首页 / 专利库 / 材料和表面特性 / 剪切粘度 / 纤维素醚及其制备方法

纤维素醚及其制备方法

阅读:4发布:2022-03-09

专利汇可以提供纤维素醚及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 发现,通过在制备 纤维 素醚之前对 纤维素 浆进行丝光化并回收,将改变由纤维素浆制得的纤维素醚的溶液流变性。例如,由丝光化并回收的纤维素浆生产的 羧甲基纤维素 (CMC)的溶液 粘度 将明显大于由非丝光化纤维素浆生产的CMC。另外,本发明还提供一种纤维素醚的制备方法,该方法包括如下步骤:(a)获得丝光化并回收的纤维素浆,和(b)使丝光化并回收的纤维素浆转 化成 纤维素醚。当纤维素浆为南方针叶木 硫酸 盐 浆时,丝光化纤维素浆的TAPPI 230 om-89粘度值将大于12cP。该丝光化纤维素浆通常不含纤维素III。通过该方法制得的丝光化纤维素浆与非丝光化纤维素浆相比,具有更多百分比的结晶纤维素II和更少的结晶区域。另外,本发明还提供一种纤维素絮凝物的制备方法,包括如下步骤:(a)获得丝光化并回收的纤维素浆,和(b)对丝光化浆进行处理以形成纤维素絮凝物。当纤维素浆为南方针叶木 硫酸盐 浆时,丝光化纤维素浆的TAPPI 230 om-89粘度值将大于12cP。另外,该方法还包括对纤维素絮凝物进行丝光化并回收。通过该方法制得的纤维素絮凝物,其中松 密度 大于由类似的非丝光化纤维素浆制得的纤维素絮凝物的松密度。此外,松密度增加值大于由纤维素絮凝物制备所造成的粗糙度(每单位纤维长度的重量)增加所期望的松密度增加。,下面是纤维素醚及其制备方法专利的具体信息内容。

1.一种纤维素醚的制备方法,包括如下步骤:
(a)获得丝光化并回收的纤维素浆,和
(b)使丝光化并回收的纤维素浆转化成纤维素醚,
其中,当纤维素浆为南方针叶木硫酸盐浆时,用纤维素II丝光化 剂对步骤(a)中的丝光化的纤维素浆料进行丝光化处理,并且,丝光化 并回收的纤维素浆的TAPPI 230 om-89粘度值大于12cP。
2.权利要求1的方法,其中所述纤维素浆选自:短绒浆、阔叶木 纤维素浆、针叶木纤维素浆,亚硫酸盐纤维素浆、硫酸盐纤维素浆、 再化纤维素浆、和前述任意的组合。
3.权利要求2的方法,其中阔叶木纤维素浆选自:南方半球阔叶木 硫酸盐纤维素浆,南方半球阔叶木亚硫酸盐纤维素浆,斯堪地纳维亚 阔叶木硫酸盐纤维素浆,斯堪地纳维亚阔叶木亚硫酸盐纤维素浆,北 方阔叶木硫酸盐纤维素浆(NHK),北方阔叶木亚硫酸盐纤维素浆,南方 阔叶木硫酸盐纤维素浆(SHK),南方阔叶木亚硫酸盐纤维素浆,热带阔 叶木硫酸盐纤维素浆,热带阔叶木亚硫酸盐纤维素浆,以及前述的任 意组合。
4.权利要求2的方法,其中,针叶木纤维素浆选自:南方半球针叶 木硫酸盐纤维素浆,南方半球针叶木亚硫酸盐纤维素浆,斯堪地纳维 亚针叶木硫酸盐纤维素浆,斯堪地纳维亚针叶木亚硫酸盐纤维素浆, 南方针叶木硫酸盐纤维素浆(SSK),北方针叶木硫酸盐纤维素浆 (NSK),南方针叶木亚硫酸盐纤维素浆(SSS),北方针叶木亚硫酸盐纤 维素浆(NSS),前述的任意组合。
5.权利要求2的方法,其中亚硫酸盐纤维素浆选自:南方针叶木亚 硫酸盐纤维素浆,北方针叶木亚硫酸盐纤维素浆,热带阔叶木亚硫酸 盐纤维素浆,和前述任意的组合。
6.权利要求1的方法,其中纤维素浆是棉短绒浆。
7.权利要求1的方法,其中纤维素浆是针叶木亚硫酸盐纤维素浆。
8.权利要求1的方法,其中纤维素浆是没干燥的纤维素浆。
9.权利要求1的方法,其中纤维素浆是非再生纤维素浆。
10.权利要求1的方法,其中丝光化并回收的纤维素浆是纤维素絮 凝物。
11.权利要求1的方法,其中步骤(a)包括:
(i)使纤维素浆丝光化,和
(ii)洗涤,中和,或洗涤并中和丝光化纤维素浆。
12.权利要求1的方法,其中步骤(a)包括:
(i)使纤维素浆丝光化,和
(ii)洗涤丝光化纤维素浆。
13.权利要求12的方法,其中用水溶液对步骤(a)(ii)中的丝光化 纤维素浆进行洗涤。
14.权利要求13的方法,其中洗涤步骤一直进行到残余水的pH低 于约10为止。
15.权利要求13的方法,其中步骤(a)另外还包括(iii)对丝光化并 洗涤的、中和的、或洗涤并中和的纤维素浆进行干燥。
16.权利要求15的方法,其中,丝光化和干燥的纤维素浆包含以总 纤维素浆和水100%重量计低于约20%重量的水份。
17.权利要求10的方法,其中步骤(a)包括:
(i)将纤维素浆处理成纤维素絮凝物;
(ii)对纤维素絮凝物进行丝光化处理;和
(iii)洗涤、中和、或中和并洗涤丝光化的纤维素絮凝物。
18.权利要求1的方法,其中丝光化并回收的纤维素浆基本不含纤 维素III。
19.权利要求1的方法,其中丝光化并回收的纤维素浆,以纤维素 浆和丝光化剂100%重量计,包含低于约3.5%重量的丝光化剂。
20.权利要求19的方法,其中丝光化并回收的纤维素浆,以纤维素 浆和丝光化剂100%重量计,包含低于约0.3%重量的丝光化剂。
21.权利要求20的方法,其中丝光化并回收的纤维素浆,以纤维素 浆和丝光化剂100%重量计,包含低于约0.03%重量的丝光化剂。
22.权利要求1的方法,其中丝光化并回收的纤维素浆,其Rx值大 于0.57。
23.权利要求22的方法,其中丝光化并回收的纤维素浆,其Rx值 大于0.60。
24.权利要求23的方法,其中丝光化并回收的纤维素浆,其Rx值 大于0.64。
25.权利要求1的方法,其中丝光化并回收的纤维素浆以丝光化纤 维素浆结晶部分100%的总重量计,包含至少约20%重量的纤维素II。
26.权利要求1的方法,其中丝光化并回收的纤维素浆以总纤维素 浆100%重量计,具有至少约60%重量的结晶度。
27.权利要求1的方法,其中步骤(b)包括通过纤维素絮凝物中间体 将丝光化纤维素浆转化成纤维素醚。
28.权利要求27的方法,其中步骤(b)包括:
(i)将丝光化并回收的纤维素浆处理成纤维素絮凝物;
(ii)将纤维素絮凝物化成碱纤维素;和
(iii)将碱纤维素醚化成纤维素醚。
29.权利要求28的方法,其中步骤(b)(i)包括对丝光化纤维素浆进 行研磨、切碎、或剪切,以便形成纤维素絮凝物。
30.权利要求28的方法,其中步骤(b)(iii)包括用碱化剂对纤维素 絮凝物进行处理。
31.权利要求30的方法,其中碱化剂是碱金属氢化物。
32.权利要求28的方法,其中步骤(b)(iii)包括用醚化剂对碱纤维 素进行处理,以形成纤维素醚。
33.权利要求32的方法,其中醚化剂包括一氯乙酸钠。
34.权利要求10的方法,其中步骤(b)包括:
(i)将纤维素絮凝物碱化成碱纤维素;和
(ii)将碱化纤维素醚化成纤维素醚。
35.权利要求1的方法,其中纤维素醚是羧甲基纤维素
36.权利要求1的方法,其中纤维素醚是甲基纤维素。
37.权利要求1的方法,其中纤维素醚是非离子醚。
38.权利要求1的方法,其中纤维素醚是离子醚。
39.一种由权利要求35的方法制得的羧甲基纤维素醚。
40.一种由权利要求36的方法制得的甲基纤维素醚。
41.一种由权利要求37的方法制得的非离子纤维素醚。
42.一种由权利要求38的方法制得的离子纤维素醚。
43.一种棉短绒浆衍生得到的羧甲基纤维素,当根据ASTM D 2196 进行测量时,由1%重量羧甲基纤维素组成的水溶液的溶液粘度从约 60,000至约100,000。
44.一种针叶木硫酸盐浆衍生得到的羧甲基纤维素,当根据ASTM D 2196进行测量时,在1%重量羧甲基纤维素组成的水溶液中,其溶液粘 度从约1,000至约16,000cp。
45.一种阔叶木硫酸盐浆衍生得到的羧甲基纤维素,当根据ASTM D 2196进行测量时,在1%重量羧甲基纤维素组成的水溶液中,其溶液粘 度从约1,000至约16,000cp。
46.一种木浆衍生得到的羧甲基纤维素,当根据ASTM D 2196进行 测量时,在1%重量羧甲基纤维素组成的水溶液中,其溶液粘度从约 1,800至约3000cp。
47.一种纤维素絮凝物的制备方法,包括如下步骤:
(a)获得丝光化并回收的纤维素浆,和
(b)对丝光化的纤维素浆进行处理以形成纤维素絮凝物,
其中,当纤维素浆为南方针叶木硫酸盐浆时,丝光化并回收的纤维 素浆其中不含纤维素III,并且丝光化纤维素浆的TAPPI 230 om-89 粘度值将大于12cP。
48.权利要求47的方法,其中,纤维素浆选自:棉短绒浆、阔叶木 纤维素浆、针叶木纤维素浆、亚硫酸盐纤维素浆、硫酸盐纤维素浆、  再水化纤维素浆以及前述的任意组合。
49.权利要求47的方法,其中纤维素浆是亚硫酸盐纤维素浆。
50.权利要求47的方法,其中步骤(a)包括:
(i)使纤维素浆丝光化;和
(ii)对丝光化纤维素浆进行洗涤、中和、或中和并洗涤。
51.权利要求47的方法,其中,以纤维素浆和丝光化剂100%重量 计,丝光化并回收的纤维素浆包含低于3.5%重量的丝光化剂。
52.权利要求51的方法,其中,以纤维素浆和丝光化剂100%总重 量计,丝光化并回收的纤维素浆包含低于0.3%重量的丝光化剂。
53.一种由权利要求47制得的纤维素浆。
54.一种丝光化纤维素絮凝物的制备方法,包括如下步骤:
(a)使纤维素絮凝物丝光化;和
(b)回收丝光化纤维素絮凝物,
其中,丝光化并回收的纤维素絮凝物基本不含纤维素III。
55.一种由权利要求54的方法制得的纤维素絮凝物。
56.一种由棉短绒浆衍生得到的纤维素絮凝物,其平均絮凝物长度 为0.25-0.50mm并且絮凝物的堆积密度根据如下公式计算:
絮凝物堆积密度CLP絮凝物=m*(AFL)-0.8043
式中m从0.0755-0.0835,且AFL为纤维素絮凝物的数均絮凝物长 度。
57.一种由南方针叶木硫酸盐纤维素浆衍生得到的纤维素絮凝物, 其平均絮凝物长度为0.25-0.50mm并且絮凝物的堆积密度根据如下公 式计算:
絮凝物堆积密度SSK絮凝物=m*(AFL)-0.9676
式中m从0.0841-0.0925,且AFL为纤维素絮凝物的数均絮凝物长 度。
58.一种由北方针叶木亚硫酸盐纤维素浆衍生得到的纤维素絮凝 物,其平均絮凝物长度为0.25-0.50mm并且絮凝物的堆积密度根据如 下公式计算:
絮凝物堆积密度NSS絮凝物=m*(AFL)-0.7336
式中m从0.0689-0.0758,且AFL为纤维素絮凝物的数均絮凝物长 度。
59.一种纤维素醚的制备方法,包括如下步骤:
(a)选择用于纤维素醚的希望的粘度,
(b)获得丝光化并回收的纤维素浆,该浆料具有获得所选粘度的纤 维素醚的适当的粘度;和
(c)将丝光化并回收的纤维素浆转化成纤维素醚,
其中,丝光化并回收的纤维素浆基本不含纤维素III,并且,当纤 维素浆为南方针叶木硫酸盐浆时,丝光化纤维素浆的TAPPI 230 om- 89粘度值将大于12cP。

说明书全文

发明领域

本发明涉及纤维素醚以及由丝光化并回收的纤维素纸浆制备纤维 素醚的方法。本发明还涉及:根据丝光化并回收的纤维素纸浆制备具 有增加松密度的纤维素絮凝物的方法。

发明背景

纤维素醚在增稠剂(例如食品添加剂),粘结剂(例如大漆和其它色 漆),粘合剂,印刷基墨,悬浮液稳定剂,热塑性材料,保护胶体,乳 液稳定剂,整理组合物(例如用于纺织物),涂布组合物(例如用于纸张 和纸产品),塑料片材(例如用于包装或纺织物),以及成膜剂方面有着 广泛的用途。例如,参见:聚合物科学和工程百科全书(第2版,1985 年,John Wiley & Sons,New York),用于复合材料的微孔材料 (Cellualr Materials to Composites)(第3卷,“纤维素醚”一章, 第226-269页)。这些应用中的许多得益于纤维素醚(例如采油流体) 相对高的粘度。在本发明之前,纤维素醚的溶液粘度主要通过通过用 于制备纤维素醚的纤维素浆的聚合度(DP)或粘度而增加,或者通过在 浆料研磨期间保护DP或粘度不降低和在纤维素醚制备期间进行的其 它处理办法而增加。
例如,如果希望纤维素醚具有特定的溶液粘度,那么首先确定适当 的纤维素浆的粘度并选择具有该粘度的纤维素浆。该原料的选择策略 也被醚的生产者采用,从而通过使用更高密度的纤维素絮凝物而增加 生产量。
通常,通过用化剂如氢化钠使纤维素碱化,以形成碱纤维素; 然后使碱纤维素醚化而生产出纤维素醚。例如,参见: US2,067,946;2,636,879;4,063,018;4,250,305;4,339,573;和 4,547,570。在碱化之前,可以将纤维素浆缩短或研磨成纤维素絮凝 物。例如,参见:US2,067,946;2,636,879;和4,339,573。
Edelman等人的US4,941,943披露了一种用于制备羧甲基纤维素的 预处理方法。该预处理方法包括:将纤维素冲浆成约5-15%的稠度以 形成纤维悬浮液,将纤维悬浮液浓缩至约25-35%的稠度以形成浆料, 然后使该浆料均匀化。在纤维悬浮液浓缩之后,使该浆料丝光化以形 成活性纤维素(或碱纤维素)。丝光化步骤可以在均匀化步骤之前、之 后、或逆流进行。在预处理过程之后,使活性纤维素醚化成羧甲基纤 维素钠。
Orii等人的US4,292,426披露了羟丙基纤维素的制备方法。该方 法需要使纤维素溶胀,从溶胀的纤维素中排出过量的氢氧化钠溶液, 从而形成合纤维素;并通过用氢氧化钠水溶液对水合纤维素的洗涤 和干燥而得到碱纤维素。对碱纤维素进行洗涤以便降低水合纤维素的 碱含量。最终的碱纤维素,其氢氧化钠与纤维素的比率从0.05至 0.16,水对纤维素的比率从0.2至0.5。该方法另外还包括:使碱纤 维素与氧化丙烯反应,直至摩尔取代度在1和2之间为止;对于原料 碱纤维素中每份纤维素,添加0.2-0.7份水;并继续进行醚化反应, 直至摩尔取代度大于2.5为止。
Bredereck等人的US4,491,661披露了一种水溶性纤维素醚的制备 方法,包括:利用水使纤维素活化,在氨水存在下利用碱化剂使活 性纤维素碱化,在碱化剂存在下从碱化纤维素中除去氨水,并在有机 溶剂存在下利用醚化剂使碱纤维素醚化。当借助液氨使纤维素活化 时,将形成结晶纤维素III。正如本领域熟知的那样,结晶纤维素III 与其它结晶纤维素结构,如结晶纤维素II相比,具有明显不同的结构 和性能。例如,参见:上述Rydholm;以及上述Ott,Spurlin和Grafflin 所述。
Laskowksi等人的DDR146,462披露了一种取代度低于0.5的低取 代、水溶性羧甲基纤维素的制备方法。该方法包括:利用液氨使纤维 素活化,蒸发掉氨,利用氢氧化钠使活性纤维素碱化,并使碱化的纤 维素羧甲基化。
Dautzenberg等人的DDR148,342披露了一种具有增加溶液粘度的 羧甲基纤维素的制备方法。该方法包括:利用液氨使纤维素活化,使 活性纤维素碱化,并使碱化的纤维素羧甲基化。
目前,需要一种增加生产量的纤维素醚的制备方法,并且其中纤维 素醚的溶液粘度可以通过处理条件进行控制,而不只是原料的粘度。 另外,还需要一种纤维素絮凝物的制备方法,该方法将增加每数均絮 凝物长度的松密度。
发明概要
本发明发现,由纤维素浆制得的纤维素醚的溶液流变性,在该纤维 素醚制备之前通过使纤维素浆的丝光化并回收而改变。例如,由丝光 化并回收的纤维素浆生产的羧甲基纤维素(CMC)的溶液粘度将明显大 于由非丝光化纤维素浆生产的羧甲基纤维素(CMC)的溶液粘度。
本发明提供一种纤维素醚的制备方法,包括如下步骤:(a)获得丝 光化并回收的纤维素浆,和(b)使丝光化并回收的纤维素浆转化成纤维 素醚。当纤维素浆为南方针叶木硫酸盐浆时,丝光化纤维素浆的TAPPI 230 om-89粘度值将大于12cP。该丝光化纤维素浆通常不含纤维素 III。通过该方法制得的丝光化纤维素浆与非丝光化纤维素浆相比,具 有更高百分比的结晶纤维素II和更少的结晶区域。
根据优选的实施方案,所述方法包括:(a)获得丝光化并回收的纤 维素浆,(b)对丝光化并回收的纤维素浆进行处理以形成纤维素絮凝 物,(c)将纤维素絮凝物碱化成碱纤维素,和(d)将碱纤维素醚化成纤 维素醚。当纤维素浆为南方针叶木硫酸盐浆时,丝光化纤维素浆的 TAPPI 230 om-89粘度值将大于12cP。根据另一实施方案,将步骤(a) 和(b)颠倒,即将纤维素浆处理成纤维素絮凝物,然后对纤维素絮凝物 进行丝光化并回收。
另外,本发明还提供一种纤维素絮凝物的制备方法,包括如下步 骤:(a)获得丝光化并回收的纤维素浆,并(b)对丝光化浆进行处理以 形成纤维素絮凝物。当纤维素浆为南方针叶木硫酸盐浆时,丝光化纤 维素浆的TAPPI 230 om-89粘度值将大于12cP。另外,该方法还包括 对纤维素絮凝物进行丝光化并回收。通过该方法制得的纤维素絮凝 物,其中松密度大于由类似的非丝光化纤维素浆制得的纤维素絮凝物 的松密度。此外,松密度增加值大于由纤维素絮凝物制备所造成的粗 糙度(每单位纤维长度的重量)增加所期望的松密度增加。
另一实施方案是纤维素醚的制备方法,包括如下步骤:(a)选择用 于纤维素醚的希望的粘度,(b)获得丝光化并回收的纤维素浆,该浆料 具有获得所选粘度的纤维素醚的适当的粘度;和(c)将丝光化并回收的 纤维素浆转化成纤维素醚。当纤维素浆为南方针叶木硫酸盐浆时,丝 光化纤维素浆的TAPPI 230 om-89粘度值将大于12cP。
附图概述
图1是由丝光化和非丝光化南方针叶木硫酸盐浆北方针叶木亚硫酸 盐浆和短绒浆制得的纤维素絮凝物的于絮凝物密度对絮凝物数均纤 维长度的线状图表。
图2是丝光化棉短绒浆,南方针叶木硫酸盐浆,北方针叶木亚硫酸 盐浆,和南方阔叶木硫酸盐浆的Rx值对纸浆处理期间施加的氢氧化钠 的百分比的线状图表。
发明详述
令人惊奇地发现,由先前丝光化并回收的纤维素浆制得的纤维素 醚,与由非丝光化纤维素浆制得的类似的纤维素醚相比,具有明显不 同的溶液流变性。例如,所制得的纤维素醚的粘度可以通过改变工艺 参数如通过改变丝光化程度而得以控制。因此,制造者能够利用相同 种类的纤维素浆,例如南方针叶木硫酸盐浆(SSK),和处理设备,得到 宽范围溶液流变性的纤维素醚,而无需改变纤维素浆或处理设备的种 类。对于某些纤维素醚,如羧甲基纤维素,将丝光化并回收的纤维素 浆用作原料,将明显增加纤维素醚的溶液粘度。溶液粘度的增加给纤 维素醚制造者提供了这样的机会,即能够与宽范围的合成和其它天然 水溶性聚合物竞争,能够开发出纤维素醚的新用途,并改善目前产品 的性能。
发明人还发现,由丝光化并回收的纤维素浆制得的纤维素絮凝物 比由非丝光化纤维素浆制得的纤维素絮凝物更为紧密。在此使用的术 语“纤维素絮凝物”定义为:由纤维素浆的纤维长度缩短所得到的材 料,与片材或松厚材料切碎、剪切或研磨成更短的长度无关。絮凝物 密度的增加使得纤维素醚生产者能够增加纸浆厂的生产量。如图1所 示,棉短绒浆(CLP),南方针叶木硫酸盐浆(SSK),和北方针叶木亚硫 酸盐浆(NSS)的丝光化纤维,与其非丝光化纤维素浆相比,均具有更高 的絮凝物密度,这与絮凝物(纤维)长度无关。例如,研磨的纤维素絮 凝物,其絮凝物的堆积密度通常比由非丝光化纤维素浆得到的类似的 絮凝物大约20-60%。该密度差在反应器装载量和醚产品生产量方面均 将提供明显的优点。
丝光化并回收的纤维素浆的制备
丝光化并回收的纤维素浆可以通过(i)使纤维素浆丝光化,(ii)洗 涤,中和,或洗涤并中和丝光化纤维素浆,以及(iii)非强制性地对丝光 化纤维素浆进行干燥而制备。
本领域已知的任何纤维素浆均可以用作原料。合适的纤维素浆源包 括但不局限于:棉短绒浆,阔叶木纤维素浆(例如阔叶木硫酸盐浆), 针叶木纤维素浆(例如针叶木硫酸盐浆),亚硫酸盐纤维素浆(例如针叶 木和阔叶木亚硫酸盐浆)硫酸盐纤维素浆,再水化纤维素浆,以及前述 纤维素浆的任意组合。合适的阔叶木纤维素浆包括但不局限于南方半 球阔叶木硫酸盐纤维素浆,南方半球阔叶木亚硫酸盐纤维素浆,斯堪地 纳维亚(Scandavian)阔叶木硫酸盐纤维素浆,斯堪地纳维亚阔叶木亚 硫酸盐纤维素浆,北方阔叶木硫酸盐纤维素浆(NHK),北方阔叶木亚硫 酸盐纤维素浆,南方阔叶木硫酸盐纤维素浆(SHK),南方阔叶木亚硫酸 盐纤维素浆,热带阔叶木硫酸盐纤维素浆,热带阔叶木亚硫酸盐纤维素 浆,和前述浆料的任意组合。合适的针叶木纤维素浆包括但不局限于: 南方半球针叶木硫酸盐纤维素浆,南方半球针叶木亚硫酸盐纤维素 浆,斯堪地纳维亚针叶木硫酸盐纤维素浆,斯堪地纳维亚针叶木亚硫 酸盐纤维素浆,南方针叶木硫酸盐纤维素浆(SSK),北方针叶木硫酸盐 纤维素浆(NSK),南方针叶木亚硫酸盐纤维素浆(SSK),北方针叶木亚硫 酸盐纤维素浆(NSS),和前述浆的任意组合。合适的亚硫酸盐纤维素浆 包括但不局限于:南方针叶木亚硫酸盐纤维素浆,北方针叶木亚硫酸 盐纤维素浆,热带阔叶木亚硫酸盐纤维素浆,和前述浆的任意组合。 特别可以提及的浆是棉短绒浆,针叶木亚硫酸盐纤维素浆,以及没有 干燥过的纤维素浆。
纤维素浆可以是两种或多种不同纤维素浆的混合物。优选的是,所 述纤维素浆不是再生纤维素浆。适用于本发明的硫酸盐纤维素浆可以 进行或不进行预水解。另外,所述纤维素浆可以是前述材料任一种的 纤维素絮凝物。
纤维素浆可以通过本领域已知的任何方法进行丝光化,例如在 Rydholm编辑的制浆方法(Interscience Publishers,1965)和Ott, Spurlin和Grafflin编辑的纤维素和纤维素衍生物(第V卷,第1部 分,Interscience Publishers,1954)中描述的方法,在此将其引入 作为参考。丝光化作用将纤维素从其天然形式即纤维素I转化成热 学上更为稳定的形式,即纤维素II。纤维素浆可以通过使浆料与丝光 化剂进行反应而丝光化,所述丝光化剂如将纤维素从纤维素I转化成 纤维素II的丝光化剂(即纤维素II的丝光化剂)。根据一个优选的实 施方案,丝光化剂不是氨或胺。
合适的丝光化剂包括但不局限于:碱金属氢氧化物,如氢氧化钠 (NaOH),氢氧化锂(LiOH),氢氧化(KOH),和氢氧化铷(RbOH);苄基三 甲基氢氧化铵(BTMOH);以及前述任意的组合。
根据优选的实施方案,丝光化剂是氢氧化钠。通常,纤维素浆用基 于100%重量的总水溶液计从约6.5-50%优选从约7-24%重量的氢氧化 钠水溶液进行处理。这分别相当于从约70克至约764克每升(g/l)的 氢氧化钠的浓度和从约75克至约300克每升(g/l)的氢氧化钠的浓 度。通常,利用丝光化剂,在约20℃或更高的温度,在搅拌下对纤维 素浆进行处理。
丝光化作用可以在浆料生产过程期间或之后进行,包括在蒸煮、漂 白、提纯、和干燥期间和之后。另外,丝光化步骤也可以再水化纤维 素浆时进行。根据优选的实施方案,丝光化作用在浆料生产期间的漂 白和/或提纯处理期间进行。
根据优选的实施方案,丝光化作用在基本不含氧的环境下,如在氮 气氛下进行。氧将破坏聚合物链,并导致更低粘度的最终产物。 
丝光化作用通常在基本不含醚化剂的环境品进行,更优选的是,以 纤维素浆和醚化剂100%的总重量为基础,在包含低于约0.1%重量醚化 剂的环境中进行。最优选的是,在没有任何醚化剂存在下进行丝光化 作用。
在丝光化作用之后,以纤维素浆结晶部分100%总重量计,纤维素浆 优选包含至少约20%,更优选至少约35%,最优选约60%重量的纤维素 II。通常,结晶部分仅由纤维素I和纤维素II组成。
然后,从纤维素浆和丝光化剂中回收纤维素浆,即回收或中和混合 物中的绝大多数或全部丝光化剂。通常,对丝光化纤维素浆进行洗涤 和/或中和。例如,可以用水,弱酸(例如pH从约4.0至约6.9的酸), 弱丝光化剂的溶液(例如,pH从约7.1至约10.0的溶液),或前述任 意的组合,对丝光化浆进行洗涤。
另外,也可以通过将中和剂添加至纤维素浆中而中和丝光化剂。合 适的中和剂包括但不局限于:硫酸,盐酸草酸,二氧化硫,磷酸, 和前述任意的组合。纤维素浆可以以任何顺序进行洗涤和中和。通常, 将浆料中和至约6.0至约8.0的pH值。在纤维素浆中和之后,优选进 行洗涤,以除去过量的盐,如氯化钠(NaCl)。丝光化剂可以在洗涤和/ 或中和步骤期间回收,并随后循环使用。
根据优选的实施方案,丝光化纤维素浆用水进行洗涤。通常,丝光 化纤维素浆用水进行洗涤,直至浆料的残留水的pH值低于约10.0, 优选从约5.0至约8.0。
以纤维素浆和丝光化剂100%重量计,洗涤和/或中和的纤维素浆通 常包含低于约3.5%重量的丝光化剂。以纤维素浆和丝光化剂100%重量 计,洗涤和/或中和的纤维素浆通常包含低于约0.3%,更优选低于约 0.03%,最优选低于约0.02%重量的丝光化剂。
纤维素浆可以在丝光化和洗涤和/或中和步骤之后进行干燥,以便 生产片材,包,或松散的纤维素浆。干燥可以用本领域已知的任何 方法进行。优选的是,以总纤维素浆和水100%重量计,将纤维素浆干 燥至:纤维素浆包含低于约20%,更优选低于约15%,最优选低于约 10%重量的水份。干燥通常在约100至约185℃,优选在约120至约170 ℃的温度下进行。
优选的是,用碱金属氢氧化物丝光化并回收的纤维素浆如CLP, NSS,SSK和SHK,其Rx值大于约0.57,更优选大于约0.60,最优选 大于约0.64。优选的是,丝光化并回收的纤维素浆,以总纤维素100% 重量计,其总结晶度低于约60%,更优选低于约50%重量的结晶部分。 丝光化并回收的木质纤维素浆,以总纤维素100%重量计,其总结晶度 低于约45%重量的结晶部分。
根据优选的实施方案,以总纤维素浆100%重量计,丝光化并回收的 CLP,其Rx值大于约0.57并且其总结晶度低于约60%重量。根据另一 优选的实施方案,以总纤维素浆100%重量计,丝光化并回收的SHK, 其Rx值大于约0.57并且其总结晶度低于约50%重量。根据另一优选 的实施方案,以总纤维素浆100%重量计,丝光化并回收的SSK,其Rx 值大于约0.57并且其总结晶度低于约50%重量。根据另一优选的实施 方案,以总纤维素浆100%重量计,丝光化并回收的NSS,其Rx值大于 约0.57并且其总结晶度低于约50%重量。
当纤维素浆为南方针叶木硫酸盐浆时,丝光化并回收的纤维素浆, 当通过TAPPI T230 om-89进行测量时,其粘度值通常至少为12cP。 优选的是,当通过TAPPI T230 om-89进行测量时,丝光化的南方针叶 木硫酸盐纤维素浆的粘度值通常至少为20cp,更优选至少为26cp。
优选的是,丝光化并回收的纤维素浆基本不含纤维素III。以纤维 素浆结晶部分100%总重量计,丝光化的纤维素浆优选包含低于约 20%,更优选低于约5%重量的纤维素III。
通常,丝光化并回收的纤维素浆基本不含醚化剂,并且以纤维素浆 和醚化剂100%的总重量计,优选包含低于约0.1%重量的醚化剂。更优 选的是,丝光化并回收的纤维素浆不含醚化剂。
优选的是,丝光化并回收的纤维素浆是预先制备的,即在远离大量 制备纤维素醚的地方制备的。在此使用的术语“大量”定义为大于约 200kg的量。
纤维素絮凝物的制备
在丝光化并回收浆料之前或之后,可以将纤维素浆转化成纤维素絮 凝物。优选的是,在转化成纤维素絮凝物之前,使纤维素浆进行丝光 化并回收。
纤维素絮凝物可以通过本领域已知的任何方法来生产,如通过机械 处理法。纤维素浆可以进行研磨,如利用旋转的切割叶片研磨至希望 的絮凝物大小。另外,也可以利用一级和/或二级旋转刀对纤维素浆进 行研磨。另外,浆料可以通过本领域已知的方法切碎或剪切成纤维素 絮凝物。
研磨纤维素絮凝物的纤维长度可以根据生产的醚而改变。数均絮凝 物长度,即絮凝物中纤维的长度在约0.1至约2.0毫米范围内变化。 用于研磨纤维素絮凝物的优选的纤维长度从约0.2至约0.5毫米。切 碎的絮凝物长度通常从约0.5至约5.0毫米,优选从约1至约3毫米。 絮凝物的干燥密度主要根据絮凝物的长度和丝光化纤维素浆的密度而 改变。
例如,数均絮凝物长度为0.25至0.50毫米的本发明的CLP衍生得 到的纤维素絮凝物,其絮凝物堆积密度如下所述:
絮凝物堆积密度CLP絮凝物=m*(AFL)-0.8043
式中m从0.0755-0.0835,AFL表示数均絮凝物长度。数均絮凝物 长度为0.25至0.50毫米的本发明的SSK衍生得到的纤维素絮凝物, 其絮凝物堆积密度如下所述:
絮凝物堆积密度SSK絮凝物=m*(AFL)-0.9676
式中m从0.0841-0.0925,AFL表示数均絮凝物长度。数均絮凝物 长度为0.25至0.50毫米的本发明的NSS衍生得到的纤维素絮凝物, 其絮凝物堆积密度如下所述:
絮凝物堆积密度NSS絮凝物=m*(AFL)-0.7336
式中m从0.0689-0.0758,AFL如上所述。
纤维素醚的制备
丝光化纤维素浆可以通过本领域任何已知的方法转化成纤维素 醚。转化丝光化纤维素浆的优选方法包括:对丝光纤维素浆进行处理 以形成纤维素絮凝物,并将纤维素絮凝物转化成纤维素醚。例如,可 以通过对纤维素絮凝物进行碱化以形成碱纤维素,并将碱纤维素醚化 成纤维素醚,而制备纤维素醚。可以如上所述或通过本领域已知的任 何方法制备纤维素絮凝物。另外,也可以在不形成纤维素絮凝物的情 况下,通过对纤维素浆的碱化和醚而制备纤维素醚。
另外,可以如上所述对纤维素絮凝物进行丝光化并回收,然后转化 成纤维素醚。例如,通过对丝光化并回收的纤维素絮凝物进行碱化以 形成碱纤维素,并对碱纤维素进行醚化,而制备纤维素醚。
丝光化纤维素浆/絮凝物的碱化
纤维素浆或絮凝物可以通过本领域已知的任何方法进行碱化。例 如,纤维素浆或絮凝物可以用碱金属氢氧化物,如氢氧化钠进行处理, 以便形成碱纤维素。合适的碱金属氢氧化物包括但不局限于上面所述 的那些。碱金属氢氧化物与纤维素反应,将破坏纤维素链中分子间氢 键并破坏纤维素的欠活性结晶区。
通常,丝光化纤维素用水溶液来处理,以水溶液100%总重量计,所 述水溶液包含约15至约80%,优选从约25至约65%,更优选从约30 至约50%重量的碱金属氢氧化物。碱化作用通常在约20至约40℃,优 选在约24至约34℃的温度下进行。
根据优选的实施方案,碱化作用在基本不含氧的环境下进行,如在 氮气氛下进行。氧将破坏聚合物链,导致更低粘度的最终产物。
碱纤维素的醚化
最终步骤是碱纤维素的醚化。通常,通过使碱纤维素与醚化剂的反 应而使碱纤维素醚化。合适的醚化剂包括但不局限于:卤代乙酸及其 盐,如一氯乙酸钠。由碱纤维素制备纤维素醚的各种方法描述于 US4,063,018;4,250,305;和4,547,570中,在此将其引入作为参考。
将纤维素絮凝物转化成碱纤维素和醚化步骤可以同时或顺序进 行。
可以通过本发明的方法制备的纤维素醚包括但不局限于:离子型和 非离子型纤维素醚。所述纤维素醚的例子包括但不局限于:羧甲基纤 维素(CMC),羟乙基纤维素(HEC),羟丙基纤维素(HPC),甲基羟乙基纤 维素(MHEC),乙基羟乙基纤维素(EHEC),甲基纤维素(MC),和甲基羟 丙基纤维素(MHPC)。由本发明的方法制得的纤维素醚特别适于用作制 备水溶性聚合物的原料。
例如,该方法能够制备:棉短绒浆衍生得到的羧甲基纤维素(CMC), 在1%重量CMC组成的水溶液中,根据ASTM D 2196,其溶液粘度从约 60,000至约100,000cp;针叶木硫酸盐浆衍生得到的CMC,在1%重量 CMC组成的水溶液中,其溶液粘度从约1,000至约16,000cp;阔叶木 硫酸盐浆衍生得到的CMC,在1%重量CMC组成的水溶液中,其溶液粘 度从约1,000至约16,000cp;木浆衍生得到的CMC,在1%重量CMC组 成的水溶液中,其溶液粘度从约1,800至约3000cp;优选的棉短绒浆 衍生得到的CMC包括但不局限于:在1%重量CMC组成的水溶液中,根 据ASTM D 2196,其溶液粘度从约70,000至约85,000cp的那些CMC。 优选的针叶木硫酸盐浆衍生得到的GMC包括但不局限于:在1%重量CMC 组成的水溶液中,其溶液粘度从约1,100至约1,400cp的那些CMC。 优选的阔叶木硫酸盐浆衍生得到的CMC包括但不局限于:在1%重量CMC 组成的水溶液中,其溶液粘度从约1,200至约1,400cp的那些CMC。 优选的木浆衍生得到的CMC包括但不局限于:在1%重量CMC组成的水 溶液中,其溶液粘度从约2,000至约2,600cp的那些CMC。这些粘度 值是根据ASTM D 2196,由标准Brookfield粘度计(LVDV2+型)测量的。 适当选择锭子大小(2-4),以保证转矩大于10并小于90。锭子速度设 置在60rpm。对于高粘度CMC,如由丝光化CLP制得的CMC,可能需要 4的锭子大小并将转速设置在6rpm,以便测量1%水溶液的粘度。
由本发明的方法制得的纤维素醚可以用来制备,例如水溶性聚合 物,合成增稠剂,采油流体,保湿助剂,粘结剂(例如大漆和其它色漆), 粘合剂,印刷基墨,悬浮液稳定剂,热塑性材料,保护胶体,乳液稳 定剂,成膜剂,整理组合物(例如用于纺织物),涂布组合物(例如用于 纸张和纸产品),以及塑料片材(例如用于包装或纺织物)。
下面的实施例将阐明本发明而不对本发明进行限定。除非另有说 明,所有百分数均以重量计。术语“(w/w)”定义为:以混合物100% 的总重量计,混合物中一种或多种具体成份的重量。
实施例1
棉短绒浆衍生得到的纤维素絮凝物的制备
利用75g/L的7%(w/w)的氢氧化钠(NaOH),111g/L的10%(w/w)的 氢氧化钠,162g/L的14%(w/w)的氢氧化钠,216g/L的18%(w/w)的氢 氧化钠,于25℃,对未干燥的棉短绒浆试样进行处理(3%稠度,15分 钟)。每个浆料试样均用次氯酸盐在50℃漂白50分钟。然后,对浆料 进行洗涤并在3.5%稠度下用硫酸和草酸对浆料进行处理,并借助得自 Cybermetrics(Alpharetta,GA)的Dynamique抄片机形成片材。对片 材进行干燥并利用Wiley Mill研磨机(得自Arthur H.Thomas Co.,Philadelphia,PA)进行研磨,从而形成数均絮凝物长度(AFL)为 0.45毫米的纤维素絮凝物。絮凝物的数均纤维长度是利用Kajaani FS-200纤维分析仪(得自Neles/Valmet,Kajaani,Finland)测量的。
浆料和絮凝物的粘度是根据TAPPI T230 om-89测量的。
干絮凝物的堆积密度是利用250毫米刻度的量筒,根据ASTM D 1439 测量的;所述量简装有絮凝物并轻敲1000次以便模拟向反应器内的装 填。
根据“浆料保水容量(溶胀值)测量”(Theodor Hopner,Grorg Jayme and Johannes C.Ulrich,Das Papier,Vol9,No.19/20,pp.476- 482(1955))中描述的方法,测量研磨絮凝物的保水值(WRV)。通常,使 再分的浆料试样在水中溶胀16-24小时,然后以1500g进行离心处理。 然后对湿的离心过的试样进行稳重,在105±2℃进行干燥,并再次稳 重。在离心处理后留在试样中的水份主要是由于常用所保留的。WRV 根据下式确定:
WRV=(湿离心试样的重量-干试样的重量)×100%/干试样的重量
纤维素浆片材的纤维素II的百分数(以总结晶部分100%重量计的 重量)和结晶度(结晶度Xc)(以总纤维素100%重量计的重量)通过以 Fraunhofer-Institute of Applied Polymer Research的广X-射 线散射(WAXS)进行测量(Teltow-Seehof,Germany,Fink,H.-P., Walenta,E.(1994),Rntgenbeugungsuntersuchungen zur bermolekulararen Struktur von Cellulose im Verarbeitungsproze β.Das Papier 12,739-748;H.-P,Fink,D. Hofmann,and B.Philipp,Cellulose 2(1995),51-70)。利用与 Ge主光束单色仪成对称透射构形的Siemens D-500衍射仪(各向同性 试样,4°≤2θ≤104°)。
用于片材浆料的Rx值如下进行测量。对片材浆料进行X-射线衍射 (带有PW1840衍射仪的Philips PW 1729 X-射线发生器),以便确定 天然纤维素I纤维和丝光化纤维素II纤维的峰强度。Rx值是纤维素 II的峰衍射对纤维素II和纤维素I的峰衍射总和的比值。参见Rasch and McCarthy,Norsk Skogindustri,8:329,1954。纤维素II的百 分比随着Rx值的增加而增加。Rx值由在约12.6和15.6度的衍射照 射的强度衍生得到,并且根据式Rx=2I12.6/2I12.6+I15.6计算。
结果示于下表1A中。
表1A
丝光化对CLP衍生的片材和絮凝物的性能的作用     丝光化剂处理量     (NaOH(w/w)) 对比例(0%)     7%   10%   14%   18%     片材粘度(cP)     277     267   262   218   224     絮凝物粘度(cP)     202     206   198   172   166   平均絮凝物长度(mm)     0.45     0.45   0.44   0.45   0.45    絮凝物密度(g/mL)     0.108     0.112   0.116   0.147   0.152     絮凝物WRVs(%)     56.5     54.5   55.2   65.6   65.9      片材Rx值     0.5406     0.5370   0.5408   0.6341   0.6540     片材纤维素II(%)     0     0   0   38   62     片材结晶度Xc(%)     61     60   61   52   46
在丝光化剂处理中使用的氢氧化钠浓度的增加将使棉短绒浆(CLP) 的粘度降低。然而,絮凝物密度将随着丝光化剂处理量的增加而增加。 18%氢氧化钠处理将造成CLP絮凝物密度比对比例增加41%。
棉短绒浆衍生得到的CMC的制备
利用得自Janke and Kunkel(Staufen,Germany)的IKA反应器,如 下所述,将絮凝物转化成羧甲基纤维素(CMC)。将40-50克(绝干)纤维 素絮凝物浸泡于水中过夜。然后将浸泡过的纤维素添加至776-870克 含水异丙醇(99.0%)中。对得到的浆液在约25℃搅拌30分钟。将46- 58克50%(w/w)的氢氧化钠水溶液添加至该浆液中,以便使纤维素絮凝 物碱化。碱化在约25℃进行30分钟。将26-35克99.6%的一氯乙酸溶 解于100克异丙醇中并添加至所述浆液中。然后,将浆液加热至75℃ 进行为时1.5小时的加热,然后,停止反应,并利用带#4滤纸的15cm 的Bchner漏斗使浆液滤水。滤出液用甲醇洗涤四次,以除去氯化钠 和其它副产物。然后对余下的CMC在约55℃用压缩空气进行干燥,并 利用如下所述的标准步骤和方法(即ASTM方法)进行评估。制备两个独 立的CMC批料并在除7%和10%以外的每个丝光化剂剂浓度下进行试 验。只制备一个CMC批料并分别在7%和10%丝光化剂浓度下进行试验。
根据ASTM D 2196,利用标准Brookfield粘度计(LVDV2+型),测 量0.5%至1%范围内的水溶液的醚旋转粘度。适当选择锭子大小(2- 4),以保证转矩大于10并小于90。除表1B中另外指出的以外,将锭 子速度设置在60rpm。对于由丝光化CLP制得的高粘度CMC,可能需要 4的锭子大小并将转速设置在6rpm,以便测量1%水溶液的粘度。
通过用0.1N盐酸对灰化CMC试样(0.2-1.0)进行滴定,而测量CMC 的取代度(DS)。通过在约600℃对CMC加热约20分钟而制备灰化CMC 试样。CMC的DS值在约0.7至约0.85的范围内。
结果列于下表1B中。
表1B
丝光化对CLP-衍生得到的CMC性能的作用 丝光化剂处理量   (NaOH(w/w))  CMC 0.50%   粘度(cP) CMC 0.75%粘    度(cP)  CMC 1%粘度    (cP)**   CMC取代度     (DS)   对比例(0%)     754     2751     34690     0.825     7%     825     2538     40600     0.765     10%     742     2373     35450     0.846     14%     1678     4889     80095     0.729     18%     1713     6387     83745     0.794
**利用#4锭子以6rpm的锭子速度测量1%溶液的粘度。
外加丝光化剂处理段不会改善CMC溶液的取代度(DS)。然而,由氢 氧化钠处理所造成的CMC溶液粘度将大大改善(对于0.75%的CMC溶 液,14%(w/w)氢氧化钠时为78%,而18%(w/w)氢氧化钠时为132%)。
实施例2
南方针叶木硫酸盐浆(SSK)衍生的纤维素絮凝物和CMC的制备
利用设置为600的计数器,根据TAPPI TMI 73-06-00中描述的方 法,使得自Buckeye Technolohies(Foley,FL)的非丝光化SSK浆板 (E30级)分解,从而形成浆液。然后,利用75g/L的7%(w/w)的氢氧化 钠(NaOH),111g/L的10%(w/w)的氢氧化钠,162g/L的14%(w/w)的氢 氧化钠,216g/L的18%(w/w)的氢氧化钠,于25℃,对浆液进行处理(3% 稠度,15分钟)。然后对浆料进行洗涤以除去氢氧化钠,并借助 Formette Dynamique抄片机形成片材。对片材进行干燥并利用Wiley Mill研磨机进行研磨,从而形成数均絮凝物长度为0.39-0.49毫米的 絮凝物。
根据实施例1的方法将纤维素絮凝物转化成CMC。根据纤维素絮凝 物制备两个CMC试样,并进行试验。
根据相同的纤维素浆但没有用氢氧化钠对其进行丝光化处理,制备 对比纤维素絮凝物。也根据对比纤维素絮凝物,根据实施例1中所述 的方法,制备CMC。
结果列于表2中。
表2
丝光化对SSK-衍生得到的片材、絮凝物和CMC性能的作用 丝光化剂处理量(NaOH(w/w))    对比例    (0%)    7%   10%   14%   18%     片材粘度(cP)     28.8   31.9   30.7   27.8   27.4     絮凝物粘度(cP)     23.8   27.8   26.7   23.7   23.7     平均絮凝物长度(mm)     0.45   0.39   0.41   0.46   0.47     絮凝物密度(g/mL)     0.149   0.166   0.187   0.180   0.194     絮凝物WRVs(%)     71.4   70.4   73.9   74.0   78.9     片材Rx值     0.5505   0.5557   0.5925   0.6422   0.6516     片材纤维素II(%)     0   0   24   61   72     片材结晶度Xc(%)     52   54   44   40   39     CMC0.50%粘度(cP)     73   70   87   125   121     CMC1%粘度(cP)     586   483   607   1268   1147     CMC DS     0.820   0.766   0.793   0.826   0.781
与对比例相比,用18%(w/w)氢氧化钠进行丝光化处理的絮凝物, 其干堆积密度将增加30%,WRV将增加11%。对于14%和18%的丝光化 处理,粘度(1.0%CMC溶液)的增加值在96%至128%的范围内改变。对 于丝光化SSK浆而言,这种溶液粘度的增加将大大扩大由SSK制得的 醚的溶液粘度范围。
对于对比例和18%(w/w)的丝光化处理,按照如下确定纤维素絮凝 物和CMC的聚合度(重均,DPw)。根据Morton,J.H.在木材和植物纤 维材料化学和处理(Kennedy,J.F.,Phillips,G.O.,Williams,P. A.编辑,第15章,Woodhead Publishing Ltd.,Cambridge,Eng.1996) 中描述的方法,由0.5%的CED粘度预测纤维素絮凝物的DPw。
根据描述于W.Brown,D.Henley和J.Oehman的高分子化学 (62:164(1963))中的方法,将氢氧化镉乙二胺溶液用作溶剂,由特性 粘度值来确定CMC的Dpw。
结果列于下表3。
表3
SSK氢氧化钠处理后CMC的DPw改变     处理   (w/wNaOH) 纤维素絮凝物   粘度(cP) 纤维素絮凝物     DPw   CMC DPw  醚化作用随 DPw的改变(%)     对比例   (0%NaOH)     23.8     2633     2270     -14   18%NaOH     23.7     2628     2605     -1
在醚化期间,对比浆料显示出了DPw14%的降低,而丝光化絮凝物仅 显示出1%的DPw降低。
实施例3
南方针叶木硫酸盐浆(SSK)衍生得到的纤维素絮凝物和CMC的制备
在二氧化氯、碱处理、二氧化氯漂白段(DED)之后,收集由Buckeye Technolohies(Foley,FL)生产的在生产中没干燥的SSK浆,进行另外 的实验室规模的漂白。然后,利用75g/L的7%(w/w)的氢氧化钠,111g/L 的10%(w/w)的氢氧化钠,162g/L的14%(w/w)的氢氧化钠,216g/L的 18%(w/w)的氢氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。 然后对浆料进行洗涤以除去氢氧化钠,用二氧化氯进行处理,然后用 硫酸进行处理。然后用软化水对得到的浆料进行洗涤,直至残余水的 pH低于9为止,并借助Formette Dynamique抄片机形成片材。利用 Wiley Mill研磨机对干燥的片材进行研磨,从而形成数均絮凝物长度 (AFL)为0.36-0.37毫米的絮凝物。
根据实施例1的方法,将纤维素絮凝物转化成CMC。单独制备CMC 的两个批料,并根据处理过的纤维素浆的每个批料进行试验。
根据相同的纤维素浆但没有用氢氧化钠对其进行丝光化处理,制备 对比物。
结果列于表4中。
表4
丝光化对没干燥的(ND)SSK-衍生得到的片材、絮凝物和CMC性能的 作用 丝光化剂处理量(NaOH(w/w))    对比例     (0%)   7%   10%   14%   18%     片材粘度(cP)     28.7   32.4   26.0   24.3   24.8     絮凝物粘度(cP)     25.1   27.9   22.7   22.0   21.4     平均絮凝物长度(mm)     0.37   0.37   0.37   0.37   0.36     絮凝物密度(g/mL)     0.205   0.179   0.224   0.242   0.233     絮凝物WRVs(%)     70.8   65.6   69.6   71.7   71.0     片材Rx值     0.5439   0.5529   0.6085   0.6534   0.6659     片材纤维素II(%)     0   0   39   69   74     片材结晶度Xc(%)     52   52   41   39   37     CMC0.50%粘度(cP)     78   106   156   166   131     CMC1%粘度(cP)     550   679   1108   1365   1472     CMC DS     0.869   0.831   0.806   0.802   0.820
与对比例相比,对于14%和18%的丝光化处理,1.0%CMC水溶液的 粘度增加值在148%至168%的范围内改变。利用18%(w/w)氢氧化钠进 行丝光化处理的絮凝物,其干堆积密度将比对比絮凝物的干堆积密度 大14%。
实施例4
NSS衍生得到的纤维素絮凝物和CMC的制备
利用设置为600的计数器,根据TAPPI TMI 73-06-00中描述的方 法,使非丝光化北方针叶木亚硫酸盐(NSS)浆板分解,从而形成浆液。 然后,利用75g/L的7%(w/w)的氢氧化钠(NaOH),111g/L的10%(w/w) 的氢氧化钠,162g/L的14%(w/w)的氢氧化钠,和216g/L的18%(w/w) 的氢氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。然后用水 对浆料进行洗涤并在3.5%稠度下用硫酸和草酸对浆料进行处理。借助 Formette Dynamique抄片机使浆料形成片材,对片材进行干燥并利用 Wiley Mill研磨机进行研磨,从而形成数均絮凝物长度为0.28-0.29 毫米的纤维素絮凝物。根据实施例1的方法将絮凝物转化成CMC。根 据处理过的纤维素浆料的每一个批料制备两个单独的CMC批料,并进 行试验。
通过将非丝光化NSS片材直接研磨成絮凝物并将该絮凝物转化成如 实施例1中所述的CMC,而制备第一对比例(对比例1)。
利用设置为600的计数器,根据TAPPI TMI 73-06-00中描述的方 法,使非丝光化NSS浆板分解形成浆液,而制备第二对比例(对比例 2)。借助Formette Dynamique抄片机使分解的浆料形成片材,对片材 进行干燥并利用Wiley Mill研磨机进行研磨,从而形成纤维素絮凝 物。如实施例1中所述,将该絮凝物转化成CMC。
结果列于表5中。
表5
丝光化对NSS-衍生得到的片材、絮凝物和CMC性能的作用     丝光化剂处理量      (NaOH(w/w))  对比例    11   对比例     12     7%     10%    14%    18%     片材粘度(cP)   67.2    60.0     64.8     63.6    65.4    61.9     絮凝物粘度(cP)   47.4    56.1     51.0     53.7    52.5    49.8     平均絮凝物长度(mm)   0.29    0.27     0.28     0.28    0.27    0.29     絮凝物密度(g/mL)   0.135    0.144     0.143     0.177    0.176    0.173     絮凝物WRVs(%)   74.7    70.2     68.1     73.0    75.8    73.1     片材Rx值   0.5615    0.5365     0.5553     0.6129    0.6443    0.6438     片材纤维素II(%)    -    0     0     40    61    65     片材结晶度Xc(%)    -    50     54     44    42    41     CMC0.50%粘度(cP)   114    111     118     265    233    304     CMC1%粘度(cP)   898    1087     853     2037    1835    2608     CMC DS   0.793    0.828     0.822     0.791    0.779    0.759
与对比例相比,用10,14和18%(w/w)氢氧化钠进行丝光化处理的 絮凝物,其干堆积密度均将有可比较的增加(31-28%)。利用10,14和 18%(w/w)处理制得的CMC的粘度(1.0%CMC溶液)将比对比例大104- 190%。在该范围CMC溶液的粘度将大于由木浆制得的CMC的市售产品 的粘度。对于丝光化NSS浆而言,这种溶液粘度的增加将大大扩大由 NSS制得的醚溶液的粘度范围。
实施例5
SHK衍生得到的纤维素絮凝物和CMC的制备
利用设置为600的计数器,根据TAPPI TMI 73-06-00中描述的方 法,使非丝光化南方阔叶木硫酸盐(SHK)浆板分解,从而形成浆液。然 后,利用75g/L的7%(w/w)的氢氧化钠(NaOH),111g/L的10%(w/w) 的氢氧化钠,162g/L的14%(w/w)的氢氧化钠,和216g/L的18%(w/w) 的氢氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。然后对浆 料进行洗涤并在3.5%稠度下用硫酸和草酸对浆料进行处理。借助 Formette Dynamique抄片机使浆料形成片材,对片材进行干燥并利用 Wiley Mill研磨机进行研磨,从而形成数均絮凝物长度为0.22-0.25 毫米的纤维素絮凝物。根据实施例1的方法将絮凝物转化成CMC。根 据处理过的纤维素浆料的每一个批料制备两个单独的CMC批料,并进 行试验。
通过将非丝光化SHK片材直接研磨成絮凝物并将该絮凝物转化成如 实施例1中所述的CMC,而制备第一对比例(对比例1)。
利用设置为600的计数器,根据TAPPI TMI 73-06-00中描述的方 法,使非丝光化SHK浆板分解形成浆液,而制备第二对比例(对比例 2)。借助Formette Dynamique抄片机使分解的浆料形成片材,对片材 进行干燥并利用Wiley Mill研磨机进行研磨,从而形成纤维素絮凝 物。如实施例1中所述,将该絮凝物转化成CMC。
结果列于表6中。
表6
丝光化对SHK-衍生得到的片材、絮凝物和CMC性能的作用   丝光化剂处理量    (NaOH(w/w))  对比例    11  对比例    12   7%   10%   14%   18%   片材粘度(cP)   12.3   11.9   11.6   11.7   11.3   11.1   絮凝物粘度(cP)   11.5   11.0   10.7   10.9   10.6   10.4   平均絮凝物长度(mm)   0.22   0.24   0.24   0.24   0.25   0.23   絮凝物密度(g/mL)   0.135   0.120   0.125   0.140   0.138   0.132   絮凝物WRVs(%)   76.2   69.5   71.9   70.9   71.1   72.4   片材Rx值   0.5629   0.5466   0.5699   0.5717   0.6290   0.6537   片材纤维素II(%)   -   0   1   5   62   65   片材结晶度Xc(%)   -   53   52   49   37   39   CMC0.50%粘度(cP)   49   65   48   71   148   143   CMC1%粘度(cP)   230   362   251   461   547   923   CMC DS   0.805   0.728   0.790   0.701   0.634   0.659
对于1.0%的CMC溶液,丝光化纤维素浆的粘度增加值从10%氢氧化 钠量时的100%至18%氢氧化钠量时的300%。
实施例6
分别将由实施例1、2、和4中的丝光化和非丝光化棉短绒浆、南方 针叶木硫酸盐浆、和北方针叶木亚硫酸盐浆制得的絮凝物的干絮凝物 密度对絮凝物的平均纤维长度在图1中进行作图。
分别将由实施例1、2、4和5中制得的丝光化棉短绒浆、南方针叶 木硫酸盐浆、北方针叶木亚硫酸盐浆、和南方阔叶木硫酸盐浆的Rx值 对浆料处理期间氢氧化钠的百分比在图2中进行作图。
实施例7
由没有干燥的(湿的)CLP制备CMC
在蒸煮和漂白之后,收集由Buckeye Technolohies(Foley,FL)生 产的在生产中没干燥的CLP(UVE级),用于实验室规模的丝光化。然 后,利用216g/L的18%(w/w)的氢氧化钠,对没干燥的浆液进行处理(3% 稠度,15分钟)。处理温度约为25℃。然后对浆料进行洗涤,并在3.5% 的稠度下用硫酸进行处理。借助Formette Dynamique抄片机使浆料形 成片材,对片材进行干燥,并利用Wiley Mill研磨机对干燥的片材进 行研磨,从而形成数均絮凝物长度为0.39-0.40毫米的絮凝物。根据 实施例1的方法,将纤维素絮凝物转化成CMC。
由再湿润、干燥的成品CLP制备CMC
利用设置为600的计数器,根据TAPPI TMI 73-06-00,使得自相 同生产路线的干燥的、成品CLP试样分解,从而形成浆液。如上所述, 对浆料进行丝光化处理,洗涤,用酸进行处理,形成片材,研磨成絮 凝物,并转化成CMC。
干燥的成品CLP的制备(对比例)
为了进行对比,如上所述,收集得自相同生产路线的干燥的、成品 CLP试样,研磨成絮凝物并转化成纤维素醚。
通过每一个上述的方法制备三个CMC试样并进行试验。结果列于下 表7中。
表7  原料纤维     素 丝光化剂处理量   (NaOH(w/w))   试样  片材粘度    (cP)  絮凝物粘度     (cP)  平均絮凝物   长度(mm) CMC0.50%的   粘度(cP) CMC0.75%的   粘度(cP) CMC1.00%的   粘度(cP)     CMC      DS   没干燥   的湿浆     18%     A     227     188     0.39     1455     4695     76910     0.829     18%     B     227     188     0.39     1599     4856     80000     0.795     18%     C     227     188     0.39     1658     5580     81320     0.800     -   Average     227     188     0.39     1571     5044     79410     0.808 再湿润的 干燥的CLP     18%     A     242     177     0.40     603     1891     29160     0.709     18%     B     242     177     0.40     708     2345     24010     0.772     18%     C     242     177     0.40     1502     4436     77190     0.804     -   Average     242     177     0.40     937     2891     43453     0.745   对比例     0%     A     289     214     0.39     681     1992     19580     0.859     0%     B     289     214     0.39     746     2130     21370     0.755     0%     C     289     214     0.39     708     2461     23530     0.822     -   Average     289     214     0.39     712     2194     21493     0.812
没干燥的丝光化CLP提供的1%CMC水溶液的粘度,将比对比例高 296%。先前进行干燥然后进行丝光化处理的1%CMC水溶液的粘度,比 对比例高102%。
实施例8
由成品CLP制备甲基纤维素(MC)
收集由Buckeye Technolohies纤维素工厂(Memphis,TN)生产的 成品CLP(HVE级),并利用设置为600的计数器,根据TAPPI TMI 73- 06-00进行分解,从而形成浆液。然后,利用162g/L的14%(w/w)的氢 氧化钠,216g/L的18%(w/w)的氢氧化钠,和304g/L的24%(w/w)的氢 氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。然后对浆料进 行洗涤并在3.5%稠度下用硫酸和草酸进行处理。借助Formette Dynamique抄片机使浆料形成片材,对片材进行干燥并利用Wiley Mill 研磨机进行研磨,从而形成数均絮凝物长度为0.29-0.31毫米的絮凝 物。
利用Drais高浓反应器,按如下将絮凝物转化成MC,所述反应器得 自Draiswerke GmbH(Mannheim,Germany)。用296克50%(w/w)的氢氧 化钠对150克(绝干)提纯的纤维素絮凝物(在氮气氛下)进行喷淋,并 在约25℃搅拌5分钟。然后,将374克氯甲烷(CH3Cl)添加至碱纤维素 中。将得到的混合物加热至约75℃并反应2.5小时。从反应器中取出 形成的产物,并在80℃的水中洗涤四次。然后,在105℃利用压缩空 气对剩下的MC进行干燥。
利用ASTM法D 3876-96,借助Hewlett Packard气相色谱(5890型), 测量MC的取代度(DS),其中所述色谱法带有如下色谱柱:Hewlett Packard HP-20M Carbowax 20M;30M×0.53mm×1.33μm薄膜厚度。
利用标准Brookfield粘度计(LVDV2+型),按照如下测量醚旋转粘 度。将MC在热水(80-90℃)中溶解并搅拌30分钟。然后对该溶液搅 拌并冷却至5℃。在水浴中将溶液的温度调节至20℃,以便进行粘度测 量。
借助实施例1中所述的方法确定另外的絮凝物和醚的特性。
根据处理过的纤维素浆的每一个批料制备两个单独的MC批料,并进 行试验。
通过相同的方法制备对比MC,所不同的是,浆料不用氢氧化钠进行 处理和洗涤。
结果列于下表8中。
表8
丝光化对CLP-衍生得到的片材,絮凝物和MC的作用     丝光化剂处理量     (NaOH(w/w))   对比例     14%     18%     24%     片材粘度(cP)     307     223     211     218     絮凝物粘度(cP)     182     160     158     179     平均絮凝物长度(mm)     0.31     0.30     0.31     0.29     絮凝物密度(g/mL)     0.151     0.202     0.206     0.195     絮凝物WRVs(%)     57     67     67     62     MC1%的粘度(cP)     16347     176     86     76     CMC DS     2.02     1.92     1.85     1.65
丝光化处理将导致絮凝物密度和絮凝物WRV增加。由丝光化CLP制 得的甲基纤维素的粘度和取代度将随氢氧化钠浓度的增加而降低。
实施例9
CLP衍生得到的纤维素絮凝物和CMC的制备
在蒸煮和漂白之后,收集由Buckeye Technolohies纤维素工厂 (Memphis,TN)生产的在生产中没干燥的CLP(UVE级),利用216g/L 的18%(w/w)的氢氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。 然后对浆料进行洗涤并在3.5%稠度下用硫酸进行处理。借助Formette Dynamique抄片机使浆料形成片材,对片材进行干燥并利用Wiley Mill 研磨机进行研磨,从而形成数均絮凝物长度为0.40-0.41毫米的絮凝 物。
利用Drais高浓反应器,按如下将絮凝物转化成CMC,所述反应器得 自Draiswerke GmbH(Mannheim,Germany)。用175克50%(w/w)的氢氧 化钠对150克(绝干)提纯的纤维素絮凝物(在氮气氛下)进行喷淋,并 在约25-30℃搅拌60分钟,以便形成碱纤维素。然后,将102克加热 至50℃、溶解于异丙醇中99%(w/w)的一氯乙酸(MCA)添加至碱纤维素 中。将得到的混合物置于氮气氛下并加热至约70℃。以70℃反应3.0 小时。在反应停止后,利用带#4滤纸的Bchner漏斗使混合物滤水。 通过用含水甲醇对混合物洗涤两次和用甲醇洗涤两次而从反应器中除 去氯化钠和副产物。然后,在55℃利用压缩空气对剩下的CMC进行干 燥。
根据处理过的纤维素浆的每一个批料制备两个单独的CMC批料,并 进行试验。
为了进行对比,将由Buckeye Technolohies纤维素工厂(Memphis, TN)生产的成品CLP(HVE级)试样直接研磨成絮凝物并转化成CMC。
结果列于下表9中。
表9
丝光化对CLP-衍生得到的片材,絮凝物和MC的作用     丝光化剂处理量      (NaOH(w/w))    对比例     18%     片材粘度(cP)     330     222     絮凝物粘度(cP)     208     171     平均絮凝物长度(mm)     0.41     0.40     絮凝物密度(g/mL)     0.1025     0.1370     CMC0.50%粘度(cP)     1422     2072     CMC0.75%粘度(cP)     3125     5581     CMC1.00%粘度(cP)     30145     75190     CMC DS     0.767     0.797
丝光化的CLP絮凝物的密度大于非丝光化CLP对比絮凝物的密度。 在高稠度反应器中由丝光化纤维制得的CMC在溶液粘度方面也显示出 明显的增加(对于1%的水溶液,增加149%)。
实施例10
在蒸煮和漂白之后,收集由Buckeye Technolohies纤维素工厂 (Memphis,TN)生产的在生产中没干燥的CLP(UVE级),利用216g/L 的18%(w/w)的氢氧化钠,于25℃,对浆液进行处理(3%稠度,15分钟)。 然后对浆料进行洗涤并以3.5%的稠度用硫酸进行处理。借助Formette Dynamique抄片机使浆料形成片材,对片材进行干燥直至浆料干燥至 绝干或具有30%的水份。利用Wiley Mill研磨机对片材进行研磨,从 而形成数均絮凝物长度为0.38-0.41毫米的絮凝物。
根据实施例1中所述的方法,使絮凝物转化成CMC。根据浆料的水 份改变水的添加量,以保证水与纤维素的比率恒定在约2.6∶1。
根据处理过的纤维素浆的每一个批料制备两个单独的CMC批料,并 进行试验。
为了进行对比,如上所述,对同样的在生产中没干燥的CLP的试样 进行试验,所不同的是,不用18%(w/w)氢氧化钠进行丝光化处理。
结果列于下表10中。
表10
丝光化对没干燥的CLP-衍生得到的片材,絮凝物和CMC的作用     丝光化剂处理量      (NaOH(w/w))   对比例    (0%)    对比例    (0%)   18%   18%     片材水含量(%w/w)     绝干     30   绝干   30     片材粘度(cP)     325     298   219   205     絮凝物粘度(cP)     249     260   185   173     絮平均絮凝物长度(mm)     0.38     0.39   0.41   0.40     CMC0.50%粘度(cP)     615     616   1180   1332     CMC0.75%粘度(cP)     2113     1944   3506   3505     CMC1.00%粘度(cP)     25685     13920   55335   57190     CMC DS     0.827     0.830   0.787   0.791
对于绝干或30%水份的CLP,18%氢氧化钠丝光化处理均将增加 CMC1%水溶液的粘度。
实施例11
利用Wiley Mill研磨机,将由Buckeye Technolohies纤维素工 厂(Memphis,TN)生产的成品CLP(HVE级)研磨成絮凝物(其平均絮凝 物长度为0.39mm)。利用216g/L的18%(w/w)的氢氧化钠,于25℃, 对得到的絮凝物进行丝光化处理(3%稠度,15分钟)。然后用水对絮凝 物进行洗涤并以3.5%的稠度用硫酸和草酸进行处理。以不同的时间, 在71℃的烘箱中对絮凝物进行干燥。然后根据实施例1中所述的方 法,将絮凝物转化成CMC。根据浆料的水份改变水的添加量,以保证 水与纤维素的比率恒定在约2.6∶1。
根据处理过的纤维素浆的每一个批料制备两个单独的CMC批料,并 进行试验。
为了进行对比,如上所述,CMC由相同的絮凝物衍生得到,所不同的 是,不用18%(w/w)氢氧化钠进行丝光化处理。
结果列于下表11中。
表11  絮凝物丝光     化量   (%NaOH) 絮凝物水含 量(%w/w)  絮凝物粘度     (cP)  CMC粘度  0.5%(cP)   CMC粘度   1.0%(cP)    CMC DS     18     53     152     915     6217     0.765     18     39     158     1107     6414     0.744     18     9     163     1002     6376     0.752     对比例     7     195     524     5440     0.795
实施例12
将按照如下对用作实施例2,4,5和11的成品浆试样(即 SSK,NSS,SHK和CLP)进行试验。将每个试样切成条状物。然后,在液 氨浴中于-50℃对每个条状物进行丝光化处理30分钟,以便形成纤维 素III。然后在105℃的烘箱中将丝光化的条状物干燥过夜。利用Wiley Mill研磨机对条状物进行研磨,以形成絮凝物。根据实施例1中所述 的方法将絮凝物转化成CMC。制备两个CMC批料,并按照处理和纤维 素的类型进行试验。
作为对比例,由上述试样制备CMC,所不同的试样不用液氨进行丝 光化处理。结果列于下表12中。
表12  纤维素种  类/处理   片材   粘度   (cP) 絮凝物  粘度  (cP)   平均絮凝    物长度     (mm)  絮凝物   密度  (g/mL)  絮凝物   WRVs   (%)  CMC粘度 0.50%(cP)    CMC粘度   1.0%(cP)   CMC    DS  CLP/对比   319   200     0.37  0.1188   59.2     451     4158  0.859  CLP/氨   232   196     0.38  0.1139   55.6     473     3899  0.857  SHK/对比   12    12     0.34  0.0885   77.0     42     184  0.870  SHK/氨   11    10     0.33  0.0993   64.3     38     159  0.820  SSK/对比   28    26     0.42  0.1763   77.3     67     471  0.835  SSK/氨   20    19     0.41  0.1815   75.7     64     385  0.808  NSS/对比   64    59     0.39  0.0965   77.3     99     702  0.864  NSS/氨   44    40     0.39  0.1079   75.7     99     711  0.846
实施例13
将按照如下对用作实施例2和11的成品浆试样(即SSK和CLP)进 行试验。将每个试样切成条状物。然后,在液氨(1700mL)和甲醇(300mL) 的混合物中于-约35℃对每个条状物进行丝光化处理5分钟,以便形 成纤维素III。然后在通橱中,使丝光化的条状物风干72小时。利 用Wiley Mill研磨机对条状物进行研磨,以形成絮凝物。根据实施例 1中所述的方法将絮凝物转化成CMC。制备两个CMC批料,并按照处理 和纤维素的类型进行试验。
作为对比例,由上述试样制备CMC,所不同的试样不用液氨进行丝 光化处理。结果列于下表13中。
表13   丝光化剂处理          CLP          SSK   对比例   氨   对比例   氨   片材粘度(cP)   356   277   28   27   絮凝物粘度(cP)   216   239   26   25   平均絮凝物长度(mm)   0.40   0.41   0.43   0.41   絮凝物密度(g/mL)   0.101   0.091   0.144   0.153   CMC0.50%粘度(cP)   727   478   70   55   CMC1%粘度(cP)   5134   4135   404   316   CMC  DS   0.839   0.848   0.852   0.860
在此将所有引证的参考文献引入作为参考。在说明书和参考文献之 间,在此用作对比的语言可能存在着一定程度的冲突。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈