首页 / 专利库 / 物理 / 超临界流体 / 超临界水 / 使用超临界水的砜裂化

使用超临界的砜裂化

阅读:923发布:2020-05-11

专利汇可以提供使用超临界的砜裂化专利检索,专利查询,专利分析的服务。并且一种使用超临界 水 、任选在催化剂存在下将砜和亚砜及其混合物裂化的方法,上述物质在 原油 或其蒸馏馏分的料流 氧 化 脱硫 之后回收和分离。,下面是使用超临界的砜裂化专利的具体信息内容。

1.一种从脱硫获得的料流中将含有硫的氧化物、砜和亚砜转化为它们的盐衍生物和SOX,其中x为2或3,并从烃料流中分离的方法,所述方法包括以下步骤:
a)使烃料流与于反应器中在超临界水条件下于反应区中接触;和
b)使流出的烃料流进行蒸气/液/液分离,从而获得不含硫的氧化物、亚砜、砜和硫的氧化物的衍生物和含水盐的烃馏分;
其中,反应区的压温度等于或高于水的临界点
其中,在超临界条件下的转化为存在水溶性催化剂,所述水溶性催化剂选自周期表中的IVB族、V族和VI族金属;
其中催化剂负载于选自二氧化-氧化、氧化铝、天然或合成沸石和活性炭的材料上,
其中该方法在选自下述的反应器中进行:间歇式反应器、固定床反应器、沸腾床反应器、移动床反应器和淤浆床反应器。
2.权利要求1的方法,其中使用钼催化剂。
3.权利要求1的方法,其中反应在性介质中进行。
4.权利要求3的方法,其中反应在氟离子存在下进行。
5.权利要求4的方法,其中氟离子由周期表的IA族的碱金属化合物获得。
6.权利要求1的方法,其中该方法在酸性介质中进行。
7.权利要求6的方法,其中该方法在液体或固体酸性介质中进行。
8.权利要求7的方法,其中该方法在甲酸存在下进行。
9.权利要求1的方法,其中砜、亚砜和硫的氧化物的沸点在180℃-1500℃的范围。
10.权利要求1的方法,其中停留时间为1分钟-600分钟。
11.权利要求10的方法,其中停留时间为5分钟-120分钟。
12.权利要求11的方法,其中停留时间为10分钟-60分钟。
13.权利要求1的方法,其中油/水体积比为1:5。
14.权利要求1的方法,其中油/水体积比为1:2。
15.权利要求1的方法,其中油/水体积比为1:1。
16.权利要求1的方法,其中砜和亚砜从下述物质获得:全原油、合成原油、沥青页岩液或它们的精制中间产物和/或终产物,包括焦化物、FCC和加氢工艺馏分。
17.权利要求1的方法,其中当使用多于一个反应器时,所述反应器串联或并联设置和所述反应器包含不同类型的催化剂。

说明书全文

使用超临界的砜裂化

发明领域

[0001] 本发明大体上涉及一种用于在脱硫之后除去残余硫化合物的方法。更特别地,其涉及一种用于裂化或分解存在于氧化脱硫后的料流中的砜、亚砜和其混合物的方法。
[0002] 发明背景
[0003] 化石燃料和/或其馏分的氧化脱硫是现有技术中公知的方法。在催化剂的存在下用氧化剂氧化硫化合物以形成亚砜随后生成砜。通过多种分离方法包括萃取、吸附等将砜与油分离出来。经分离的砜必须经要善处理或被转化为更有用的化学品。在这种情况下,为了使原料的损失最小化,需要将与砜相关的烃分子部分地或全部回收。对砜的处理不是优选的选择,因为其会导致大的产率损失并会对环境和加工经济性产生负面影响。
[0004] 存在许多建议的工艺路线和/或化学来分解或转化在化石燃料和/或其馏分的氧化脱硫的过程中形成的砜。这些路线/化学包括焦化、流化催化裂化、热解、加氢裂化、水解等。
[0005] 已报道使用超临界水处理作为重质油和含原料的进一步精制工艺的预处理和/或转化。
[0006] 超临界流体是可以为液体或气体的原料,在超过临界温度和临界压的状态下使用,此时气体和液体可以共存。其具有不同于在标准条件下的气体或液体的独特性质。
[0007] 超临界流体既具有气体的性质能渗透至任何地方,也具有液体性质能将原料溶解于其组成中。其表现出以下优点,能以持续方式在很大程度上改变密度。因此,以超临界流体的形式利用水为许多工业领域中的有机溶剂提供了替代品。这在处理工艺,特别是废弃物处理中引起广泛关注。
[0008] 通过参开并入本文的US6887369公开了一种用于处理含碳原料的方法,所述方法包括将含碳原料与工艺气体在超临界水中反应以至少加氢处理和加氢裂化含碳原料来形成经处理的含碳原料。该方法优选在深井反应器中进行,但也可在常规地基反应器中在温度至少为705°F和压力至少为2500psi下进行。根据本发明,提供方法用于预处理重质油和其它含碳原料,特别是使得这类原料适于随后用于精制工艺。
[0009] 已建议方法来利用水,特别是超临界水从多种含碳沉积物中回收液体烃馏分,相对于直接热解而言其会产生蒸馏物的增加的产量和焦化水平的降低。通过参考并入本文的美国专利第3,051,644号公开了一种用于从页岩中回收油的方法,其包括将油页岩颗粒分散于蒸汽中,以在约370℃-约485℃的温度和约1000-3000psi的压力下用蒸汽处理油页岩。油从油页岩中以蒸气形式提取出来并与蒸汽掺混。
[0010] 大多数用于运输的燃料衍生自原油,原油为世界上用作燃料和石化原料的烃的主要来源。虽然天然石油或原油的组成有极大差异,但所有原油都含有硫化合物并且大多数还含有氮化合物,其也可含有氧,但大多数原油中的氧含量低。通常,原油中的硫浓度小于约5重量%,大多数原油中的硫浓度为约0.5-约1.5重量%。氮浓度通常小于0.2重量%,但可高达1.6重量%。
[0011] 原油在炼油厂精制以生产运输燃料和石化原料。典型地,用于运输的燃料通过对来自原油的蒸馏馏分进行加工和掺混来生产以满足特定的最终使用规范。由于当前可大量获得的大多数原油含有硫含量高,因此必须使蒸馏馏分脱硫以生成满足性能规范和/或环境标准的产品。
[0012] 燃料中的含硫有机化合物是环境污染的主要来源。硫化合物在燃烧过程中转化为硫氧化物并产生硫含氧酸且导致颗粒物排放。已知含氧燃料掺混化合物和含有极少量或不含碳-碳化学键的化合物,例如甲醇和甲醚,可降低炭烟和发动机废气排放。然而,大多数此类化合物具有高的蒸气压和/或几乎不溶于柴油燃料,并且它们具有差的点火性能,如它们的十六烷值所表明。纯化的柴油燃料通过化学加氢处理和氢化来制备以降低它们的硫和芳族物质含量,也会导致燃料润滑性的降低。低润滑性的柴油燃料可能导致燃料喷油器和其它与燃料在高压下接触的运动部件的过度磨损。中间蒸馏物,名义上是指沸程在180℃-370℃的蒸馏馏分,用于压燃式内燃机(柴油机)燃料或燃料的掺混组分,通常含有约1-3重量%的硫。中间蒸馏物馏分的规范已从1993年以来在欧洲和美国的3000ppmw水平降低至10-50ppm重量(ppmw)水平。
[0013] 为了遵守这些超低硫含量燃料的规定,精炼商必须使燃料在进入炼制厂时具有甚至更低的硫水平从而在出厂掺混时可满足严格的规范要求。
[0014] 可获得的证据强有力地证明了超低硫燃料对柴油机废气催化处理以控制排放起到重要的技术推动作用。很可能需要燃料硫水平低于15ppm以达到颗粒物水平低于0.01g/bhp-hr。该水平将会非常适用于目前新兴的用于废气处理的催化剂组合,其已表现出达到约0.5g/bhp-hr的排放的能力。此外,NOx捕集系统对燃料硫极其敏感,可得证据表明它们将需要硫水平低于10ppm以保持活性。
[0015] 鉴于不断收紧的用于运输燃料的硫规范,未来几年,从石油原料和产物中除去硫变得越来越重要。
[0016] 低压的常规加氢脱硫(HDS)工艺可用于从用来掺混炼厂运输燃料的石油蒸馏物中除去大部分硫。然而,当硫原子在多环芳族硫化合物中空间受阻时,这些单元不足以有效地从化合物中除去硫。当硫杂原子被两个烷基基团阻隔(例如,4,6-二甲基二苯并噻吩)时尤其如此。这些受阻的二苯并噻吩在例如50-100ppm的低硫水平占优势。必须采用苛刻的操作条件(即更高的氢分压、温度、催化剂用量)从这些难除去的硫化合物中除去硫。增加氢分压只可通过增加循环气的纯度达到。否则,必须设计新的基础单元,而这是昂贵的选择。采用苛刻的操作条件会导致产量损失、少的催化剂循环和产物品质劣化(例如,颜色)。
[0017] 为了满足未来越来越严格的规范,这种受阻硫化合物也必须从蒸馏物原料和产物中除去。这需要推动对开发新的非常规工艺技术的努力。氧化是将硫转化为其氧化物形式的已知方法之一。经氧化的硫化合物随后借助于萃取或吸附而除去。
[0018] 通过萃取和/或吸附除去的硫化合物包括亚砜和砜,主要是砜。亚砜含有一个在硫上的氧原子,所述硫与两个碳原子键结,而砜含有两个在硫原子上的氧原子,所述硫原子也与两个碳原子键结。由于亚砜和砜在烃结构中,如果将这两种产物简单地去除则会导致产量损失。如果将碳-硫键破坏且将硫从烃结构分离出来,则烃可以从亚砜和/或砜中回收,增加氧化脱硫的产量。
[0019] 在通过引用并入本文的US3595778中,在油(Tb>280℃)用臭氧(O/S=1.9),经过多相催化剂V2O5-P2O5/藻土或IV至VI-B族金属的均相催化剂氧化之后,将经氧化的硫化合物随后在150℃-400℃或用(KOH)在200℃-370℃或通过HDS热处理以回收烃。
[0020] 在通过引用并入本文的US6,368,495中,将加氢处理的柴油燃料在40℃-120℃和P=0.5-15atm经过选自Mo、W、Cr、V、Ti的负载于分子筛或无机金属氧化物上的金属催化剂,采用选自烷基过氧化氢、过氧化氢、过乙酸、O2和空气的氧化剂氧化。存在于燃料中(未分离)的砜化合物随后在350℃400℃和5-10atm,采用分解催化剂例如酸催化剂如ZSM-5、丝光沸石、氧化、SiO2-ZrO2或碱性催化剂如MgO、水滑石除去。
[0021] 在通过引用并入本文的WO03/014266A1中,烃料流首先在90℃-105℃和P=1atm采用H2O2和甲酸的水溶液氧化最多至约15分钟的时间。分离氧化溶液之后,随后对含有经氧化的硫化合物的烃料流进行加氢脱硫,加氢处理在比用于常规加氢脱硫更温和的条件下进行。
[0022] 在T.R.Varga等人2004年的Energy and Fuels,18,287-288的文章中公开了在氟离子的存在下转化砜。在标题为Desulfurizatiion of Aromatic Sulfones with Fluorides in Supercritical Water的文章中,采用氟化物KF和NaF在超临界水中转化砜。然而这些反应仅基于模型化合物。
[0023] Katrizky等人在Energy and Fuels,(II(1),pp.150-159)中标题为Aqueous High-Temperature Chemistry of Carbo and Heterocydes28.1Reaction of Aryl Sulfoxides and Sulfones in Sub and Supercritical Water at200460℃的文章公开了在甲酸和甲酸钠的存在下在超临界条件下特定砜的高转化率。然而,砜转化反应仅基于模型化合物。考虑到油基质中的成千上万的其它分子,对在油基质中的这些化合物的影响没有说明。
[0024] 发明简述
[0025] 本发明提供了一种采用超临界水将从氧化脱硫获得的烃料流中的硫的氧化物、砜和亚砜转化为它们的盐衍生物和SOx的方法,其中x为2或3,所述方法包括以下步骤:
[0026] a)使烃料流与水在反应器中于超临界水条件下与水接触;和
[0027] b)使流出的烃料流进行蒸气/液/液分离,从而获得基本上不含硫的氧化物、砜和硫的氧化物的衍生物和含水盐的烃馏分。
[0028] 在本发明的方法中,将超临界水用于破坏或断裂存在于砜和亚砜及其混合物中的碳-硫键,所述化合物由全原油或其馏分氧化脱硫回收。
[0029] 在本发明的一个方面,目标是砜、亚砜及其混合物,其沸点范围为约180℃-约1500℃。
[0030] 在本发明的另一个方面,与现有技术,特别是US6,887,369的教导(注意上文)相比的区别在于,用还原气体在超临界水环境中处理重质油和其它相关原料以引起原料的加氢裂化。将深井反应器用于采用还原气件在超临界水环境中的反应产生大量的加氢裂化并且比通常可得的使用地基超临界水反应器更经济。
[0031] 附图简述
[0032] 图1是本发明方法的流程图
[0033] 发明详述
[0034] 本发明包括转化含有硫的氧化物、砜和亚砜的烃料流的方法。所述方法包括以下步骤:
[0035] a)使烃料流与水在反应器中于超临界水条件下,在不存在催化剂或存在催化剂或添加剂下接触;和
[0036] b)使流出的烃料流进入蒸气/液/液分离器以获得不含硫氧化物、SOx和硫的氧化物的衍生物和含水盐的烃馏分。
[0037] 在本发明的方法中,砜和亚砜及其混合物通过萃取和/或吸附和/或吸收和/或膜分离和/或蒸馏和/或溶剂脱沥青和/或过滤和/或相分离从氧化脱硫回收,并在存在或不存在催化剂体系的条件下与超临界水接触,以破坏碳-硫键。
[0038] 所述亚砜和/或砜可以是脂族硫化物、芳族硫化物和硫醇的衍生物,其沸点大于180℃直到约1500℃。
[0039] 所述亚砜和/或砜可来源于进料,所述进料可以为全原油或其分馏馏出物(其沸程为36℃-370℃)或残余物(其沸程高于370℃)或来自中间炼制工艺单元的烃,例如焦化蜡油、FCC循环油、脱沥青油、来自沥青砂的沥青和/或其裂化产物、液。
[0040] 现参见附图(图1),其示意性地阐明了适合于实施本发明的实施方案,包括两个主要容器,其功能性地描述为超临界水反应器容器10和蒸气/液/液分离器容器20。所有其它的工艺设备,例如泵、热交换器、闪蒸容器和不在附图中示出。
[0041] 在一个特别优选的具体实施方案中,将所有容器作为连续工艺的组件进行操作。将含有经氧化的硫产物(包括亚砜和砜)的烃流进料流11、水12和任选的催化剂或添加剂
13合并,将经合并的进料流14进料至超临界水反应器容器10。超临界水反应器容器10可以以沸腾床反应器、固定床反应器、管式反应器、移动床反应器或连续搅拌釜反应器操作。
[0042] 超临界水反应器流出物料流15随后转送至蒸气/液/液分离器容器20以分离并回收反应产物SOx(其中x为2或3)和其它含杂原子气体,H2S和NH3料流16,烃17和含砜和亚砜的含水盐衍生物18。回收的水料流19可循环回超临界水反应器或从工艺料流20中排出/舍弃。
[0043] 与超临界水的反应可在存在或不存在催化剂体系的情况下发生。可用的催化剂可以是均相或多相催化剂,其可包括来自周期表的IVB、V和VI族一种元素或元素的组合。催化剂可以是金属或分散于载体材料上,优选的催化剂为钼。
[0044] 载体材料可为二氧化硅-氧化铝、氧化铝、天然或合成沸石、或活性炭
[0045] 如果反应器多于一个,则可以串联或并联设置并可包含不同类型的催化剂/添加剂或可以以不同的水-油比例进行操作。
[0046] 反应在高于超临界的温度,换言之,在约380℃-约600℃的范围内和压力在约220巴-约450巴的范围内进行。
[0047] 停留时间可为约1分钟-约600分钟,优选的保留时间为约5分钟-约120分钟,更优选保留时间为约10分钟-约60分钟。
[0048] 油-水体积比可为约1∶5,优选比例为约1∶2,特别优选比例为约1∶1。
[0049] 存在于原油馏分中的砜和亚砜的实例为,但不限于,硫醇、硫化物、苯并噻吩、二苯并噻分、并噻吩、萘并苯并噻吩、苯并萘并噻分和它们的烷基化衍生物的砜和亚砜。
[0050] 虽然采用超临界水的裂化机理还不确定,但可假设在超临界水条件下产生氢,其使得生焦最小化且增强裂化反应,导致形成的自由基稳定化。
[0051] 本发明的砜裂化可任选地于碱性介质,例如氟化物中,或在采用固体酸或液体酸的酸性介质,例如甲酸中进行。
[0052] 如果在干燥的非质子溶剂中使用,氟离子已知是用于有机反应中有效和强的碱。然而,质子溶剂的氢键通常通过特定的溶液足以掩盖氟离子,使得氟离子成为弱碱。水在升高的温度下(>250℃),表现类似于有机非质子溶剂。其密度、介电常数、Hildebrand溶解度参数和氢键结构明显下降。因此,水在高温下变得更适于有机反应。
[0053] 虽然只提出了某些的具体实施方案,但是替代方案和变型对于本领域技术人员而言由前文是显而易见的。这样的替代方案和变型被视为等同于或落入所附的权利要求的精神和范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈