首页 / 专利库 / 物理 / 量子局限 / 半导体发光元件

半导体发光元件

阅读:954发布:2020-06-03

专利汇可以提供半导体发光元件专利检索,专利查询,专利分析的服务。并且本 发明 公开一种 半导体 发光元件,其包含 基板 ,第一局限层位于基板之上,活性区位于第一局限层之上,及第二局限层位于活性区之上。其中活性区包含掺杂杂质的第一型障壁层及未掺杂杂质的第二型障壁层,且第一型障壁层较第二型障壁层更接近第一局限层。,下面是半导体发光元件专利的具体信息内容。

1.一种半导体元件,包含:
基板
第一局限层位于该基板上;
活性区位于该第一局限层上;及
第二局限层位于该活性区上;
其中该活性区包括掺杂杂质的第一型障壁层及未掺杂杂质的第二型障壁层,且该第一型障壁层较该第二型障壁层更接近该第一局限层。
2.如权利要求1所述的半导体元件,其中该活性区具有多重量子阱结构,包含多对量子阱层/障壁层,且每一对量子阱层/障壁层中的量子阱层作为活性层,载流子可于该活性层中结合以产生光子
3.如权利要求2所述的半导体元件,其中该每一对量子阱层/障壁层中的障壁层为该第一型障壁层或该第二型障壁层,且该第一型障壁层数目等于或小于该第一型障壁层和该第二型障壁层总数目的一半。
4.如权利要求2所述的半导体元件,其中该每一对量子阱层/障壁层中较接近该第一局限层的障壁层为该第一型障壁层而较接近该第二局限层的障壁层为该第二型障壁层。
5.如权利要求2所述的半导体元件,其中该活性区由(AlxGa1-x)yIn1-yP(0≤x≤1,
0≤y≤1),AlGaAs,或InGaP其中之一所组成。
6.如权利要求1所述的半导体元件,其中该半导体基板为n型GaAs基板;该第一局限层为n型AlInP,AlGaInP,或AlGaAs局限层;该第二局限层为p型AlInP,AlGaInP,或AlGaAs局限层;及该第一型障壁层为p型掺杂。
7.如权利要求6所述的半导体元件,其中该n型局限层厚度大于1μm。
8.如权利要求6所述的半导体元件,其中掺杂于该第一型障壁层及该第二局限层的p型杂质选自一种或一种以上的可提供空穴的p型掺杂元素,包含由镁,锌,铍,或所形成的族群。
9.如权利要求8所述的半导体元件,其中分别掺杂于该第一型障壁层及该第二局限层的杂质为不同元素。
10.如权利要求6所述的半导体元件,其中掺杂于该第一型障壁层中的杂质浓度为
16 -3 20 -3
1×10 cm 至1×10 cm 之间。
11.如权利要求6所述的半导体元件,其中还包含转换层位于p型局限层之上,及电流扩散层位于该转换层之上。
12.如权利要求11所述的半导体元件,其中该转换层为p型InGaP层,及该电流扩散层为p型GaP层。
13.一种半导体元件,包含:
永久基板;
接合层位于该永久基板之上;
第二局限层位于该接合层之上;
活性区位于该第二局限层之上;及
第一局限层位于该活性区之上;
其中该活性区包括掺杂杂质的第一型障壁层及未掺杂杂质的第二型障壁层,且该第一型障壁层较该第二型障壁层更接近该第一局限层。
14.如权利要求13所述的半导体元件,其中该第一局限层为n型AlInP,AlGaInP,或AlGaAs局限层;该第二局限层为p型AlInP,AlGaInP,或AlGaAs局限层;及该第一型障壁层为p型掺杂。
15.如权利要求14所述的半导体元件,其中还包含电流扩散层位于该接合层之上,及转换层位于该电流扩散层与该第二局限层之间。
16.如权利要求15所述的半导体元件,其中该电流扩散层为p型GaP层,及该转换层为p型InGaP层。

说明书全文

半导体发光元件

技术领域

[0001] 本发明涉及一种半导体元件,尤其关于一种半导体发光元件。

背景技术

[0002] 半导体发光元件例如发光二极管激光二极管广泛应用于例如显示器、照明及通讯等不同领域。其发光原理是使半导体发光元件中产生如电子和空穴的载流子于活性区结合后以产生光子,其中部分光子逃离半导体发光元件而输出光线。亮度为发光元件的特性参数之一,与特定周期内所发射的光子数目有关。利用不同的方法,如:于活性区内增加电子空穴的结合,可以增加半导体发光元件的亮度。
[0003] 一些半导体发光元件的活性区为量子阱结构,其中量子阱层的厚度为数纳米至数十纳米。利用已知外延技术,如:有机金属化学气相沉积法(MOCVD)或分子束外延法(MBE)可达到控制厚度的目的。由于量子阱层厚度相当小,电子和空穴会在量子阱层内产生量子局限效应,使元件具有优选的性能表现。然而,当大量载流子注入时,单一量子阱无法捕获全部的注入载流子,造成半导体发光元件的亮度及输出功率有极限值。当多重量子阱活性区取代单一量子阱活性区时,可形成成为高功率、高亮度的半导体发光元件。
[0004] 在多重量子阱半导体发光元件中,其活性区包含多对量子阱层/障壁层交互叠层。n型局限层设置于活性区的一侧,p型局限层置于活性区的另一侧,分别来自n型局限层和p型局限层的电子和空穴被注入于活性区内。在活性区中,电子和空穴以相反方向移动,当它们到达同一个量子阱时可以彼此结合。因此,愈靠近n型局限层的电子密度较高,且随着远离n型局限层而逐渐降低;相同地,愈靠近p型局限层的空穴密度较高,且随着远离p型局限层而逐渐降低。因为空穴的迁移率及扩散系数比电子小,所以空穴密度降低的速度比电子密度降低的速度快。靠近p型局限层的量子阱中电子空穴结合数目较多,靠近n型局限层的量子阱中电子空穴结合数目较少。当量子阱数目越多时,例如:数十个量子阱,此偏向一侧结合的情形更为明显。因此,靠近n型局限层有许多被注入的电子没有机会和空穴结合产生光线而被消耗于其他的结合方式。
[0005] 当p型局限层为高浓度杂质掺杂时,因为p型杂质有较高的扩散性,所以可缓和上述问题。即使p型杂质于成长p型局限层时与之结合,仍有机会扩散进活性区。p型杂质扩散进活性区中可于元件操作时提供额外的空穴并提升元件亮度。然而,上述问题并无法彻底解决,因为太多量子阱时,p型杂质仍无法扩散至整个活性区,靠近n型局限层的量子阱层因此仍缺少可与电子结合的空穴,使半导体发光元件亮度无法提升。此外,p型杂质扩散进活性区内,不仅存在于障壁层也存在于量子阱层,因此在量子阱层形成非放射性结合中心,这些非放射性结合中心会损耗部分的注入载流子,不利于元件亮度提升。

发明内容

[0006] 本发明的目的在于提供一种半导体元件,以解决上述问题。
[0007] 根据本发明提供半导体元件,包括提供基板,第一局限层形成于基板之上,活性区形成于第一局限层之上,及第二局限层形成于活性区之上,其中活性区包括掺杂杂质的第一型障壁层及未掺杂杂质的第二型障壁层,且第一型障壁层较第二型障壁层更接近第一局限层。
[0008] 根据本发明提供半导体元件,包括提供永久基板,接合层形成于永久基板之上,第二局限层形成于接合层之上,活性区形成于第二局限层之上,及第一局限层形成于活性区之上,其中活性区包括掺杂杂质的第一型障壁层及未掺杂杂质的第二型障壁层,且第一型障壁层较第二型障壁层更接近第一局限层。附图说明
[0009] 图1为依据本发明实施例一的半导体发光元件100的结构图。
[0010] 图2为依据本发明实施例一的半导体发光元件100的活性区详细结构放大图。
[0011] 图3描述本发明半导体发光元件活性区掺杂及未掺杂时的亮度-电流关系图。
[0012] 图4为依据本发明实施例四的半导体发光元件400的结构图。
[0013] 附图标记说明
[0014] 100:半导体发光元件
[0015] 102:基板
[0016] 104:缓冲层
[0017] 106:第一局限层
[0018] 108:多重量子阱(井)活性区
[0019] 108-2:障壁层
[0020] 108-2a:掺杂障壁层
[0021] 108-2b:未掺杂障壁层
[0022] 108-4:量子阱层
[0023] 110:第二局限层
[0024] 112:转换层
[0025] 114:电流扩散层
[0026] 400:半导体发光元件
[0027] 402:蚀刻停止层
[0028] 404:接合层
[0029] 406:永久基板

具体实施方式

[0030] 本发明实施例包括于活性区具有高放射性结合机率的载流子的半导体发光元件,因此可提高亮度。
[0031] 在下文中,本发明实施例将参考附图描述说明,图中相同或相似的部位将以相同的参考号码表示。
[0032] 图1,图2所示为第一实施例的半导体发光元件100结构。半导体发光元件100包括形成多层半导体叠层于基板102之上,此半导体叠层可以使用已知成长方法,如:有机金属化学气相沉积法(MOCVD)成长半导体材料。此时,基板102为成长基板,其表面并于MOCVD系统中受到加热。不同元素的前驱物流至基板之上彼此反应以于加热的基板表面形成外延层。基板102例如可为n型GaAs基板,并形成第一电性缓冲层104于基板102之上。缓冲层104用以补偿基板102及其上成长结构晶格常数的差异,并阻止缺陷的延伸,例如从基板102延伸到其上成长的元件间的差排。缓冲层104可例如为n型GaAs缓冲层。半导体发光元件100亦包括第一电性的第一局限层106及第二电性的第二局限层110。第一局限层
106形成于缓冲层104之上,例如为n型的AlInP,AlGaInP或AlGaAs局限层。第二局限层
110可例如为p型的AlInP,AlGaInP或AlGaAs局限层。多重量子阱活性区108形成于第一局限层106和第二局限层110之间。形成活化区108的材料其能隙须较第一局限层106和第二局限层110的能隙小。第二电性的多层结构形成于第二局限层110之上。此多层结构可包括例如转换层112及电流扩散层114形成于转换层112之上。转换层112可为例如p型InGaP层。电流扩散层114可为例如p型GaP层。转换层112用以补偿电流扩散层114和第二局限层110晶格常数的差异。
[0033] 图2为图1所示半导体发光元件100部分放大图,显示多重量子阱活性区108详细结构。多重量子阱活性区108包括多个量子阱层108-4和多个障壁层108-2以形成的多对量子阱层/障壁层,其中障壁层108-2由包括障壁层108-2a及障壁层108-2b交互堆叠而成。在多重量子阱活性区108内有数对至数十对或甚至超过一百对的量子阱层/障壁层,多重量子阱活性区108可包括半导体材料例如:(AlxGa1-x)yIn1-yP(0≤x≤1,0≤y≤1)或AlGaAs,InGaP等其他类似材料。在多重量子阱活性区108中,组成量子阱层的材料能隙小于组成障壁层的材料能隙,如此载流子才能被捕获并局限于量子阱层。其中量子阱层和障壁层可由例如(AlxGa1-x)yIn1-yP(0≤x≤1,0≤y≤1)材料所组成,选择不同x或y值可达到符合需求的能隙。
[0034] 第一实施例中,障壁层108-2中部分标示为108-2a的障壁层掺杂有例如为p型的第二电性杂质。其他标示为108-2b的障壁层则未掺杂杂质。掺杂杂质的障壁层108-2a比未掺杂杂质的障壁层108-2b更接近第一局限层106。掺杂杂质的障壁层108-2a数目可等于或小于障壁层108-2总数目的一半。与掺杂杂质的障壁层108-2a结合的p型杂质可为一种或多种选自可提供空穴的元素所组成的族群,包括但不限于镁,锌,铍或。所掺杂的16 -3 20 -3
杂质浓度为1×10 cm 至1×10 cm 。掺杂杂质的障壁层108-2a的杂质浓度须提供邻近量子阱层足够的空穴。然而,假如杂质浓度太高,结晶完整性及半导体发光元件的特性将被破坏,导致元件亮度无法提高。因此,杂质浓度的选择可依达到元件所须的特性来决定。若欲于制作元件100时调整杂质浓度,可于成长掺杂障壁层108-2a时改变掺杂杂质的前驱物的流量。根据第一实施例的半导体发光元件100被掺杂杂质的障壁层108-2a其适合的杂
16 -3 20 -3
质浓度为1×10 cm 至1×10 cm 。掺杂p型杂质例如为镁,锌,铍,或碳。
[0035] 再者,根据本发明的实施例,虽然被掺杂杂质的障壁层108-2a和第二局限层110具有相同的电性,例如二者为p型电性,但结合于掺杂障壁层108-2a的杂质和结合于第二局限层的杂质可为不同种类的元素。例如掺杂障壁层108-2a的杂质为锌,掺杂于第二局限层的杂质为镁。
[0036] 当半导体发光元件100操作时,来自第一局限层106及第二局限层110具不同电性的载流子分别注入多重量子阱活性区108。例如电子来自n型局限层106,空穴来自p型局限层110。载流子被注入多重量子阱活性区108时会被局限在量子阱层108-4并且在此结合产生光子,因此发出光线。靠近p型局限层110的量子阱层可以接收来自p型局限层110足够的空穴,因此电子和空穴间可达到高结合率。靠近n型局限层106的量子阱层虽然无法自p型局限层110接收足够的空穴,但其邻近的障壁层108-2a中所掺杂的p型杂质可以提供额外空穴与电子在这些量子阱层结合。因此,根据第一实施例的半导体发光元件
100在多重量子阱活性区108的全部量子阱层均可达到高结合率,元件亮度因而提高。
[0037] 图3为三个各具有多重量子阱活性区的半导体发光元件的亮度与电流测试结果图。平轴为顺向电流(If),量测单位为mA;垂直轴为发光强度值(Iv),量测单位为mcd。正方形标号和钻石形标号两条曲线分别代表在活性区中部分障壁层掺杂有p型杂质的两个元件测试结果:正方形标号曲线代表于活性区障壁层掺杂第一杂质浓度元件的量测结果,钻石形标号曲线代表于活性区障壁层掺杂第二杂质浓度元件的量测结果,其中第一杂质浓度高于第二杂质浓度。圆形标号曲线代表于活性区障壁层未掺杂杂质的元件的量测结果。从图中可以看出:活性区中部分障壁层掺杂有杂质的半导体发光元件其输出光线增加,因此亮度也增加。
[0038] 根据第二实施例,提供有亮度增加的半导体发光元件。第二实施例与第一实施例差异在半导体发光元件具有厚度大于1μm的第一局限层106能够提供足够的第一电性的载流子至活性区。此外,第二实施例的半导体发光元件与第一实施例的半导体发光元件各层材料及其它方面都相同。
[0039] 根据第三实施例,提供有亮度增加的半导体发光元件。第三实施例与第一实施例差异在半导体发光元件多重量子阱活性区所有障壁层都掺杂p型杂质。此外,第三实施例的半导体发光元件与第一实施例的半导体发光元件各层材料及其它方面都相同。
[0040] 图4为根据第四实施例的增加亮度半导体发光元件400的结构图。半导体发光元件400结构与第一实施例元件100差异在于利用接合层404将元件与永久基板406接合后,移除基板102和缓冲层104。接合层404位于电流扩散层114和永久基板406之间。发光元件400还包括蚀刻停止层402位于缓冲层104和第一局限层106之间。接合后,基板102及缓冲层104被移除,而蚀刻停止层402可保护第一局限层106在以已知技术如蚀刻或研磨方法移除基板102及缓冲层104时免于伤害。蚀刻停止层402的材料可例如为n型InGaP层。接合层404主要接合永久基板406和电流扩散层114,其材料可例如为透明导电化物,半导体,有机材料或金属。永久基板406可以为透明,导热或导电,视元件需求而定。第四实施例的半导体元件其它方面皆和第一实施例的半导体元件相同。
[0041] 虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,任何本发明所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求所界定为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈