,鉴定了代谢生产力的程序对由每种MCS中存在的细菌编码的预测路径的特异性。特别地,9-HODE、13-HODE、9,10-DiHOME和溶血磷脂酰胆碱(在MCS1中显著富集)可以增加白细胞募集和促炎细胞因子分泌(17-20)。防止9,10-
DiHOME形成的可溶性环氧化物水解酶抑制剂在化学和遗传鼠模型二者中减弱UC(41),强调
这些氧化脂质(oxylipin)作为更严重疾病的贡献者的潜在作用,以及抑制其产生的治疗可
以在这一特定的患者亚组中尤其有效。除了富集白细胞趋化代谢物之外,MCS1患者也具有
高粪便浓度的对甲酚硫酸盐(一种微生物衍生的代谢物)(42)和腐胺,二者都可以刺激白细
胞氧化爆发(oxidative burst)(15、16)。与这些观察一致,视晶酸也在MCS1患者中富集,指示由于低或耗竭水平的活性氧物类(ROS)淬灭谷胱甘肽而导致更大氧化应激(14)。虽然高
疾病严重程度MCS1的代谢组指示高氧化应激条件,但与较低疾病严重程度相关的UC MCS
(MCS2至MCS4)的氧化应激表现出增加的ROS淬灭能力,因为γ-谷氨酰氨基酸(对维持谷胱
甘肽水平至关重要)和高浓度的超氧化物清除肌醇的富集指示的增加的γ-谷氨酰转移酶
活性(23、24)。指示免疫抑制活性的代谢标志物,诸如抗炎二肽(即丙氨酰基-谷氨酰胺)和肌醇的富集(这两者都降低促炎细胞因子的表达,并且减少结肠炎动物模型中的白细胞募
集)(21、22、25),也在具有较低疾病严重程度的MCS2至MCS4中观察到。这表明与每种MCS相关的特定代谢生产力可支配宿主免疫活性,并且导致UC严重程度的差异。
[0676] 包括宿主和/或微生物衍生的免疫调节代谢物的MCS相关的腔产物提供多方面的机制,致病肠道微生物群可以通过该机制影响宿主生理并且决定临床疾病严重程度。尽管
致病菌相关的分子模式(PAMP)传统上被认为驱动宿主对微生物的免疫应答至关重要,但免
疫代谢领域新出现的数据指示微生物衍生的代谢物在决定免疫细胞表型方面同样有效。除
了微生物衍生的代谢物诸如短链脂肪酸或对甲酚硫酸盐的已确立的直接免疫调节活性之
外(16、38),最近的研究已经证明了肠道微生物群相关的代谢物牛磺酸、组胺和精胺共同调节NLRP6炎症复合体信号、上皮IL-18分泌和下游抗微生物肽产生(43)。事实上,我们的数据表明,特定的微生物衍生的代谢程序与UC患者远端肠道中的致病细菌和真菌呈现的一系列
PAMP的组合充当与UC疾病严重程度相关的免疫功能障碍的有效驱动因素。对这一概念的支
持来自我们的离体证明,即来自病情最严重的MCS1患者的无菌粪便水诱导T细胞群体中的
最大程度的Th2偏斜和相关细胞因子产生,该特征在疾病不太严重的其它亚组中没有观察
到。虽然该观察结果并不直接暗示微生物组是UC的病原体,但它确实提供了微生物组以微
生物群组成特有的方式延续与UC相关的炎症和症状的能力的证据。该发现还表明,传统上
被认为是UC患者的特征的Th2偏斜(26)不是我们队列中一致的发现,并且事实上,可能是由UC队列中病情最严重的患者(即MCS1)驱动的。UC患者中是否存在不同炎症表型选择维持表
型的微生物,还是最初的、离散的菌群失调的结果,还有待解决。不管怎样,这增加本研究中未检查到的独特免疫学特征表征具有较低疾病活性和不同的肠道MCS的患者的可能性。未
来更大规模的研究对进一步表征这些MCS潜在的免疫调节贡献将是重要的,同时证实本文
呈现的观察结果。因此,为UC患者亚组表现出的特定微生物、代谢和免疫功能障碍定制的治疗可被证明是该疾病的更有效的治疗的高度有效策略。
[0677] 材料和方法。粪便样品收集和核酸分离。大便样品是通过使用标准化的方案从健康参与者和医生诊断的EU或SA种族的UC患者中收集的。粪便DNA用珠打和商购可得的
QIAamp DNA大便试剂盒(目录号51504;Qiagen,CA)的组合提取。
[0678] 细菌16S rRNA谱分析。从粪便样品中提取的总DNA用作16S rRNA基因扩增的模板(一式三份),其中条形码引物靶向V4区域,如前所述(44)。如前所述地创建测序文库(44)。
也产生全长16S扩增子,并且与G3 16S rRNA PhyloChip(Affymetrix,CA)杂交,如前所述
(45)。
[0679] 真菌ITS2文库制备。ITS2测序文库用每份样品三份PCR扩增子创建。
[0680] 16S和ITS2文库测序纯化的测序文库用生物分析仪(Agilent)进行分析,用Qubit HS ds-DNA测定试剂盒(Invitrogen)进行定量,并且根据制造商的说明(Illumina)用
Illumina MiSeq平台和MiSeq控制软件2.2.0版进行测序。FLASH 1.2.7版、QIIME 1.8和
usearch软件包用于序列读段质量过滤、操作分类单位(OTU)选取和OTU表生成(46-48)。
[0681] 预测的群落宏基因组分析。PICRUSt(picrust.github.io/picrust/)用于通过使用16S rRNA数据来在计算机上生成细菌宏基因组。
[0682] 代谢物组学谱分析。为了分析粪便代谢物,将>200mg的每个冷冻大便样品在干冰上过夜运送到Metabolon,Inc.(Durham,NC),用于广谱气相和液相色谱质谱。
[0683] 体外DC/T细胞粪便水测定。在用TNF-a、IL-1f3、IL-6和前列腺素E2刺激之前,将从匿名健康人类供体(太平洋血液中心(Blood Centers of the Pacific))获得的DC与从提交代谢物谱分析(过滤以去除完整细胞)的相同粪便样品制备的粪便水共孵育24h,并且再
培养24小时以诱导成熟。然后收获DC,洗涤DC,并且以1/10的比率与自体T细胞共培养5天,每2天补充培养基。T细胞表型经由流式细胞术评估,并且细胞因子分泌通过细胞计数珠阵
列分析(BD Biosciences)评估。测定用不同的供体一式四份地重复,以确保观察结果不被
外周血单核细胞(PBMC)来源混淆。
[0684] 统计学分析。(i)微生物、宏基因组和代谢组学分析。统计学分析使用QIIME 1.8.0版和R统计环境进行(47、49)。对于PhyloChip数据,荧光强度在分析前被记录归一化。(ii)疾病严重程度的临床测量的比较。通过克鲁斯卡尔-沃利斯检验,随后通过成对双尾Dunn检验,比较UC MCS之间疾病严重程度的临床测量。(iii)T细胞亚群的分析。将线性混合效应模型应用于R中的lme4包,以基于样品组(即UC MCS)鉴定诱导T细胞亚群体的丰度的显著差异,同时说明PBMC来源(即供体)引入的潜在差异(50)。
[0685] 微阵列和核苷酸序列数据登记号。所有微阵列数据都已经以登记号GSE78724保藏在基因表达综合数据库(Gene Expression Omnibus database)(ncbi.nlm.nih.gov/geo)。
与本研究相关的所有序列数据均可以登记号SRP071201在序列读段归档数据库(Sequence 
Read Archive database)(ncbi.nlm.nih.gov/sra)中获得。
[0686] 粪便样品收集。向研究参与者提供用于粪便样品收集的详细说明和必要材料。标准化粪便样品(早上的首次大便)通过排便到放置在马桶坐圈上的无菌大便收集装置(目录
号Protocult#120;明尼苏达州的能力构建中心(Ability Building Center,MN))上,并且
使用带有附接的无菌勺(目录号80.734.311;Sarstedt,Germany)的无菌收集杯在家里收
集。收集后,将粪便样品放置在带有冷冻冰袋(目录号S-9902;ULINE,CA)的预付费的夜间邮件箱,并且根据联邦法规经由USPS运送过夜。到达后,将粪便样品立即储存在-80℃。本研究由旧金山加利福尼亚大学的人类研究委员会(the Committee on Human Research)批准
(CHR#10-03092)。医生诊断的溃疡性结肠炎患者(年龄为18至60岁)直接从UCSF的安山校
区的消化门诊募集。向每位患者提供问卷,以评估疾病严重程度的临床测量[简单临床结肠炎活性指数(SCCA)、结肠外表现(关节炎、坏疽性脓皮病、结节性红斑和葡萄膜炎)、被诊断患有IBD的一级和二级亲属的数量以及疾病持续时间(自UC诊断以来的年数)]。健康志愿者
(年龄为18至60岁)从患者的家庭和通过口口相传抽取。所有参与者都自我报告为欧洲或南
亚种族(图37)。此外,所有参与者都居住在加利福尼亚州旧金山70英里半径内。在过去的2个月内经历过怀孕或母乳喂养、涉及肝脏、心脏、肺或肾脏的严重伴发病或者抗生素治疗的任何参与者都被排除在研究之外。
[0687] 粪便DNA分离。使用珠打和商购可得的 DNA大便试剂盒(目录号51504;QIAGEN,CA)的组合从单个粪便样品提取DNA。最初,将1.6mL缓冲液ASL添加到约100mg粪便
并且在FastPrep-24仪器(目录号116004500;MP Biomedicals)中以6.0m/s珠打30秒。珠打
后,将样品在95℃孵育5分钟,以改进难以裂解的微生物的裂解效率。剩余的DNA分离根据
DNA大便试剂盒方案:从大便中分离DNA用于致病菌检测,使用QIAcube(目录号
9001292;QIAGEN,CA)进行。分离的DNA储存在-80℃。包括空白提取物作为阴性对照以监测细菌污染。
[0688] 细菌16S rRNA基因文库制备。如前所述地创建细菌16S rRNA基因测序文库(52)。如前所述,使用靶向V4区域的条形码引物一式三份地对每个样品进行16S rRNA基因的PCR
扩增(52)。空白提取物用作阴性对照的模板以监测16S rRNA污染。使用0.025U Takara热启动ExTaq(Takara Mirus Bio Inc,Madison,WI)、具有MgCl2的1X Takara缓冲液、0.4pmolμl-1的F515和R806引物、0.56mg ml-1的牛血清白蛋白(BSA;Roche Applied Science,
Indianapolis,IN)、200μM的dNTP和10ng的gDNA在25μl反应中进行PCR反应。反应在以下条件下一式三份地进行:初始变性(98℃,2min)、随后是98℃(20秒)、50℃退火(30秒)、72℃延伸(45秒)的30次循环和72℃最终延伸10min。PCR后,将三份汇集,并且经由凝胶电泳定量确定16s rRNA扩增子浓度。16S rRNA序列文库通过将所有等摩尔浓度的PCR扩增子汇集到
75uL的最终体积来创建。为了去除背景,在2%琼脂糖凝胶上电泳16S rRNA序列文库,并且使用QIAquick凝胶提取试剂盒(目录号28704;QIAGEN,CA)纯化16S扩增子(约380bp)。16S 
rRNA引物序列在Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Huntley J,Fierer 
N,Owens SM,Betley J,Fraser L,Bauer M,Gormley N,Gilbert JA,Smith G,Knight 
R.2012.Ultra-high-throughput microbial community analysis on the Illumina 
HiSeq and MiSeq platforms.ISME J 6:1621-1624中提供。在实施方案中,可以使用其它
引物序列。
[0689] 真菌ITS2文库制备。真菌内部转录间隔物2(ITS2)测序文库使用与用于16S rRNA文库的方法类似的方法创建。使用条形码引物对每个样品一式三份地进行ITS2区域的PCR
扩增。用1X Takara缓冲液(Takara Mirus Bio)、200nM每种引物、200μM dNTP、2.75mM的MgCl2、0.56mg ml-1的BSA(Roche Applied Science)、0.025U Takara热启动ExTaq和50ng的gDNA在25μl反应中进行PCR反应。反应在以下条件下进行:初始变性(94℃,5min)、随后94℃(30秒)、54℃退火(30秒)、72℃延伸(30秒)的30次循环和72℃最终延伸7min。PCR后,将三份汇集并使用Agencourt AMPure XP-PCR纯化试剂盒和相关方案(目录号A63880,Beckman 
Coulter)纯化。样品使用如由制造商推荐的KAPA SYBR FAST qPCR试剂盒(目录号KK4601,
KAPA Biosystems)定量。然后,以基于单个样品ITS2定量的等摩尔浓度汇集所有纯化的样
品至最终体积为75uL。
[0690] 16S及ITS2文库测序。纯化的测序文库使用生物分析仪(Aligent)分析,使用Qubit HS dsDNA试剂盒(Invitrogen)定量,并且稀释至2nM。然后将稀释的序列文库变性,稀释至5.88pM,并且与变性的12.5pM PhiX加标合并至最终浓度为5pM。然后将制备的测序文库装
载到Illumina MiSeq盒(目录号MS-102-3001,Illumina)上,并且根据制造商的说明
(Illumina)使用MiSeq平台和MiSeq控制软件2.2.0版进行测序(514个循环,读段1:251个循
环,索引读段:12个循环,读段2:251个循环)。与本研究相关的所有序列数据均可在序列读段归档(SRA)数据库ncbi.nlm.nih.gov/sra中获得(登记号PRJNA313074)。
[0691] 细菌16S rRNA序列处理。配对末端测序后,使用FLASH 1.2.7版组装成对序列,其中最小重叠设定在15bp(53)。组合的读段被条形码去多路复用,并且使用QIIME 1.8过滤低质量(Q-评分<30)(54)。如果Q-评分连续三个碱基<30,那么读段在低质量碱基之前被截断。
如果最终读段至少是原始长度的75%,那么所得读段保留在数据集中。使用uclust对绿色
基因13_8数据库以97%的序列同一性挑选操作分类单元(OTU)(55)(56),保留含有>1个序
列读段的OTU。未能命中参考序列集合的读段被保留并且重新聚类。使用PyNAST比对序列,并使用uclust和绿色基因13_8数据库分配分类(57)(55)(56)。PyNAST比对序列使用
ChimeraSlayer进行嵌合体校验(58),去除假定的嵌合体和未通过PyNAST比对的代表性序
列。使用FastTree构建系统发育树(59)。为了使跨样品的读段深度的变异归一化,数据被精简到对于细菌每个样品49,518个序列的最小读段深度。为了确保每个样品的真正代表性群
落被用于分析,在定义深度处的序列子采样被自举(bootstrapped)100次。每个样品的代表性群落组成被定义为表现出到由该特定样品的所有子采样生成的所有其它OTU向量的最小
平均堪培拉距离的组成。
[0692] 真菌ITS2序列处理。配对末端测序后,使用FLASH 1.2.7版组装成对序列,其中最小重叠为25bp且最大重叠为290bp(53)。使用QIIME 1.8通过条形码对组合读段进行去多路
复用(54)。如由usearch确定(55)的含有>2个预期错误的组合读段已被去除。去除单元素读段,并且使用usearch8.0重新生成具有97%序列相似性的OUT(55)。8_1_2015UNITE ITS真
菌序列数据库和usearch8.0用于去除潜在的嵌合序列(60)(55)。然后ITSx软件包用于从非
嵌合OTU的参考序列中提取预测的ITS2区域,过滤出预测缺少真实ITS2区域的OTU(61)。然
后根据8_1_2015UNITE ITS真菌序列数据库使用在QIIME中置信截止为0.8的贝叶斯分类将
分类分配给非嵌合的、ITS2提取的OTU(54)(60)。负责少于0.001%的总序列读段的OTU被去除。为了使跨样品的读段深度的变异归一化,数据被精简到对于细菌每个样品6,653个序列的最小读段深度。为了确保每个样品的真正代表性群落被用于分析,在定义深度处的序列
子采样被自举100次。每个样品的代表性群落组成被定义为表现出到由该特定样品的所有
子采样生成的所有其它OTU向量的最小平均堪培拉距离的组成。
[0693] 使用PhyloChip的细菌16S rRNA基因谱分析。如前所述,从粪便样品中提取的总DNA被用作16S rRNA基因扩增的模板(62)。PCR扩增在1%TBE琼脂糖凝胶上验证,然后使用
QIAquick凝胶提取试剂盒(目录号28704;QIAGEN,CA)纯化。然后,每个样品总计500ng纯化的PCR产物被片段化、生物素标记,并且如前所述与G3 16S rRNA PhyloChip杂交
(Affymetrix,CA)(63)。根据标准Affymetrix方案对阵列进行洗涤、染色和扫描(63)。背景减除、检测、分类单元定量标准和阵列归一化如前所述地执行(63)。基于定量标准,将第1阶段阈值调整为以下:rQ1≥0.25、rQ2≥0.50、rQ3≥0.80。在本文报告的所有PhyloChip微阵列数据都已保藏在基因表达综合(GEO)数据库ncbi.nlm.nih.gov/geo中(登记号
GSE78724)。
[0694] 预测的群落宏基因组分析。通过未观察到状态的重建进行群落的系统发育调查(PICRUSt;picrust.github.io/picrust/),其为用于预测来自标记基因调查的功能性宏基因组(诸如16S rRNA基因)的生物信息学软件包,用于为本研究中产生的数据在计算机上生
成细菌宏基因组(64)。首先,过滤先前从处理过的16S rRNA基因MiSeq数据生成的biom格式的细菌OTU表,以仅包含封闭参考OTU[即存在于绿色基因16S rRNA 13_8数据库中的OTU
(56)]。然后,封闭参考OTU表被用于根据PICRUSt宏基因组预测教程(picrust.github.io/
picrust/tutorials/metagenome_prediction.html-宏基因组-预测-教程)生成预测的宏
基因组。简而言之,OTU丰度首先根据已知或预测的16s拷贝数进行归一化。在16s拷贝数归一化后,该归一化的OTU表然后被用于预测每个样品的KEGG直系同源(KO)丰度,这些丰度被进一步折叠成KEGG途径(genome.jp/kegg/pathway.html)。
[0695] 代谢物组谱分析。为了分析粪便代谢物,将>200mg来自每样品的冷冻大便在干冰上过夜运送到Metabolon(Metabolon,NC)。还包括从含有少量所有研究样品的均质池中创
建的几个技术复制样品。收到后,清点样品,并且立即储存在-80℃。在分析时,使用
Metabolon的标准溶剂提取方法(metabolon.com/)来提取样品并且准备进行分析。提取的
样品被分成相等的部分,用于在GC/MS和Q-Exactive精确质量的LC/MS平台上分析。
[0696] 样品制备:样品制备过程使用来自Hamilton Company的自动化MicroLab系统进行。为了QC目的,在提取过程中的第一步之前添加回收标准品。样品制备使用去除蛋白质级分同时允许最大限度地回收小分子的一系列专有的有机和水提取进行。将所得提取
物分成两个级分;一个用于通过LC/MS的分析且一个用于通过GC/MS的分析。样品被短暂放
置在 (Zymark)上以去除有机溶剂。然后将每个样品冷冻并且真空干燥。然后为
适当的仪器(LC/MS或GC/MS)准备样品。
[0697] QA/QC:为了QA/QC目的,在每天的分析中包括一些附加的样品。此外,将选择的QC化合物添加到每个样品,包括被测试的那些样品中。选择这些化合物是为了不干扰内源性化合物的测量。图38和图39描述了QC样品和化合物。这些QC样品主要用于评价每项研究的
过程控制,以及有助于数据监管。
[0698] 超高效液相色谱/质谱(UPLC/MS/MS):平台的LC/MS部分基于Waters ACQUITY超高效液相色谱(UPLC)和与加热电喷雾电离(HESI-II)源和以35,000质量分辨率运行的
Orbitrap质量分析器接口的Thermo Scientific Q-Exactive高分辨率/精确质谱仪。将样
品提取物干燥,然后在酸性或碱性LC相容的溶剂中重构,每种溶剂含有8种或更多种固定浓度的注射标准品,以确保注射和色谱一致性。在使用单独的专用柱(Waters UPLC BEH C18-
2.1×100mm,1.7μm)的两次独立注射中,一个等分试样使用酸性阳离子优化条件进行分析,而另一个使用碱性阴离子优化条件进行分析。在酸性条件下重构的提取物使用含有0.1%
甲酸的水和甲醇梯度洗脱,而也使用水/甲醇的碱性提取物含有6.5mM碳酸氢铵。MS分析使
用动态排除在MS和数据相关的MS2扫描之间交替进行,并且扫描范围为80-1000m/z。原始数据文件被归档和提取,如下所述。
[0699] 气相色谱/质谱(GC/MS):用于GC/MS分析的样品在真空干燥下重新干燥至少24小时,然后在干燥氮气下使用双三甲基甲烷基三氟乙酰胺(BSTFA)衍生。GC柱是5%苯基/
95%二甲基聚硅氧烷熔融石英柱,并且温度在16分钟时段内从40℃斜升到300℃。样品在
Thermo-Finnigan Trace DSQ快速扫描单四极管质谱仪上使用电子碰撞电离进行分析。每
天对仪器进行质量分辨率和质量精度的调谐和校准。从原始数据文件输出的信息被自动提
取,如下所述。
[0700] 数据提取和化合物鉴定:使用Metabolon的硬件和软件提取原始数据,进行峰鉴定和QC处理。化合物通过与纯化标准品或反复出现的未知实体的文库条目进行比较来鉴定。
Metabolon基于认证标准维护文库,该标准含有文库中存在的所有分子的保留时间/指数
(RI)、质荷比(m/z)和色谱数据(包括MS/MS光谱数据)。此外,生化鉴定基于三个准则:在提议鉴定的狭窄RI窗内的保留指数、与文库+/-0.4amu的标称质量匹配,以及实验数据与真实标准之间的MS/MS正向和反向评分。MS/MS评分基于实验光谱中存在的离子与文库光谱中存
在的离子的比较。
[0701] 归一化:对于跨越多天的研究,进行数据归一化步骤来校正仪器日间调谐差异导致的变化。基本上,通过将中位数注册为等于1(1.00)并且按比例归一化每个数据点,在运行日块中校正每种化合物。对于不需要超过一天分析的研究,不需要归一化。
[0702] 体外DC/T细胞粪便水测定。粪便水制备。粪便样品在含有20%FBS和2mM EDTA的无菌的37℃PBS中稀释至最终浓度1g/mL。然后将稀释的粪便样品涡旋1分钟,并且在37℃孵育
10分钟。孵育后,样品在室温以约21,000g离心10分钟以去除不溶物质。然后将上清液过滤通过0.2μm尼龙过滤器以去除完整的细胞。将无菌粪便水溶液储存在-20℃。
[0703] 树突细胞粪便水攻击和T细胞共培养。外周血样品从匿名健康人类供体(加利福尼亚州旧金山的太平洋血液中心)获得。外周血单核细胞(PBMC)通过Ficoll-Hypaque梯度离
心(目录号:Histopaque-10771;Sigma-Aldrich)分离。树突细胞(DC)使用EasySepTM人类
Pan-DC预富集试剂盒(目录号:19251;STEMCELL Technologies,Canada)从分离的PBMC中纯化,并且在96孔板(0.5×106细胞/ml)中在新鲜R10培养基中培养:补充有10%热灭活FCS
(目录号9871-5244;USA Scientific)、100U/ml青霉素-链霉素(目录号10378016;Life 
Technologies,CA)、10ng/ml GM-CSF(目录号15-GM-010;R&D Systems,MN)和20ng/ml IL-4(目录号204-IL-010;R&D Systems)的RPMI 1640(目录号11875号;Thermo-Fisher 
Scientific)。将制备的无菌粪便水以1/20稀释度添加到DC培养物中。孵育24小时后,用
10ng/ml TNF-α(目录号300-01A;PeproTech,NJ)、10ng/ml IL-1β(目录号200-01B;
PeproTech)、10ng/ml IL-6(目录号AF-200-06;PeproTech)和1μm PGE2(目录号72194;
STEMCELL Technologies)刺激细胞,并且再培养24小时以诱导DC成熟。T细胞使用人类T细
胞富集柱(目录号HTCC-2000;R&D Systems)通过阴性选择从自体的单核细胞耗竭的PBMC中
纯化,并且随后在TexMACS培养基(目录号130-097-196;Miltenyi Biotec,Germany)中培
养。在DC刺激后,收获DC,洗涤,并且在1ug/ml可溶性抗-CD28(目录号555725;BD 
Biosciences,CA)和1μg/ml抗-CD49d(目录号555501;BD Biosciences)的存在下以1/10的
比率与自体T细胞共培养5天,每2天补充培养基。使用从不同供体获得的PBMC重复该测定四次,以确保观察结果不受PBMC来源影响。
[0704] 流式细胞术。为了评估细胞因子的产生,用佛波醇肉豆蔻酸乙酸酯-离子霉素(目录号356150010;Fisher Scientific)和GolgiPlug(目录号555029;BD Biosciences)刺激
共培养物16小时。收获细胞,并且单细胞悬液在两个单独的抗体小组中染色以评估表型。小组1:抗-CD3(目录号557917;BD Biosciences)、抗-CD4(目录号563028;BD Biosciences)、抗-CD8a(目录号563821;BioLegend)、抗-CD25(目录号557741;BD Biosciences)、抗-FoxP3(目录号14-4776-80;eBioscience)和抗-IL10(目录号130-096-043;Miltenyi Biotec)。小组2:抗-CD3(目录号557917;BD Biosciences)、抗-CD4(目录号563028;BD Biosciences),抗-CD8a(目录号563821;BioLegend)、抗-CD69(目录号560737;BD Biosciences)、抗-INFγ(目录号560371;BD Biosciences)、抗-IL4(目录号130-091-647;Miltenyi Biotec)、抗-IL17A(目录号17-7179-42;eBioscience)和抗-IL22(目录号25-7229-42;eBioscience)。细TM
胞通过Cytofix/Cytoperm (目录号554714;BD Biosciences)或固定/渗透(目录号00-
5523-00;Affymatrix eBioscience)进行渗透。染色后,活T细胞被门控为CD3+CD4+或CD3+CD8+细胞。活化的T细胞表面染色CD69hi。在CD4+T细胞群体中,亚群体被定义为Th1:IFNγ+、Th2:IL-4+、Th17:IL-17A+、Th2:IL-17A-和IL-22+,以及Treg:CD25hi和FoxP3hi。CD8+T细胞亚+ + +
群体被定义为Tc1:IFNγ 、Tc2:IL-4 和Tc17:IL-17A 。经由流式细胞术在BDLSRII(BD Biosciences)上测定染色细胞。
[0705] 细胞计数珠阵列。在添加PMA/Gplug之前,从每个共培养物中取出100uL无细胞上清液,并且以3000rpm离心1分钟。细胞因子分泌使用细胞计数珠阵列(BD Biosciences)和
IL-4、IL-5、IL-13的浓度来测量,并且根据制造商的指南来确定。数据通过流式细胞术在BD LSR II(BD Biosciences)上获取,并使用专有的FCAP阵列分析软件(BD Biosciences)进行
数据分析。
[0706] 统计学分析。微生物、宏基因组和代谢组学分析。使用QIIME 1.8.0版和R统计环境进行分析(54、65)。香农多样性和Faith系统发育多样性使用QIIME 1.8.0版来计算,并且进行双尾t检验以鉴定组差异(例如UC对健康)之间的显著性(54)。加权UniFrac、堪培拉和布雷-柯蒂斯距离矩阵使用QIIME 1.8.0版生成,并且使用vegan包在R统计环境中经由NMDS可
视化(66、67)。对于PhyloChip数据,在计算堪培拉距离之前将荧光强度进行对数归一化。使用计算的距离矩阵的置换多元方差分析(PERMANOVA)用于使用在vegan中发现的adonis函
数确定现有元数据(即健康状态或种族)和细菌、真菌、宏基因组或代谢组组成之间的关系
(67)。使用R中的pvclust包与1000次自举复制执行与多尺度自举重采样结合的分层聚类分
析(68次)。使用vegan中发现的mantel函数计算距离矩阵之间的相关性(67)。为了鉴定相关样品组(例如UC对健康)之间显著富集或耗竭的细菌OTU、真菌OTU和KEGG途径,应用由
Romero等人描述的三模型方法(69)。简而言之,三个线性混合效应回归模型(负二项式、零膨胀阴性二项式和泊松)独立拟合至每个观察结果(即OTU或KEGG途径),并且保留具有最低
赤池(Akaike)信息准则(AIC)的模型。仅针对最佳拟合模型(即使AIC最小化的那些模型)计
算P值。为了说明错误发现,基于计算的p值来计算q值。对于PhyloChip数据,通过对对数归一化荧光强度应用双尾t检验来确定显著富集或耗竭的OTU。为了鉴定显著富集或耗竭的粪
便代谢物,使用韦尔奇t检验比较对数归一化相对浓度。
[0707] 疾病严重程度的临床测量比较。通过克鲁斯卡尔-沃利斯检验随后成对双尾Dun检验比较UC-MCS之间的疾病严重程度(即SCCA、结肠外表现的数量、诊断的一级和二级亲属的数量以及自诊断以来的年数)的临床测量。
[0708] T细胞亚群分析。因为上述T细胞测定使用来自四个不同PBMC供体的PBMC单独重复四次,所以使用R中的lme4包应用线性混合效应模型,以基于样品组(即UC-MCS)鉴定诱导的T细胞亚群体丰度的显著差异,同时说明由于PBMC来源(即供体)引入的潜在变异(70)。以下线性混合效应模型分别用于鉴定健康状况(健康对UC)和UC-MCS(健康对MCS1、MCS2、MCS3、MCS4)引起的改变:
[0709] Y~β(EXP_GROUP)+μ(供体)+μ(样品)+ε
[0710] Y~β(MCS)+μ(供体)+μ(样品)+ε
[0711] 其中Y=测量的因变量,诸如Th1丰度,EXP_GROUP=健康状况(健康或UC),MCS=微生物群落状态(健康、MCS1、MCS2、MCS3或MCS4),供体=PBMC供体来源(供体#1至#4),并且样品=粪便样品研究参与者。
[0712] 参考文献
[0713] 实施例4的参考文献:
[0714] 1.Arrieta,M.C.et al.Early infancy microbial and metabolic alterations affect risk of childhood asthma.Sci.Transl.Med.7,307ra152(2015).
[0715] 2.Asher,M.I.,Montefort,S.,Bjorksten,B.,Lai,C.K.&Strachan,D.P.W.S.Worldwide time trends in the prevalence of symptoms of asthma,
allergic rhinoconjunctivitis,and eczema in childhood.Lancet 368,733–743
(2006).
[0716] 3.Simpson,A.et al.Beyond atopy:multiple patterns of sensitization in relation to asthma in a birth cohort study.Am.J.Respir.Crit.Care Med.181,
1200–1206(2010).
[0717] 4.Aichbhaumik,N.et al.Prenatal exposure to household pets influences fetal immunoglobulin E production.Clin.Exp.Allergy 38,1787–1794(2008).
[0718] 5.Havstad,S.et al.Atopic phenotypes identified with latent class analyses at age 2years.J.Allergy Clin.Immunol.134,722–727.e2(2014).
[0719] 6.Hoffmann,C.et al.Archaea and fungi of the human gut microbiome:correlations with diet and bacterial residents.PLoS One 8,e66019(2013).
[0720] 7.Holmes,I.,Harris,K.&Quince,C.Dirichlet multinomial mixtures:generative models for microbial metagenomics.PLoS One 7,e30126(2012).
[0721] 8.Langille,M.G.I.et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.Nat.Biotechnol.31,814–821
(2013).
[0722] 9.Morin,C.,Blier,P.U.&Fortin,S.Eicosapentaenoic acid and docosapentaenoic acid monoglycerides are more potent than docosahexaenoic 
acid monoglyceride to resolve inflammation in a rheumatoid arthritis 
model.Arthritis Res.Ther.17,142(2015).
[0723] 10.Amagai,Y.et al.Dihomo-γ-linolenic acid prevents the development of atopic dermatitis through  prostaglandin D1  production in NC/Tnd 
mice.J.Dermatol.Sci.79,30–37(2015).
[0724] 11.Bode,L.Human milk oligosaccharides:every baby needs a sugar mama.Glycobiology 22,1147–1162(2012).
[0725] 12.Weichert,S.et  al.Bioengineered  2’-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric 
pathogens to human intestinal and respiratory cell lines.Nutr.Res.33,831–838
(2013).
[0726] 13.DeAngelis,K.M.et al.Selective progressive response of soil microbial community to wild oat roots.ISME J.3,168–178(2009).
[0727] 14.Caporaso,J.G.et alGlobal patterns of 16S rRNA diversity at a depth of millions of sequences per sample.Proc.Natl.Acad.Sci.U.S.A.108 Supplem,
4516–4522(2011).
[0728] 15.Caporaso,J.G.et al.Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.ISME J.6,1621–1624(2012).
[0729] 16. T.&Salzberg,S.L.FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics 27,2957–2963(2011).
[0730] 17.Caporaso,J.G.et al.QIIME allows analysis of high-throughput community sequencing data.Nat.Methods 7,335–336(2010).
[0731] 18.Edgar,R.C.,Haas,B.J.,Clemente,J.C.,Quince,C.&Knight,R.UCHIME improves sensitivity and speed of chimera detection.Bioinformatics27,2194–
2200(2011).
[0732] 19.Edgar,R.C.Search and clustering orders of magnitude faster than BLAST.Bioinformatics 26,2460–2461(2010).
[0733] 20.McDonald,D.et al.An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.ISME 
J.6,610–618(2012).
[0734] 21.Caporaso,J.G.et al.PyNAST:a flexible tool for aligning sequences to a template alignment.Bioinformatics 26,266–267(2010).
[0735] 22.Price,M.N.,Dehal,P.S.&Arkin,A.P.FastTree 2—approximately maximum-likelihood trees for large alignments.PLoS One 5,e9490(2010).
[0736] 23.Martin,M.Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet.journal 17,10–12(2011).
[0737] 24.Edgar,R.C.UPARSE:highly accurate OTU sequences from microbial amplicon reads.Nat.Methods 10,996–998(2013).
[0738] 25.Abarenkov,K.et al.The UNITE database for molecular identification of fungi--recent updates and future perspectives.New Phytol.186,281–285
(2010).
[0739] 26.Benjamini,Y.&Hochberg,Y.Controlling the false discovery rate:A practical and powerful approach to multiple testing.J.Roy.Stat.Soc.B 57,289–
300(1995).
[0740] 27.Obermaier,B.et al.Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes.Biol.Proced.Online 
5,197–203(2003).
[0741] 28.Lozupone,C.&Knight,R.UniFrac:a new phylogenetic method for comparing microbial communities.Appl.Environ.Microbiol.71,8228–8235(2005).
[0742] 29.Vázquez-Baeza,Y.,Pirrung,M.,Gonzalez,A.&Knight,R.EMPeror:a tool for visualizing high-throughput microbial community data.Gigascience2,16
(2013).
[0743] 30.Letunic,I.&Bork,P.Interactive Tree Of Life v2:online annotation and display of phylogenetic trees made easy.Nucleic Acids Res.39,W475–W478
(2011).
[0744] 31.Shannon,P.et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks cytoscape.Genome Res.13,2498–2504
(2003).
[0745] 实施例5的参考文献:
[0746] 1.Nagalingam NA,Lynch SV.2012.Role of the microbiota in inflammatory bowel diseases.Inflamm Bowel Dis 18:968–984.
[0747] 2.Wenzel SE.2012.Asthma phenotypes:the evolution from clinical to molecular approaches.Nat Med 18:716–725.
[0748] 3.Neuman MG,Nanau RM.2012.Inflammatory bowel disease:role of diet,microbiota,life style.Transl Res 160:29–44.
[0749] 4.Yatsunenko T,Rey FE,Manary MJ,Trehan I,Dominguez-Bello MG,Contreras M,Magris M,Hidalgo G,Baldassano RN,Anokhin AP,Heath AC,Warner B,Reeder J,
Kuczynski J,Caporaso JG,Lozupone CA,Lauber C,Clemente JC,Knights D,Knight R,
Gordon JI.2012.Human gut microbiome viewed across age and geography.Nature 
486:222–227.
[0750] 5.Frank DN,Robertson CE,Hamm CM,Kpadeh Z,Zhang T,Chen H,Zhu W,Sartor RB,Boedeker EC,Harpaz N,Pace NR,Li E.2011.Disease phenotype and genotype are 
associated with shifts in intestinal-associated microbiota in inflammatory 
bowel diseases.Inflamm Bowel Dis 17:179–184.
[0751] 6.Juyal G,Prasad P,Senapati S,Midha V,Sood A,Amre D,Juyal RC,BKT.2011.An investigation of genome-wide studies reported susceptibility loci 
for ulcerative colitis shows limited replication in north Indians.PLoS One 6:
e16565.
[0752] 7.Trompette A,Gollwitzer ES,Yadava K,Sichelstiel AK,Sprenger N,Ngom-Bru C,Blanchard C,Junt T,Nicod LP,Harris NL,Marsland BJ.2014.Gut microbiota 
metabolism of dietary fiber influences allergic airway disease and 
hematopoiesis.Nat Med 20:159–166.
[0753] 8.Frank DN,St Amand AL,Feldman RA,Boedeker EC,Harpaz N,Pace NR.2007.Molecular-phylogenetic characterization of microbial community 
imbalances in human inflammatory bowel diseases.Proc Natl Acad Sci USA 104:
13780–13785.
[0754] 9.Morgan XC,Tickle TL,Sokol H,Gevers D,Devaney KL,Ward DV,Reyes JA,Shah SA,Leleiko N,Snapper SB,Bousvaros A,Korzenik J,Sands BE,Xavier RJ,
Huttenhower C.2012.Dysfunction of the intestinal microbiome in inflammatory 
bowel disease and treatment.Genome Biol 13:R79
[0755] 10.Lewis JD,Chen EZ,Baldassano RN,Otley AR,Griffiths AM,Lee D,Bittinger K,Bailey A,Friedman ES,Hoffmann C,Albenberg L,Sinha R,Compher C,
Gilroy E,Nessel L,Grant A,Chehoud C,Li H,Wu GD,Bushman FD.2015.Inflammation,
antibiotics,and diet as environmental stressors of the gut microbiome in 
pediatric Crohn’s disease.Cell Host Microbe 18:489–500.
[0756] 11.Gevers D,Kugathasan S,Denson LA,Vázquez-Baeza Y,Van Treuren W,Ren B,Schwager E,Knights D,Song SJ,Yassour M,Morgan XC,Kostic AD,Luo C,González 
A,McDonald D,Haberman Y,Walters T,Baker S,Rosh J,Stephens M,Heyman M,
Markowitz J,Baldassano R,Griffiths A,Sylvester F,Mack D,Kim S,Crandall W,
Hyams J,Hut-tenhower C,Knight R,Xavier RJ.2014.The treatment-naive micro-
biome in new-onset Crohn’s disease.Cell Host Microbe 15:382–392.
[0757] 12.Walmsley RS,Ayres RC,Pounder RE,Allan RN.1998.A simple clinical colitis activity index.Gut 43:29–32.
[0758] 13.Langille MG,Zaneveld J,Caporaso JG,McDonald D,Knights D,Reyes JA,Clemente JC,Burkepile DE,Vega Thurber RL,Knight R,Beiko RG,Huttenhower 
C.2013.Predictive functional profiling of microbial communities using 16S 
rRNA marker gene sequences.Nat Biotechnol 31:814–821.
[0759] 14.Dello SA,Neis EP,de Jong MC,van Eijk HM,Kicken CH,Olde Damink SW,Dejong CH.2013.Systematic review of ophthalmate as a novel bio-marker of 
hepatic glutathione depletion.Clin Nutr 32:325–330.
[0760] 15.Walters JD,Chapman KJ.1995.Polyamines found in gingival fluid enhance the secretory and oxidative function of human polymorphonuclear 
leukocytes in vitro.J Periodontal Res 30:167–171.
[0761] 16.Schepers E,Meert N,Glorieux G,Goeman J,Van der Eycken J,Vanholder R.2007.P-cresylsulphate,the main in vivo metabolite of p-cresol,activates 
leucocyte free radical production.Nephrol Dial Transplant 22:592–596.
[0762] 17.Henricks PA,Engels F,van der Vliet H,Nijkamp FP.1991.9-and 13-hydroxy-linoleic acid possess chemotactic activity for bovine and human 
polymorphonuclear leukocytes.Prostaglandins 41:21–27.
[0763] 18.Rolin J,Al-Jaderi Z,Maghazachi AA.2013.Oxidized lipids and lysophos-phatidylcholine induce the chemotaxis and intracellular calcium 
influx in natural killer cells.Immunobiology 218:875–883.
[0764] 19.Totani Y,Saito Y,Ishizaki T,Sasaki F,Ameshima S,Miyamori I.2000.Leukotoxin and its diol induce neutrophil chemotaxis through signal 
transduction different from that of fMLP.Eur Respir J 15:75–79.
[0765] 20.Qin X,Qiu C,Zhao L.2014.Lysophosphatidylcholine perpetuates macrophage polarization toward classically activated phenotype in inflamma-
tion.Cell Immunol 289:185–190.
[0766] 21.Young D,Ibuki M,Nakamori T,Fan M,Mine Y.2012.Soy-derived di-and tripeptides alleviate colon and ileum inflammation in pigs with dex-tran 
sodium sulfate-induced colitis.J Nutr 142:363–368.
[0767] 22.Hou YC,Chu CC,Ko TL,Yeh CL,Yeh SL.2013.Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the 
recovery phase of colitis induced by dextran sulfate sodium.Eur J Nutr 52:
1089–1098.
[0768] 23.Mistry D,Stockley RA.2010.Gamma-glutamyl transferase:the silent partner?COPD 7:285–290.
[0769] 24.Nascimento NR,Lessa LM,Kerntopf MR,Sousa CM,Alves RS,Queiroz MG,Price J,Heimark  DB,Larner J,Du X,Brownlee M,Gow A,DavisC,Fonteles 
MC.2006.Inositols prevent and reverse endothelial dysfunction in diabetic rat 
and rabbit vasculature metabolically and by scavenging superoxide.Proc Natl 
Acad Sci U S A 103:218–223.
[0770] 25.Liao J,Seril DN,Yang AL,Lu GG,Yang GY.2007.Inhibition of chronic ulcerative colitis associated adenocarcinoma development in mice by ino-sitol 
compounds.Carcinogenesis 28:446–454.
[0771] 26.Bamias G,Kaltsa G,Ladas SD.2011.Cytokines in the pathogenesis of ulcerative colitis.Discov Med 11:459–467.
[0772] 27.Hogan DA,Vik A,Kolter R.2004.A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology.Mol Micro-biol 54:
1212–1223.
[0773] 28.Sakanaka A,Kuboniwa M,Takeuchi H,Hashino E,Amano A.2015.Arginine-ornithine antiporter ArcD controls arginine metabolism and interspecies 
biofilm development of Streptococcus gordonii.J Biol Chem 290:21185–21198.
[0774] 29.Prindiville TP,Sheikh RA,Cohen SH,Tang YJ,Cantrell MC,Silva J,Jr.2000.Bacteroides fragilis enterotoxin gene sequences in patients with in-
flammatory bowel disease.Emerg Infect Dis 6:171–174.
[0775] 30.Ohkusa  T,Yoshida  T,Sato N,Watanabe S,Tajiri  H,Okayasu I.2009.Commensal bacteria can enter colonic epithelial cells and induce 
proin-flammatory cytokine secretion:a possible pathogenic mechanism of 
ulcerative colitis.J Med Microbiol 58:535–545.
[0776] 31.Rath HC,Wilson KH,Sartor RB.1999.Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacte-
roides vulgatus or Escherichia coli.Infect Immun 67:2969–2974.
[0777] 32.Li Q,Wang C,Tang C,He Q,Li N,Li J.2014.Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease.J Clin 
Gastroenterol 48:513–523.
[0778] 33.Chehoud C,Albenberg LG,Judge C,Hoffmann C,Grunberg S,Bit-tinger K,Baldassano RN,Lewis JD,Bushman FD,Wu GD.2015.Fungal signature in the gut 
microbiota of pediatric patients with inflammatory bowel disease.Inflamm 
Bowel Dis 21:1948–1956.
[0779] 34.Zwolinska-Wcislo M,Brzozowski T,Budak A,Kwiecien S,Sliwowski Z,Drozdowicz D,Trojanowska D,Rudnicka-Sosin L,Mach T,Konturek SJ,Pawlik 
WW.2009.Effect of Candida colonization on human ulcerative colitis and the 
healing of inflammatory changes of the colon in the experimental model of 
colitis ulcerosa.J Physiol Pharmacol 60:107–118.
[0780] 35.Noverr MC,Noggle RM,Toews GB,Huffnagle GB.2004.Role of antibiotics and fungal microbiotain driving pulmonary allergic responses.Infect Immun 72:
4996–5003.
[0781] 36.Park S-K,Kim M-S,Roh SW,Bae J-W.2012.Blautia stercoris sp.nov.,isolated from human faeces.Int J Syst Evol Microbiol 62:776–779.
[0782] 37.Miller TL,Wolin MJ.1995.Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen.Appl 
Environ Microbiol 61:3832–3835.
[0783] 38.Park J,Kim M,Kang  SG,Jannasch AH,Cooper B,Patterson J,Kim CH.2015.Short-chain fatty acids induce both effector and regulatory T cells 
by suppression of histone deacetylases and regulation of the mTOR-S6K 
pathway.Mucosal Immunol 8:80–93.
[0784] 39.Shenker BJ,Vitale L,Slots J.1991.Immunosuppressive effects of Pre-votella intermedia on in vitro human lymphocyte activation.Infect Im-mun59:
4583–4589.
[0785] 40.Riedel CU,Foata F,Philippe D,Adolfsson O,Eikmanns BJ,Blum S.2006.Anti-inflammatory effects of bifidobacteria by inhibition of LPS-
induced NF-kappaB activation.World J Gastroenterol 12:3729–3735.
[0786] 41.Zhang W,Li H,Dong H,Liao J,Hammock BD,Yang GY.2013.Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and 
carcinogenesis in mice.Anticancer Res 33:5261–5271.
[0787] 42.Patel KP,Luo FJ,Plummer NS,Hostetter TH,Meyer TW.2012.The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus 
omnivores.Clin J Am Soc Nephrol 7:982–988.
[0788] 43.Levy M,Thaiss CA,Zeevi D,DohnalováL,Zilberman-Schapira G,Mahdi JA,David E,Savidor A,Korem T,Herzig Y,Pevsner-Fischer M,Shapiro H,Christ A,
Harmelin  A,Halpern  Z,Latz  E,Flavell  RA,Amit  I,Segal  E,Elinav 
E.2015.Microbiota-modulated metabolites shape the intestinal microenvironment 
by regulating NLRP6 inflammasome signaling.Cell163:1428–1443.
[0789] 44.Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Huntley J,Fierer N,Owens SM,Betley J,Fraser L,Bauer M,Gormley N,Gilbert JA,Smith G,Knight 
R.2012.Ultra-high-throughput microbial community analysis on the Illumina 
HiSeq and MiSeq platforms.ISME J 6:1621–1624
[0790] 45.Hazen TC,Dubinsky EA,DeSantis TZ,Andersen GL,Piceno YM,Singh N,Jansson JK,Probst A,Borglin SE,Fortney JL,Stringfellow WT,Bill M,Conrad ME,
Tom LM,Chavarria KL,Alusi TR,Lamendella R,Joyner DC,Spier C,Baelum J,Auer M,
Zemla ML,Chakraborty R,Sonnenthal EL,D’Haeseleer P,Holman HY,Osman S,Lu Z,Van Nostrand JD,Deng Y,Zhou J,Mason OU.2010.Deep-sea oil plume enriches 
indigenous oil-degrading bacteria.Science 330:204–208.
[0791] 46.MagocˇT,Salzberg SL.2011.FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics 27:2957–2963.
[0792] 47.Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K,Bushman FD,Costello EK,Fierer N, AG,Goodrich JK,Gordon JI,Huttley GA,Kelley ST,
Knights D,Koenig JE,Ley RE,Lozupone CA,McDonald D,Muegge BD,Pirrung M,Reeder 
J,Sevinsky JR,Turnbaugh PJ,Walters WA,Widmann J,Yatsunenko T,Zaneveld J,
Knight R.2010.QIIME allows analysis of high-throughput community sequencing 
data.Nat Methods 7:335–336.
[0793] 48.Edgar RC.2010.Search and clustering orders of magnitude faster than BLAST.Bioinformatics 26:2460–2461.
[0794] 49.R Core Team.2015.R:a language and environment for statistical computing.The R Core Team,Vienna,Austria.
[0795] 50.Bates D, M,Bolker B,Walker S.2015.Fitting linear mixed-effects models using lme4.J Stat Softw 67:1–48.
[0796] 51.Walmsley RS,Ayres RC,Pounder RE,Allan RN.1998.A simple clinical colitis activity index.Gut 43:29-32.
[0797] 52.Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Huntley J,Fierer N,Owens SM,Betley J,Fraser L,Bauer M,Gormley N,Gilbert JA,Smith G,Knight 
R.2012.Ultra-high-throughput microbial community analysis on the Illumina 
HiSeq and MiSeq platforms.ISME J 6:1621-1624.
[0798] 53.Magoc T,Salzberg SL.2011.FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics 27:2957-2963.
[0799] 54.Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K,Bushman FD,Costello EK,Fierer N,Pena AG,Goodrich JK,Gordon JI,Huttley GA,Kelley ST,
Knights D,Koenig JE,Ley RE,Lozupone CA,McDonald D,Muegge BD,Pirrung M,Reeder 
J,Sevinsky JR,Turnbaugh PJ,Walters WA,Widmann J,Yatsunenko T,Zaneveld J,
Knight R.2010.QIIME allows analysis of high-throughput community sequencing 
data.Nat Methods 7:335-336.
[0800] 55.Edgar RC.2010.Search and clustering orders of magnitude faster than BLAST.Bioinformatics 26:2460-2461.
[0801] 56.DeSantis TZ,Hugenholtz P,Larsen N,Rojas M,Brodie EL,Keller K,Huber T,Dalevi D,Hu P,Andersen GL.2006.Greengenes,a chimera-checked16S rRNA gene 
database and workbench compatible with ARB.Appl Environ Microbiol 72:5069-
5072.
[0802] 57.Caporaso JG,Bittinger K,Bushman FD,DeSantis TZ,Andersen GL,Knight R.2010.PyNAST:a flexible tool for aligning sequences to a template 
alignment.Bioinformatics 26:266-267.
[0803] 58.Haas BJ,Gevers D,Earl AM,Feldgarden M,Ward DV,Giannoukos G,Ciulla D,Tabbaa D,Highlander SK,Sodergren E,Methe B,DeSantis TZ,Human Microbiome C,
Petrosino JF,Knight R,Birren BW.2011.Chimeric 16S rRNA sequence formation and 
detection in Sanger and 454-pyrosequenced PCR amplicons.Genome Res 21:494-
504.
[0804] 59.Price MN,Dehal PS,Arkin AP.2009.FastTree:computing large minimum evolution trees with profiles instead of a distance matrix.Mol Biol Evol 26:
1641-1650.
[0805] 60.Koljalg U,Nilsson RH,Abarenkov K,Tedersoo L,Taylor AF,Bahram M,Bates ST,Bruns TD,Bengtsson-Palme J,Callaghan TM,Douglas B,Drenkhan T,
Eberhardt U,Duenas M,Grebenc T,Griffith GW,Hartmann M,Kirk PM,Kohout P,
Larsson E,Lindahl BD,Lucking R,Martin MP,Matheny PB,Nguyen NH,Niskanen T,Oja 
J,Peay KG,Peintner U,Peterson M,Poldmaa K,Saag L,Saar I,Schussler A,Scott JA,
Senes  C,Smith  ME,Suija  A,Taylor  DL,Telleria  MT,Weiss M,Larsson 
KH.2013.Towards a unified paradigm for sequence-based identification of 
fungi.Mol Ecol 22:5271-5277.
[0806] 61.Bengtsson-Palme J,Ryberg M,Hartmann M,Branco S,Wang Z,Godhe A,De Wit P,Sánchez-García M,Ebersberger I,de Sousa F,Amend A,Jumpponen A,
Unterseher M,Kristiansson E,Abarenkov K,Bertrand YJK,Sanli K,Eriksson KM,Vik 
U,Veldre V,Nilsson RH.2013.Improved software detection and extraction of ITS1 
and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for 
analysis of environmental sequencing data.Methods in Ecology and Evolution 4:
914-919.
[0807] 62.Cox MJ,Allgaier M,Taylor B,Baek MS,Huang YJ,Daly RA,Karaoz U,Andersen GL,Brown R,Fujimura KE,Wu B,Tran D,Koff J,Kleinhenz ME,Nielson D,
Brodie EL,Lynch SV.2010.Airway microbiota and pathogen abundance in age-
stratified cystic fibrosis patients.PLoS One 5:e11044.
[0808] 63.Hazen TC,Dubinsky EA,DeSantis TZ,Andersen GL,Piceno YM,Singh N,Jansson JK,Probst A,Borglin SE,Fortney JL,Stringfellow WT,Bill M,Conrad ME,
Tom LM,Chavarria KL,Alusi TR,Lamendella R,Joyner DC,Spier C,Baelum J,Auer M,
Zemla ML,Chakraborty R,Sonnenthal EL,D'Haeseleer P,Holman HY,Osman S,Lu Z,Van 
Nostrand JD,Deng Y,Zhou J,Mason OU.2010.Deep-sea oil plume enriches 
indigenous oil-degrading bacteria.Science 330:204-208.
[0809] 64.Langille MG,Zaneveld J,Caporaso JG,McDonald D,Knights D,Reyes JA,Clemente JC,Burkepile DE,Vega Thurber RL,Knight R,Beiko RG,Huttenhower 
C.2013.Predictive functional profiling of microbial communities using 16S 
rRNA marker gene sequences.Nat Biotechnol 31:814-821.
[0810] 65.Team RC.2015.R:A Language and Environment for Statistical Computing.
[0811] 66.Lozupone C,Knight R.2005.UniFrac:a new phylogenetic method for comparing microbial communities.Appl Environ Microbiol 71:8228-8235.
[0812] 67.Jari Oksanen FGB,Roeland Kindt,Pierre Legendre,Peter R.Minchin,R.B.O'Hara,Gavin L.Simpson,Peter Solymos,M.Henry H.Stevens,and Helene 
Wagner.2015.vegan:Community Ecology Package.
[0813] 68.Suzuki R,Shimodaira H.2006.Pvclust:an R package for assessing the uncertainty in hierarchical clustering.Bioinformatics 22:1540-1542.
[0814] 69.Romero R,Hassan SS,Gajer P,Tarca AL,Fadrosh DW,Nikita L,Galuppi M,Lamont RF,Chaemsaithong P,Miranda J,Chaiworapongsa T,Ravel J.2014.The 
composition and stability of the vaginal microbiota of normal pregnant women 
is different from that of non-pregnant women.Microbiome 2:4.
[0815] 70.Bates D.M.MM,Bolker B.M.,Walker S.C.2015.Fitting Linear Mixed-Effects Models Using{me4.Journal of Statistical Software 67.
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈