首页 / 专利库 / 物理 / 三相点 / 用于在低温下净化富含二氧化碳的混合物的方法和设备

用于在低温下净化富含二的混合物的方法和设备

阅读:1024发布:2020-08-03

专利汇可以提供用于在低温下净化富含二的混合物的方法和设备专利检索,专利查询,专利分析的服务。并且在一种用于在低温下 净化 含有二 氧 化 碳 的混合物以生产富含二氧化碳的 流体 的方法中,富含二氧化碳的混合物在包括由板分隔开的波纹片的第一钎焊 铝 板翅式 热交换器 (9)中被冷却,从冷却的混合物获取的至少一种流体(19)被送至包括蒸馏步骤和/或至少两个连续的部分冷凝步骤的净化步骤,净化步骤产生贫二氧化碳的气体(25),其在第一交换器中被再加热,净化步骤产生富含二氧化碳的液体(33),其膨胀后送至第二热交换器(35),在那里用工艺流体(13)加热,所述交换器仅在富含二氧化碳的液体与工艺流体之间进行间接热交换,所述富含二氧化碳的液体在第二热交换器中至少部分地 蒸发 并且所形成的 蒸发气 体在第一交换器中被加热以形成富含二氧化碳的气体(37),该气体可以是所述方法的最终产物。,下面是用于在低温下净化富含二的混合物的方法和设备专利的具体信息内容。

1.一种用于在低温下净化含有二的混合物以生产富含二氧化碳的流体的方法,其中:
i)富含二氧化碳的混合物在包括由板分隔开的波纹片的第一钎焊板式热交换器(9)中被冷却,
ii)冷却的混合物或从冷却的混合物获取的至少一种流体(19)被送至包括蒸馏步骤和/或至少两个连续的部分冷凝步骤的净化步骤,
iii)净化步骤产生贫含二氧化碳的气体(25),其在第一交换器中被加热,iv)净化步骤产生富含二氧化碳的液体(33),其膨胀后被送至第二热交换器(35),在第二热交换器中用工艺流体(13)加热,所述交换器仅在所述富含二氧化碳的液体与所述工艺流体之间进行间接热交换,以及
v)富含二氧化碳的液体在第二交换器中至少部分地蒸发并且所形成的蒸发气体在第一交换器中被加热以形成富含二氧化碳的气体(37),该富含二氧化碳的气体是所述方法的最终产物,
其特征在于,在第二交换器(35)中加热富含二氧化碳的液体的工艺流体包括从在第一交换器中冷却的混合物(7)获取的气体(13),并且冷却的混合物在第一交换器中至少部分地冷凝并被送至第一相分离器(11),来自第一相分离器的气体被送至第二交换器,在第二交换器中至少部分地冷凝以形成冷凝液体。
2.根据权利要求1所述的方法,其中富含二氧化碳的气体(37)被压缩和冷凝以形成富含二氧化碳的液体(51),该富含二氧化碳的液体是该方法的最终产物。
3.根据权利要求1或2所述的方法,其中来自第一相分离器(11)的液体膨胀并被送至第二相分离器(17)。
4.根据前述权利要求中任一项所述的方法,其中所述冷凝的液体(43)被送至(所述)第二相分离器(17)。
5.根据权利要求3或4所述的方法,其中来自所述第二相分离器的液体(19)膨胀并被送至发生蒸馏的蒸馏塔(23)的顶部,从而供给蒸馏塔。
6.根据权利要求3,4或5所述的方法,其中来自所述第二相分离器(17)的气体(45)在第一交换器(9)中被加热。
7.根据前述权利要求中任一项所述的方法,其中来自第一相分离器(11)的液体膨胀并被送至发生蒸馏的蒸馏塔(23)的顶部,从而供给蒸馏塔。
8.根据前述权利要求中任一项所述的方法,其中所述第二交换器(35)是管壳式交换器,所述富含二氧化碳的液体(33)被送至壳内以加热,工艺流体(13)被送至管内以冷却。
9.根据前述权利要求中任一项所述的方法,其中富含二氧化碳的第二液体(29)由净化步骤产生和被送至第一交换器(9),而不需要经过第二交换器和优选地未膨胀,该第二液体在第一交换器中蒸发以形成富含二氧化碳的气体(32)。
10.根据前述权利要求中任一项所述的方法,其中来自第二交换器(35)的清洗液(41)蒸发以便向工艺过程提供冷量。
11.根据前述权利要求中任一项所述的方法,其中富含二氧化碳的液体(33)膨胀后在对应于二氧化碳的三相点的压力下和等于二氧化碳的三相点的温度下被送至第二交换器(35)。
12.根据前述权利要求中任一项所述的方法,其中在第二交换器(35)中使用的用于冷
3 3
却富含二氧化碳的气体混合物的富含二氧化碳的液相的密度在1171kg/m和1562kg/m 之间。
13.一种用于在低温下净化含有二氧化碳的混合物以便生产富含二氧化碳的流体的设备,该设备包括:具有由板隔开的波纹片的第一钎焊铝板式热交换器(9);除钎焊铝板式交换器之外的能够容许仅在两种流体之间进行间接热交换的第二交换器(35);包括至少一个蒸馏塔(23)和/或至少两个串联连接的相分离器的净化单元;用于将富含二氧化碳的混合物送至第一交换器以冷却的管道;用于将冷却的混合物或从该冷却的混合物获取的至少一种流体(13)送至净化单元的管道;用于从净化单元提取贫含二氧化碳的气体(25)的连接至第一交换器的管道;用于从净化单元提取富含二氧化碳的液体(33)的连接至(31)的管道,所述阀连接至第二热交换器;和用于将工艺流体送至第二交换器以便蒸发所述富含二氧化碳的液体的管道;和用于将通过在第二交换器中蒸发所述富含二氧化碳的液体而产生的气体送至第一交换器以便加热的管道,其特征在于,所述设备包括:用于传送从在第一交换器中冷却的混合物(7)获取的、作为在第二交换器(35)中加热富含二氧化碳的液体的工艺流体的气体(13)的装置;第一相分离器(11);用于将冷却的混合物从第一交换器送至第一相分离器的装置;和用于将气体从第一相分离器送至第二交换器的装置。
14.根据权利要求13所述的设备,其中所述第二交换器(35)是管壳式交换器。
15.根据权利要求13或14所述的设备,包括用于将来自所述第一相分离器和/或来自第二相分离器的液体送至所述蒸馏塔(23)的装置。

说明书全文

用于在低温下净化富含二的混合物的方法和设备

技术领域

[0001] 本发明涉及用于在低温下净化富含二氧化碳的混合物的方法和设备。
[0002] 低温是低于0℃,优选低于-40℃。
[0003] 所述富含二氧化碳的混合物含有至少60mol%的二氧化碳,或甚至至少80mol%的二氧化碳。
[0004] 该混合物的其余部分可以含有以下成分中的一个或多个:氧气,氮气,氩气,氮氧化物(NO,NO2或N2O),一氧化碳,氢气,汞。
[0005] 可以通过一个或多个连续的部分冷凝步骤和/或通过蒸馏进行净化。

背景技术

[0006] US-A-2010/0326134描述了根据权利要求1的前序部分所述的方法。WO-A-2012/030223描述了根据权利要求1的前序部分所述的方法,但是未提及用于第一热交换器的技术。
[0007] 在现有技术中,用于净化大量CO2的方法包括冷却富含CO2的气体混合物到尽可能接近CO2的点(-56.5℃)从而冷凝出最大量的CO2。低温通常由CO2的蒸发和各种流体的加热来提供,例如蒸发的CO2、不可冷凝的气体或各种回收的流。先进的热集成使得可以降低所述方法的能量消耗。因此,钎焊板式交换器特别好地适用于冷却富含CO2的气体混合物,因为它们容许在数种(常见6种)流体之间热交换,其中热流体和冷流体之间温差很小(2℃的温差也是常见的)。
[0008] 交换的最冷的温度由接近三相点的CO2的蒸发提供。该蒸发因此有险,使得如果压降至三相点值将出现固态CO2。事实上,在三相点值(5.185巴的绝对压力)的压力以下,液体CO2不能存在,那么它转化成固态(约60%的分子)和气态。液体的蒸发提供了用于固化其余部分的冷量。
[0009] 固相(其可以出现在蒸发气体的压力波动的过程中),例如如果回收它的压缩机吸入比交换器中蒸发的更多的分子,会在加热阶段堵塞和损坏热交换器。这对于使用钎焊铝换热器是一个局限。
[0010] 有几种方法可以降低损坏该单元的风险:
[0011] 1.在较高的压力下运行,即加热冷端,并因此在CPU中冷凝较少的CO2。这将增加CO2的能量成本。
[0012] 2.升高液体供给容器在热交换器上方的位置,以便通过静液压高度确保交换器中的液体的压力总是高于在容器中的液体的压力,因此不能在热交换器中形成固体。这个解决方案更优,因为它几乎总是避免在热交换器中形成固体(这在第1点中不容许),全部都同样降低能效,因为CO2的蒸发在较高的压力(静压高度)因而较高的温度下执行。
[0013] 这里提出的本发明旨在能够尽可能接近三相点地操作,或甚至使用三相点下的液态CO2。

发明内容

[0014] 根据本发明的一个主题,提供了一种用于在低温下净化含有二氧化碳的混合物以产生富含二氧化碳的流体的方法,其中:
[0015] i)富含二氧化碳的混合物在包括由板分隔开的波纹片的第一钎焊铝板式热交换器中被冷却,
[0016] ii)冷却的混合物或从冷却的混合物获取的至少一种流体被送至包括蒸馏步骤和/或至少两个连续的部分冷凝步骤的净化步骤,
[0017] iii)净化步骤产生贫含二氧化碳的气体,该气体在第一交换器中被加热,[0018] iv)净化步骤产生富含二氧化碳的液体,该液体膨胀后被送至第二热交换器,在那里用工艺流体加热,交换器仅在富含二氧化碳的液体与工艺流体之间进行间接热交换,以及
[0019] v)富含二氧化碳的液体在第二热交换器中至少部分地蒸发并且所形成的蒸发气体在第一交换器中被加热以形成富含二氧化碳的气体,该气体可以是所述方法的最终产物,
[0020] 其特征在于,在第二交换器中加热富含二氧化碳的液体的工艺流体包括从在第一交换器中冷却的混合物获取的气体,并且其中冷却的混合物在第一交换器中至少部分地冷凝并被送至第一相分离器,来自第一相分离器的气体被送至第二交换器,在那里至少部分地冷凝以形成冷凝液体。
[0021] 根据其它可选的方面:
[0022] -富含二氧化碳的气体被压缩和冷凝以形成富含二氧化碳的液体,其是该方法的最终产品;
[0023] -来自第一相分离器的液体膨胀并被送至第二相分离器;
[0024] -冷凝的液体被送至一(所述)第二相分离器;
[0025] -来自所述第二相分离器的液体膨胀并被送至蒸馏塔的顶部,在那里发生蒸馏,从而供给蒸馏塔;
[0026] -来自所述第二相分离器的气体在第一交换器中被加热;
[0027] -来自第一相分离器的液体膨胀并被送至蒸馏塔的顶部,在那里发生蒸馏,从而供给蒸馏塔;
[0028] -冷却的混合物在第一交换器中至少部分地冷凝并被送至第一相分离器,来自第一相分离器的液体膨胀并被送至第二相分离器,来自第一相分离器的气体被送至第二交换器,在那里冷凝以形成冷凝的液体,冷凝的液体被送至第二相分离器和来自第二相分离器的液体被送至蒸馏塔的顶部,以供给蒸馏塔;
[0029] -第二交换器是管壳式交换器,所述富含二氧化碳的液体被送至壳内以加热,工艺流体被送至管内以冷却;
[0030] -富含二氧化碳的第二液体由净化步骤产生和送至第一交换器,而不需要经过第二交换器和优选地未膨胀,该第二液体在第一交换器中蒸发以形成富含二氧化碳的气体;
[0031] -来自第二交换器的清洗液蒸发以便向工艺过程提供冷量;
[0032] -富含二氧化碳的液体膨胀后在对应于二氧化碳的三相点压力的压力下和等于其三相点的温度下被送至第二交换器;
[0033] -在第二交换器中使用的用于冷却富含二氧化碳的气体混合物的富含二氧化碳的3 3
液体的密度在1171kg/m和1562kg/m 之间。
[0034] 根据本发明的另一个主题,提供一种用于在低温下净化含有二氧化碳的混合物以便生产富含二氧化碳的流体的设备,该设备包括:具有由板隔开的波纹片的第一钎焊铝板式热交换器;钎焊铝板式交换器之外的能够容许仅在两种流体之间进行间接热交换的第二交换器;包括至少一个蒸馏塔和/或至少两个串联连接的相分离器的净化单元;用于将富含二氧化碳的混合物送至第一交换器以冷却的管道;用于将冷却的混合物或从冷却的混合物中获取的至少一种流体送至净化单元的管道;用于从净化单元提取贫二氧化碳的气体的连接至第一交换器的管道;用于从净化单元提取富含二氧化碳的液体的连接至一的管道,所述阀连接至第二热交换器;和用于将工艺流体送至第二交换器以便蒸发所述富含二氧化碳的液体的管道;和用于将通过在第二交换器中蒸发富含二氧化碳的液体产生的气体送至第一交换器以便加热的管道,其特征在于,所述设备包括:用于传送从在第一交换器中冷却的混合物获取的、作为在第二交换器中加热富含二氧化碳的液体的工艺流体的气体的装置;第一相分离器;用于将冷却的混合物从第一交换器送至第一相分离器的装置;和用于将气体从第一相分离器送至第二交换器的装置。
[0035] 第二交换器可选地是管壳式交换器。
[0036] 可以有用于将液体从第一相分离器和/或从第二相分离器送至蒸馏塔的装置。
[0037] 根据其它可选的主题,所述设备包括:
[0038] -用于压缩所述富含二氧化碳的气体的压缩机和用于冷凝所述压缩气体以便形成富含二氧化碳的液体(其为所述过程的最终产品)的冷却器;
[0039] -在第二交换器中加热所述富含二氧化碳的液体的工艺流体包括从在第一交换器中冷却的混合物获取的气体;
[0040] -第二相分离器,用于膨胀来自第一相分离器的液体和将其送至第二相分离器的装置,用于将来自第一相分离器的气体送至第二交换器以在那里冷凝从而形成冷凝液体的装置,用于将冷凝液体送至第二相分离器的装置和用于将来自第二相分离器的液体送至蒸馏塔的顶部以便供给蒸馏塔的装置;
[0041] -用于将气体从第二相分离器送至第一交换器以加热的管道;
[0042] -第二交换器是管壳式交换器,用于将富含二氧化碳的液体送至壳中加热的装置和用于将工艺流体送至管中冷却的装置;
[0043] -装置,其用于将通过净化步骤生产的富含二氧化碳的第二液体送至第一交换器,而不穿过第二交换器和优选地未膨胀;
[0044] -装置,其用于将清洗液从所述第二交换器送至交换器中蒸发以便向工艺过程提供冷量。
[0045] 根据本发明的原理是能在仅两股流体之间进行间接热交换的交换器,例如“管壳式”交换器,其中CO2在壳中蒸发和待部分冷凝的流处于管中。由于壳中存在沸腾液体,不需再担心出现固体相而堵塞通道和当一些固体在两个冰的堵塞物之间升华时导致局部过压。
[0046] 因此,能够在沸腾液体的三相点压力下运行所述容器;周期性出现的固态CO2会在压力回到三相点以上时或在供给交换器的液体略微过热时融化。
[0047] 可能存在于蒸发的液态CO2中的杂质会从交换器排放:
[0048] ·对于最轻的杂质以气相清除;
[0049] ·对于最重的杂质以清洗液清除。
[0050] 这种清洗液会从交换器排出。附图说明
[0051] 下面将通过参考示出根据本发明的方法的图1至4对本发明进行更详细的说明。

具体实施方式

[0052] 在图1中,混合物1含有至少60mol%的二氧化碳,或甚至至少80mol%的二氧化碳。
[0053] 该混合物1的其余部分可以含有以下成分中的一种或多种:氧气,氮气,氩气,氮氧化物(NO,NO2或N2O),一氧化碳,氢气。
[0054] 该混合物在过滤器F中被过滤以去除灰尘,然后在第一压缩级C1中被压缩以形成压缩流3。压缩流3在第二压缩级C2中被压缩、在冷却器R2中被冷却、在第三压缩级C3中被压缩、在冷却器R3中被冷却、在第四压缩级C4中被压缩、在冷却器R4中被冷却、在第五压缩级C5中被压缩并在冷却器R5中被冷却以形成处于6和20bar abs(绝对压力)之间的流5。该混合物流5在吸附剂床A2中被净化除去以形成净化流7。净化流7在第一交换器9中部分地冷凝,该交换器是包括一叠由板分离开的波纹层的铝交换器。部分冷凝流被送至第一相分离器11。所形成的气体13被送至能够在仅两种流体之间进行间接热交换的管壳式第二交换器35的管中。附图未示出从所述混合物获得的气体13被冷凝所在的多个管。所形成的液体43被送至第二相分离器17,来自第一相分离器11的液体15也被送至第二相分离器17。
[0055] 来自所述第二相分离器17的气体45在第一热交换器中被加热。来自第二分离器17的液体19在阀21中膨胀并被送至蒸馏塔23的顶部。
[0056] 贫含二氧化碳但富含至少一种杂质(氧气,氮气,氩气,氮氧化物(NO,NO2或N2O),一氧化碳,氢气)的塔顶气体25在第一热交换器9中被加热。
[0057] 塔底液体27从塔的底部被抽取并含有至少80mol%的二氧化碳。液体27被分成两份;一份流29在第一热交换器9中蒸发而不膨胀。所形成的气体的一部分30被送至蒸馏塔的底部。其余部分32形成所述方法的产物的一部分。
[0058] 从塔的底部产生的液体33在阀31中膨胀到其压力等于所含有的二氧化碳的三相点压力。然后将该液体送至第二交换器35的壳,在那里部分地蒸发。所形成的气体37在第一交换器9中被加热并送至用于吸收压力波动的中间容器39。从该处被压缩级C6压缩并在冷却器R6中冷却,然后与蒸发的液体32混合。由此形成的气体被压缩级C7、C8、C9压缩并通过冷却器R7、R8、R9、R10冷却以形成冷凝气体。该冷凝气体与来自第二交换器的清洗液41混合并通过P1部分地加压以形成处于至少50bar的加压液体产物51。所述清洗液41先前已在泵P2中加压。用作循环液体的一部分液体49在三相点在阀53中膨胀并被送至第二交换器35,与流33混合。
[0059] 一部分气体45在交换器E1中被加热并用于再生处于再生阶段的吸附剂床A1。已用于再生的流55与压缩级C1下游的流3混合。
[0060] 当然可以通过与另一工艺流体例如蒸发的塔底液体的一部分进行间接热交换从而在第二交换器35中蒸发液体33。
[0061] 清洗液41由泵P2泵压到高达其余CO2被冷凝(与冷却器R10中的空气或水换热)的压力(约80bar a(绝对压力))以便与其混合。
[0062] 一个缺点是该冷的液体代表冷箱的重大热量损失;优点是由于该流体不穿过产品压缩机,产品压缩机的尺寸减小。
[0063] 能够在使液体41在室温下与液态CO2混合之前加热在泵P2中加压的液体41,从而回收清洗液的显热的冷量,例如为了减少由图2中交换器9产生的CO2的压缩能。
[0064] 因此,泵送的液体被用作冷却器R8和压缩级C9之间的冷却器E10中的制冷剂。
[0065] 另一变型将在交换器E10中产生冰水或者可以设想任何该冷量的其它用途。
[0066] 在图3中,清洗液41在泵P3中被加压到一较高压力,通过部分冷凝和/或蒸馏所产生的CO2在该较高压力下蒸发。清洗液41然后与该液态CO229混合并且其在该较高压力的流中被蒸发。由于这种蒸发在主钎焊铝交换器9中进行,清洗液可完全蒸发,这样不再有任何冷量损失,能够取消循环的CO249以便提供来自前面附图的冷量。
[0067] 在图4中,清洗液流41在冷箱外部、在交换器E4中蒸发以便产生冰水55。否则,流41可用于预冷却冷箱进料气体或冷却所产生的CO2或以其它方式重新利用所含有的冷量。因此通过蒸发液体41而获得的所述气体随后可以被排放,如果该气体含有不想被其它装置重新利用的杂质,该气体可以被处理以降低杂质含量(洗涤、吸附、催化床等)。否则该气体可循环到提供混合物1的锅炉脱硫单元,从而降低NOx含量或其它可燃杂质(,醇等)的含量,或用于任何其它应用(回收所含有的NOx,烃,醇等)。
[0068] 泵P2、P3将必须能够面对固相(固态CO2,N2O4或其它杂质的结晶),因为所有的重元素都应集中在其中。
[0069] 最后,应注意的是,钎焊铝交换器9——尽管仅冷却进料气体到大约-40℃——集中了可帮助回收冷量以进行第一冷却的所有流体。因此,冷箱使用仅双流体交换器35不会过多降低组件的热性能。建议适当地布置交换器中的通道以避免温差、特别是与最低温的流体例如在“管壳式”交换器中蒸发的低压CO2的温差过大。原理是使低温气态流体定位于端部,仅接触(当然是间接)蒸发的“HP”CO2流。该“HP”CO2流将是唯一(间接)接触部分冷凝的热流体的流体。
[0070] 这一点对所述应用更重要的是,必须避免在该交换器中累积汞。因此,必须避免热流体与比汞的三相点即-38℃温度更低的流体接触。具体地,可以局部降低至低于-38℃和在交换器中沉积固体形式的汞。
[0071] 在所有附图中,塔23可以由一系列相分离器代替,所述相分离器分离液体19以形成贫含二氧化碳的气体25和富含二氧化碳的液体33。
[0072] 塔23、交换器9、相分离器11、17和交换器35都被容纳在热腔室中,因为它们都在低温下运行。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈