首页 / 专利库 / 物理 / 各向异性 / 各向异性导电膜

各向异性导电膜

阅读:997发布:2020-05-13

专利汇可以提供各向异性导电膜专利检索,专利查询,专利分析的服务。并且含有聚合性 丙烯酸 系化合物、成膜 树脂 和聚合引发剂的绝缘性粘接层与含有聚合性丙烯酸系化合物、成膜树脂、聚合引发剂和 导电性 颗粒的层层合而成的 各向异性 导电膜,为了不使它对被粘着体的粘接强度降低而使连接可靠性更为提高,在绝缘性粘接层和含导电性颗粒的层中各自含有硫醇化合物。硫醇化合物可举出:四(3-巯基丙酸)季戊四醇酯、异氰脲酸三[(3-巯基丙酰 氧 基)-乙基]酯、三羟甲基丙烷三(3-巯基丙酸酯)、六(3-巯基丙酸)二季戊四醇酯等。,下面是各向异性导电膜专利的具体信息内容。

1.一种各向异性导电膜,所述各向异性导电膜由绝缘性粘接层与含导电性颗粒的层层合而成,其中,所述绝缘性粘接层含有聚合性丙烯酸系化合物、成膜树脂和聚合引发剂;所述含导电性颗粒的层含有聚合性丙烯酸系化合物、成膜树脂、聚合引发剂和导电性颗粒,所述各向异性导电膜的特征在于:所述绝缘性粘接层和所述含导电性颗粒的层各自含有硫醇化合物。
2.权利要求1的各向异性导电膜,其中,所述绝缘性粘接层中和所述含导电性颗粒的层中的硫醇化合物的含量分别为0.5-5%质量和0.3-4%质量。
3.权利要求1或2的各向异性导电膜,其中,所述绝缘性粘接层中的硫醇化合物的含量等于或大于所述含导电性颗粒的层中的硫醇化合物的含量。
4.权利要求1-3中任一项的各向异性导电膜,其中,所述绝缘性粘接层和所述含导电性颗粒的层的硫醇化合物各自独立地为选自四(3-巯基丙酸)季戊四醇酯、异氰脲酸三[(3-巯基丙酰基)-乙基]酯、三羟甲基丙烷三(3-巯基丙酸酯)和六(3-巯基丙酸)二季戊四醇酯的化合物。
5.权利要求1-4中任一项的各向异性导电膜,其中,所述聚合引发剂为有机过氧化物。
6.权利要求5的各向异性导电膜,其中,所述含导电性颗粒的层中所含的聚合引发剂含有1分钟半衰期温度不同的2种有机过氧化物,所述2种有机过氧化物中,1分钟半衰期温度高的有机过氧化物通过分解生成苯甲酸或其衍生物,所述绝缘性粘接层中所含的聚合引发剂是1分钟半衰期温度高的所述有机过氧化物。
7.权利要求6的各向异性导电膜,其中,所述2种有机过氧化物中,1分钟半衰期温度低的有机过氧化物为过氧化二月桂酰,1分钟半衰期温度高的有机过氧化物为过氧化二苯甲酰。
8.权利要求1-7中任一项的各向异性导电膜,其中,聚合性丙烯酸系化合物含有磷酸酯型丙烯酸酯,成膜树脂含有聚酯树脂、聚酯树脂或苯氧基树脂。
9.一种连接结构体,其中,第1布线基板的连接部与第2布线基板的连接部之间用权利要求1-8中任一项的各向异性导电膜进行了各向异性导电连接。
10.权利要求9的连接结构体,其中,所述第1布线基板为覆晶膜基板或带式载体封装基板,第2布线基板为印刷布线板,各向异性导电膜为权利要求7的各向异性导电膜,所述各向异性导电膜的绝缘性粘接层配置于第1布线基板一侧。
11.一种连接结构体的制造方法,其特征在于:在第1布线基板的连接部和第2布线基板的连接部之间夹持权利要求1-8中任一项的各向异性导电膜,在1分钟半衰期温度低的有机过氧化物不分解的第1温度下临时粘贴,然后在1分钟半衰期温度高的有机过氧化物分解的第2温度下进行热压

说明书全文

各向异性导电膜

技术领域

[0001] 本发明涉及各向异性导电膜。

背景技术

[0002] 在将液晶面板经由热固化型的各向异性导电膜与带式载体封装(TCP,tape carrier package)基板或覆晶膜(COF,chip on film)基板连接时,或者在将TCP基板或COF基板经由热固化型的各向异性导电膜与印刷布线板(PWB)连接时,为了缩短热压时间,有人提出:由在较低温·短时间内可固化的聚合性丙烯酸系化合物、成膜树脂、作为聚合引发剂的有机过化物等构成在各向异性导电膜中使用的粘合剂树脂组合物(专利文献1)。
[0003] 但是,用含有聚合性丙烯酸系化合物和上述的有机过氧化物的各向异性导电膜在较低温·短时间的条件下进行各向异性导电连接时,各向异性导电膜对于电子部件或柔性基板的粘接强度不足,因此,有连接可靠性不足的问题。
[0004] 另外,TCP基板与COF基板相比,装配密度、获得成本均低,并且与COF基板相比具有表1所示的不同点。特别是TCP基板是将Cu经由粘接剂与聚酰亚胺基底层合而制造的,而COF基板是使Cu与聚酰亚胺基底不经由粘接剂层合,在该方面不同。例如,在将COF基板与PWB用各向异性导电膜接合时,各向异性导电膜与基板的聚酰亚胺基底会直接接触,在这方面与将TCP基板和PWB用各向异性导电膜接合时不同。由于该不同,出现了COF基板和与各向异性导电膜之间的粘接强度(剥离强度)比TCP基板与各向异性导电膜之间的粘接强度小的问题。因此,在实际装配的场景中,不得不将TCP基板用各向异性导电膜和COF基板用各向异性导电膜分开使用,有无法用单一的各向异性导电膜来对应TCP基板和COF基板的问题。
[0005] [表1]为解决这些问题,有人提出了将各向异性导电膜的结构制成含导电性颗粒的层与绝缘性粘接层层合而成的双层结构,并且使用1分钟半衰期温度不同的2种有机过氧化物作为配合于各层中的聚合引发剂,该2种有机过氧化物中,使用可通过分解产生苯甲酸的有机过氧化物作为1分钟半衰期温度高的有机过氧化物(专利文献2)。
[0006] 现有技术文献专利文献
专利文献1:日本特开2006-199825号公报
专利文献2:日本特开2010-37539号公报。

发明内容

[0007] 发明所要解决的课题但是,专利文献2中提出的双层结构的各向异性导电膜中,虽然显示了当初所希望的粘接,但是仍有连接可靠性不足,特别是老化后的连接可靠性不足的问题。
[0008] 本发明为解决上述以往的技术课题而设,其目的在于:对于在含导电性颗粒的层上层合有绝缘性粘接层的双层型各向异性导电膜,不会使其对被粘着体的粘接强度降低,而可使连接可靠性更为提高,其中,所述含导电性颗粒的层含有成膜树脂和相比热固性环氧树脂可以在更低温、短时间内固化的聚合性丙烯酸系化合物;所述绝缘性粘接层含有成膜树脂和聚合性丙烯酸系化合物。
[0009] 解决问题的手段本发明人发现:通过在构成各向异性导电膜的含导电性颗粒的层和绝缘性粘接层中分别含有可发挥自由基的链转移剂功能的硫醇化合物,可实现上述目的,从而完成了本发明。
[0010] 即,本发明提供各向异性导电膜,该各向异性导电膜由绝缘性粘接层与含导电性颗粒的层层合而成,其中,所述绝缘性粘接层含有聚合性丙烯酸系化合物、成膜树脂和聚合引发剂;所述含导电性颗粒的层含有聚合性丙烯酸系化合物、成膜树脂、聚合引发剂和导电性颗粒,该各向异性导电膜的特征在于:该绝缘性粘接层和该含导电性颗粒的层分别含有硫醇化合物。
[0011] 本发明还提供连接结构体,其特征在于:用上述各向异性导电膜将第1布线基板的连接部与第2布线基板的连接部之间进行各向异性导电连接。
[0012] 本发明进一步提供连接结构体的制造方法,其特征在于:在第1布线基板的连接部和第2布线基板的连接部之间夹持上述各向异性导电膜,在1分钟半衰期温度低的有机过氧化物不分解的第1温度下临时粘贴,然后在1分钟半衰期温度高的有机过氧化物可分解的第2温度下热压。
[0013] 发明的效果本申请发明的各向异性导电膜具有各自含有聚合性丙烯酸系化合物、成膜树脂和聚合引发剂的含导电性颗粒的层和绝缘性粘接层的层合结构,在两层中各自含有硫醇化合物。
硫醇化合物发挥自由基的链转移剂功能,因此,在以较低温发生的聚合的初期阶段,产生的自由基也较少,因此具有捕获自由基、延缓聚合的作用。结果,通过各向异性导电膜的热压处理,可以在固化前比较容易地将过量的粘合剂树脂从被粘着体的间隙挤出。由此,不会降低粘接强度,可以使连接可靠性提高。
具体实施方案
[0014] 本发明的各向异性导电膜具有将绝缘性粘接层与含导电性颗粒的层层合而成的双层结构。绝缘性粘接层和含导电性颗粒的层各自含有聚合性丙烯酸系化合物、成膜树脂和聚合引发剂。含导电性颗粒的层进一步含有导电性颗粒。这里,绝缘性粘接层和含导电性颗粒的层各自含有硫醇化合物。由此,可以使粘接强度保持或提高,同时使连接可靠性、特别是老化后的连接可靠性提高。
[0015] 本发明的各向异性导电膜中,绝缘性粘接层和含导电性颗粒的层各自含有1种以上硫醇化合物。另外,在这些层中所含的硫醇化合物可以相同也可以不同。作为上述硫醇化合物,可以使用公知的硫醇化合物作为链转移剂。尚需说明,通过使用发挥链转移剂功能的硫醇化合物,可抑制在形成各向异性导电膜时所使用的丙烯酸系树脂组合物,即,绝缘性粘接层形成用组合物以及含导电性颗粒的层形成用组合物的保存中产生的游离自由基所导致的粘度升高现象。上述硫醇化合物的特别优选的具体例子可举出:选自四(3-巯基丙酸)季戊四醇酯、三-[(3-巯基丙酰氧基)-乙基]异氰脲酸酯、三羟甲基丙烷三(3-巯基丙酸酯)和六(3-巯基丙酸)二季戊四醇酯的化合物。
[0016] 各向异性导电膜的绝缘性粘接层中,硫醇化合物含量若过少,则初期的连接电阻有增加倾向,若过多则粘接强度有降低倾向,因此优选0.5-5%质量,更优选0.5-2%质量。另一方面,各向异性导电膜的含导电性颗粒的层中,硫醇化合物的含量若过少,则初期的连接电阻有增加倾向,若过多则连接可靠性有降低倾向,因此优选0.3-4%质量,更优选0.5-2%质量。
[0017] 尚需说明,绝缘性粘接层中的硫醇化合物的含量优选为含导电性颗粒的层中的硫醇化合物的含量以上。由此,可获得显示高粘接强度、良好的连接可靠性的各向异性导电膜。
[0018] 另外,由于各向异性导电膜具有如上所述的绝缘性粘接层和含导电性颗粒的层的层合结构,因此可以对TCP基板和COF基板共用。其原因尚未明确,推测可能是以下原因。
[0019] 即,绝缘性粘接层与含导电性颗粒的层相比,通常显示较低的玻璃化转变温度,因此,在COF基板或TCP基板向各向异性导电膜压入时,绝缘性粘接层容易被排除,在接合时,绝缘性粘接层有在面方向相邻的电极之间遍及的倾向。该绝缘性粘接层在接合时,在低温下通过自由基聚合进行固化,并且在更高温下通过自由基聚合进行固化且同时产生苯甲酸。因此,由于产生的苯甲酸,绝缘性粘接层与COF基板或TCP基板的接触面(金属电极表面、聚酰亚胺表面、含导电性颗粒的层表面)强力接合并固化。含导电性颗粒的层具有比绝缘性粘接层更高的玻璃化转变温度,因此,在COF基板或TCP基板向各向异性导电膜压入时,容易在相对的电极间存在导电性颗粒,与绝缘性粘接层同样,在低温下通过自由基聚合进行固化,并且在更高温下通过自由基聚合进行固化且同时产生苯甲酸。因此,含导电性颗粒的层使PWB与COF基板或TCP基板的接触面强力接合并固化。这样,绝缘性粘接层表现出应力弛豫以及与COF基板或TCP基板的牢固的粘接性,含导电性颗粒的层通过其强凝集力表现COF基板或TCP基板与PWB良好的连接可靠性。
[0020] 构成本发明的各向异性导电膜的聚合引发剂可以使用自由基聚合引发剂,可举出公知的有机过氧化物或偶氮化合物,可更优选使用有机过氧化物。
[0021] 本发明的各向异性导电膜的含导电性颗粒的层中,特别优选含有分解温度不同的2种有机过氧化物作为聚合引发剂。这种情况下,该2种有机过氧化物中,1分钟半衰期温度高的有机过氧化物可优选使用通过分解生成产生苯甲酸或其衍生物的化合物。这里,苯甲酸的衍生物可举出:苯甲酸甲酯、苯甲酸乙酯、苯甲酸叔丁酯等。尚需说明,2种有机过氧化物可以是在绝缘性粘接层和含导电性颗粒的层中完全相同的具体的组合,也可以是不同的组合。
[0022] 尚需说明,本发明的各向异性导电膜的绝缘性粘接层可以与含导电性颗粒的层同样,含有2种有机过氧化物作为聚合引发剂,从流动性度考虑,优选只含有高温分解过氧化物。
[0023] 这样,使用1分钟半衰期温度不同的2种有机过氧化物作为聚合性丙烯酸系化合物的聚合引发剂,其中,1分钟半衰期温度高的有机过氧化物(以下可称为高温分解过氧化物)如果使用通过分解产生苯甲酸或其衍生物的化合物,则可以获得以下说明的效果。即,由于1分钟半衰期温度相对低的有机过氧化物(以下可称为低温分解过氧化物)的存在,在以促进高温分解过氧化物分解的相对较高的温度下短时间热压时,随着加热温度的升高,在无需考虑热应力的相对较低的温度下,低温分解过氧化物分解,可以使聚合性丙烯酸系化合物充分聚合固化。然后,最终使高温分解过氧化物分解,可以完成聚合性丙烯酸系化合物的聚合固化,同时生成苯甲酸。生成的苯甲酸的一部分存在于固化的各向异性导电膜与被连接物的界面及其附近,因此可以使粘接强度提高。
[0024] 本发明的各向异性导电膜中,在含有两种有机过氧化物作为聚合引发剂时,其中,低温分解过氧化物的1分钟半衰期温度若过低,则固化前的保存稳定性降低,若过高则各向异性导电膜的固化有不充分的倾向,因此优选80℃以上但低于120℃,更优选90℃以上但低于120℃。另一方面,对于高温分解过氧化物的1分钟半衰期温度,较低的那种市场上尚未有销售,若过高则有在原本设想的热压温度下不生成苯甲酸或其衍生物的倾向,因此优选120℃以上150℃以下。
[0025] 另外,低温分解过氧化物和高温分解过氧化物之间的1分钟半衰期温度差若过小,则低温分解过氧化物和高温分解过氧化物均与聚合性丙烯酸系化合物反应,结果,有助于粘接强度提高的苯甲酸量减少,若过大,则各向异性导电膜在低温下的固化反应性有降低倾向,因此优选10℃以上30℃以下。
[0026] 关于这样的低温分解过氧化物和高温分解过氧化物的质量比,如果前者比后者相对过少,则各向异性导电膜在低温下的固化反应性降低,相反,若过多则粘接强度有降低倾向,因此优选10:1-1:5。
[0027] 可在本发明中使用的低温分解过氧化物的具体例子可举出:过氧化二异丁酰(1分钟半衰期温度85.1℃)、过氧-2-乙基己酸1,1,3,3-四甲基丁基酯(1分钟半衰期温度124.3℃)、过氧化二月桂酰(1分钟半衰期温度116.4℃)、过氧化二(3,5,5-三甲基己酰)(1分钟半衰期温度112.6℃)、过氧新戊酸叔丁酯(1分钟半衰期温度110.3℃)、过氧新戊酸叔己酯(1分钟半衰期温度109.1℃)、过氧新庚酸叔丁酯(1分钟半衰期温度104.6℃)、过氧新癸酸叔丁酯(1分钟半衰期温度103.5℃)、过氧新癸酸叔己酯(1分钟半衰期温度
100.9℃)、过氧二酸二(2-乙基己酯)( 1分钟半衰期温度90.6℃)、过氧二碳酸二(4-叔丁基环己基)酯(1分钟半衰期温度92.1℃)、过氧新癸酸1,1,3,3-四甲基丁酯(1分钟半衰期温度92.1℃)、过氧二碳酸二仲丁酯(1分钟半衰期温度85.1℃)、过氧二碳酸二正丙酯(1分钟半衰期温度85.1℃)、过氧新癸酸枯基酯(1分钟半衰期温度85.1℃)等。它们可以将2种以上并用。
[0028] 另外,高温分解过氧化物的具体例子可举出:过氧化二(4-甲基苯甲酰)( 1分钟半衰期温度128.2℃)、过氧化二(3-甲基苯甲酰)( 1分钟半衰期温度131.1℃)、过氧化二苯甲酰(1分钟半衰期温度130.0℃)、过氧苯甲酸叔己酯(1分钟半衰期温度160.3℃)、过氧苯甲酸叔丁酯(1分钟半衰期温度166.8℃)等。它们可以将2种以上并用。另外,通过使用这些具有苯基环的高温分解过氧化物,可以使各向异性导电膜的凝集力提高,因此可以使粘接强度进一步提高。
[0029] 作为低温分解过氧化物与高温分解过氧化物的组合,前者为过氧化二月桂酰、后者为过氧化二苯甲酰的组合在保存稳定性和粘接强度方面优选。
[0030] 本发明的各向异性导电膜中,上述不同的2种有机过氧化物等的聚合引发剂在绝缘性粘接层或含导电性颗粒的层中各自的使用量若过少,则丧失反应性,若过多则各向异性导电膜的凝集力有降低倾向,因此,相对于100质量份聚合性丙烯酸系化合物,优选1-10质量份,更优选3-7质量份。
[0031] 本发明的各向异性导电膜的绝缘性粘接层和含导电性颗粒的层中各自含有的聚合性丙烯酸系化合物是具有1个以上丙烯酰基或甲基丙烯酰基(以下称为(甲基)丙烯酰基)的化合物,为了提高导通可靠性,优选具有2个以上、特别优选具有2个(甲基)丙烯酰基。尚需说明,在绝缘性粘接层和含导电性颗粒的层中,聚合性丙烯酸系化合物可以是完全相同的具体化合物,也可以不同。
[0032] 聚合性丙烯酸系化合物的具体例子可举出:聚乙二醇二丙烯酸酯、磷酸酯型丙烯酸酯、丙烯酸2-羟基乙酯、丙烯酸2-羟基丙酯、丙烯酸4-羟基丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、丙烯酸异辛酯、二苯氧基乙醇芴二丙烯酸酯、2-丙烯酰氧基乙基琥珀酸、丙烯酸月桂基酯、丙烯酸硬脂基酯、丙烯酸异片酯、二甲基丙烯酸三环癸烷二甲醇酯、丙烯酸环己酯、三(2-羟基乙基)异氰脲酸三丙烯酸酯、丙烯酸四氢糠基酯、邻苯二甲酸二缩甘油基醚丙烯酸酯、乙氧基化双酚A二甲基丙烯酸酯、双酚A型环氧丙烯酸酯、基甲酸酯丙烯酸酯、环氧丙烯酸酯等以及与它们相当的(甲基)丙烯酸酯。
[0033] 尚需说明,从获得高粘接强度和导通可靠性考虑,聚合性丙烯酸系化合物优选将5-40质量份双官能丙烯酸酯、10-40质量份氨基甲酸酯丙烯酸酯、0.5-5质量份磷酸酯型丙烯酸酯并用。这里,双官能丙烯酸酯是为了提高固化物的凝集力、为了提高导通可靠性而配合,氨基甲酸酯丙烯酸酯是为了提高对聚酰亚胺的粘接性而配合,而磷酸酯型丙烯酸酯是为了提高对金属的粘接性而配合。
[0034] 聚合性丙烯酸系化合物在绝缘性粘接层和含导电性颗粒的层中各自的使用量,若过少则导通可靠性降低,若过多则粘接强度有降低倾向,因此,优选为树脂固体成分(聚合性丙烯酸系化合物与成膜树脂的合计)的20-70%质量份,更优选30-60%质量。
[0035] 本发明的各向异性导电膜的绝缘性粘接层和含导电性颗粒的层中各自使用的成膜树脂可以使用:环氧树脂、聚酯树脂、聚氨酯树脂、苯氧基树脂、聚酰胺、EVA等热塑性弹性体等。其中,从耐热性、粘接性考虑,可举出:聚酯树脂、聚氨酯树脂、苯氧基树脂,特别举出:苯氧基树脂,例如双A型环氧树脂、具有芴骨架的苯氧基树脂。这里,具有芴骨架的苯氧基树脂具有使固化物的玻璃化转变温度升高的特性,因此,优选不配合在绝缘性粘接层中,而是只配合在含导电性颗粒的层中,这种情况下,成膜树脂中的具有芴骨架的苯氧基树脂的比例优选为3-30%质量,更优选5-25%质量。
[0036] 另外,使用环氧树脂作为成膜树脂时,为了抑制环氧树脂与硫醇化合物的反应,优选使用环氧当量为15000以上的环氧树脂。
[0037] 尚需说明,就本发明的各向异性导电膜的绝缘性粘接层和含导电性颗粒的层中各自的成膜树脂的使用量而言,若过少则无法形成膜,若过多则获得电学连接所需的树脂排除性有降低倾向,因此优选为树脂固体成分(聚合性丙烯酸系化合物与成膜树脂的合计)的30-80%质量,更优选40-70%质量。
[0038] 在本发明的各向异性导电膜的含导电性颗粒的层中使用的导电性颗粒可以使用在以往的各向异性导电膜中使用的导电性颗粒,例如可使用:金颗粒、颗粒、镍颗粒等金属颗粒,将苯并胍胺树脂或苯乙烯树脂等树脂颗粒的表面用金、镍、锌等金属被覆得到的被覆金属的树脂颗粒等。此类导电性颗粒的平均粒径通常为1-10 μm,更优选2-6 μm。
[0039] 导电性颗粒在各向异性导电膜的含导电性颗粒的层中的使用量若过少,则发生导通不良的可能性提高,若过多则发生短路的可能性提高,因此,相对于100质量份树脂固体成分,优选为0.1-20质量份,更优选0.2-10质量份。
[0040] 本发明的各向异性导电膜的绝缘性粘接层和含导电性颗粒的层中,可分别根据需要含有各种丙烯酸单体等稀释用单体、填充剂、软化剂、着色剂、阻燃剂、触变剂、偶联剂等。
[0041] 本发明的各向异性导电膜的绝缘性粘接层的层厚若过薄,则粘接强度有降低倾向,若过厚则导通可靠性有降低倾向,因此,优选10-25 μm,更优选16-21 μm。另一方面,含导电性颗粒的层的层厚若过薄,则导通可靠性有降低倾向,若过厚,则粘接强度有降低倾向,因此,优选10-25 μm,更优选15-20 μm。尚需说明,将绝缘性粘接层和含导电性颗粒的层合在一起得到的各向异性导电膜的厚度,若过薄,则由于填充不足使粘接强度有降低倾向,若过厚,则由于压入不足,发生导通不良的可能性提高,因此,优选25-50 μm,更优选30-45 μm。
[0042] 本发明的各向异性导电膜的绝缘性粘接层和含导电性颗粒的层各自的固化物的玻璃化转变温度是使各向异性导电膜发挥底部填充剂(underfilling agent)的功能的重要的因素。从该方面等考虑,绝缘性粘接层的固化物的玻璃化转变温度优选50-100℃,更优选65-100℃,另一方面,含导电性颗粒的层的固化物的玻璃化转变温度优选80-130℃,更优选85-130℃。这种情况下,优选将含导电性颗粒的层的固化物的玻璃化转变温度设定为比绝缘性粘接层的固化物的玻璃化转变温度高。这样,可以使绝缘性粘接层迅速流化,可以在连接操作时由相对的电极之间排除。具体来说,优选高0-25℃,更优选高10-20℃。
[0043] 本发明的各向异性导电膜可按照与以往的各向异性导电膜同样的方法制造。例如,可以将聚合性丙烯酸系化合物、成膜树脂、聚合引发剂以及根据需要使用的其它添加剂还有甲基乙基溶剂均匀混合所得的绝缘性粘接层形成用组合物涂布于实施了剥离处理的剥离片表面,干燥,由此形成绝缘性粘接层,在其上涂布将聚合性丙烯酸系化合物、成膜树脂、导电性颗粒、聚合引发剂以及根据需要使用的其它添加剂还有甲基乙基酮等溶剂均匀混合所得的含导电性颗粒的层形成用组合物,干燥,形成含导电性颗粒的层,由此可获得本发明的各向异性导电膜。
[0044] 本发明的各向异性导电膜可优选用于:将第1布线基板的连接部与第2布线基板的连接部之间进行各向异性连接而成的连接结构体。这里,第1布线基板和第2布线基板没有特别限定,可举出:液晶面板的玻璃基板或柔性布线基板等。另外,对于各基板的连接部也没有特别限定,可以是以往的各向异性导电膜所适用的连接部。
[0045] 如上所述,本发明的各向异性导电膜可以在各种情况下使用,其中,可优选适用于第1布线基板为2层或3层的柔性印刷电路基板、COF基板或TCP基板,且第2布线基板为PWB的情况。这是由于,本发明的各向异性导电膜可以对TCP基板和COF基板共用。这种情况下,含导电性颗粒的层中的成膜树脂优选含有具芴骨架的苯氧基树脂。由此,可以使含导电性颗粒的层的固化物的玻璃化转变温度比绝缘性粘接层的玻璃化转变温度高,可以使各向异性导电膜的连接可靠性提高。
[0046] 另外,在上述的连接结构体中,优选各向异性导电膜的绝缘性粘接层配置于第1布线基板一侧。由此,可以使其对未形成粘接剂层的聚酰亚胺表面的粘接强度提高。
[0047] 这样的连接结构体可如下制造:将本发明的各向异性导电膜夹持于第1布线基板的连接部和第2布线基板的连接部之间,通常使绝缘性粘接层配置在第1布线基板一侧,在1分钟半衰期温度低的有机过氧化物不分解的第1温度下临时粘贴,在1分钟半衰期温度高的有机过氧化物分解的第2温度下进行热压。这里,1分钟半衰期温度低的有机过氧化物、
1分钟半衰期温度高的有机过氧化物、它们的优选的1分钟半衰期温度、它们的优选的温度差已如上说明。另外,第1温度优选为比1分钟半衰期温度低的有机过氧化物的该1分钟半衰期温度低20℃的温度和更低的温度,第2温度优选为比1分钟半衰期温度高的有机过氧化物的该1分钟半衰期温度低20℃的温度和更高的温度。
实施例
[0048] 以下通过实施例更具体地说明本发明。
[0049] 实施例1-12、比较例1-6将表2的配合组成分别按照常规方法均匀混合,由此制备含导电性颗粒的层形成用组合物和绝缘性粘接层形成用组合物。接着,用刮棒涂布器在剥离处理的聚酯膜上涂布绝缘性粘接层形成用组合物,使其干燥厚度为18 μm,吹5分钟 70℃的热,使其干燥,由此形成绝缘性粘接层。接着,用刮棒涂布器在绝缘性粘接层上涂布含导电性颗粒的层形成用组合物,使其干燥厚度为17 μm,吹5分钟70℃的热风,使其干燥,由此形成含导电性颗粒的层。由此获得各向异性导电膜。
[0050] [表2]<表2注(硫醇化合物)>
PEMP:四(3-巯基丙酸)季戊四醇酯,SC有机化学(株)
TEMPIC:异氰脲酸三-[(3-巯基丙酰氧基)-乙基]酯,SC有机化学(株)
TMMP:三羟甲基丙烷三(3-巯基丙酸酯),SC有机化学(株)
DPMP:六(3-巯基丙酸)二季戊四醇酯,SC有机化学(株)
EHMP: 3-巯基丙酸2-乙基己酯,SC有机化学(株)
EGMP-4:双(3-巯基丙酸)四甘醇酯,SC有机化学(株)。
[0051] 为了进行所得各向异性导电膜的粘接强度和连接可靠性(初期、老化后)的试验评价,首先,如以下说明,使用各向异性导电膜制作连接结构体。
[0052] <连接结构体的制作>对于在玻璃环氧基板表面的35 μm厚的箔上形成有200 μm间距的布线的印刷布线板(PWB),配置各向异性导电膜,使其含导电性颗粒的层一侧为PWB一侧,在80℃、1 MPa、
2秒的条件下加热压合,将剥离PET膜剥去,使各向异性导电膜临时粘接于PWB表面。在该各向异性导电膜上放置COF基板(在厚度38μm的聚酰亚胺膜上形成有200 μm间距、厚度8μm的铜布线的布线基板)的铜布线部分,在130℃、3 MPa、3秒或者190℃、3 MPa、5秒的条件下压合,得到评价用的连接结构体。
[0053] <连接强度试验>使用剥离试验机((株)エー�アンド�デイ制造),相对于所得连接结构体的PWB,以剥离速度50 mm/分钟,对COF基板进行90度剥离试验(JIS K6854-1),测定剥离强度,以此作为粘接强度,按以下基准评价。在实际应用上希望为AA或A评价。
[0054] 等级 基准AA:10[N/5cm]以上
A:7[N/5cm]以上但低于10[N/5cm]
B:5[N/5cm]以上但低于7[N/5cm]
C:低于5[N/5cm]。
[0055] <连接可靠性试验>对于所得连接结构体,按照四端法(JIS K7194),以万用表(型号34401A,Agilent公司)测定初期导通电阻(Ω:最大值)和在温度85℃、湿度85%RH的恒温槽中保持500小时后的老化后的导通电阻(Ω:最大值),按以下基准评价。在实际应用中,希望对于初期和老化后两者最差为B评价。
[0056] 等级 基准AA: 0.7Ω以下
A:比0.7Ω大但为1.5Ω以下
B:比1.5Ω大但为2Ω以下
C:比2Ω大。
[0057] [表3]由表3可知,在含导电性颗粒的层和绝缘性粘接层两者中配合硫醇化合物的实施例
1-12的各向异性导电膜,其粘接强度和连接可靠性显示了实际应用中优选的结果。与此相对,含导电性颗粒的层和绝缘性粘接层的至少一方中未配合硫醇化合物的比较例1-6的各向异性导电膜在连接可靠性方面有问题。
[0058] 尚需说明,实施例1的各向异性导电膜在老化后的连接可靠性的评价为“B”,认为
相关专利内容
标题 发布/更新时间 阅读量
各向异性导电膜 2020-05-11 335
各向异性导电膜 2020-05-11 806
各向异性散射膜 2020-05-11 863
光学各向异性片 2020-05-11 526
各向异性光学膜 2020-05-12 201
各向异性磁片 2020-05-12 435
各向异性导电膜 2020-05-11 831
各向异性导电膜 2020-05-11 512
光学各向异性膜 2020-05-12 561
各向异性导电膜 2020-05-13 976
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈